Enhancing Class I Antigen Presentation With Synthetic Sequences

Information

  • Patent Application
  • 20080206270
  • Publication Number
    20080206270
  • Date Filed
    July 08, 2005
    19 years ago
  • Date Published
    August 28, 2008
    16 years ago
Abstract
The invention relates generally to the treatment and prevention of human cancer and viral diseases. More specifically, this invention relates to development of a new generation of vaccines that rely on eliciting cellular immune responses, specifically induction of cytotoxic T lymphocytes (CTL), against cancer cells and virus-infected cells via administration of a vaccine comprising a fusion peptide or a modified peptide. Such a fusion peptide is composed of an insertion signal sequence and a peptide derived from a tumor antigen or a viral antigen, which improves antigen presentation and induces CTL with higher efficiency against cancer cells and virus-infected cells. An exemplary antigen utilized in the invention is HER2/neu. The peptides peptide vaccines of the invention are derived from the antigens PRAME, OFA/iLRP, STEAP and SURVIVIN.
Description
FIELD OF THE INVENTION

The present invention relates generally to the treatment and prevention of human cancer or viral disease and, more specifically, to development of a new generation of vaccines that rely on eliciting cellular immune responses, specifically induction of cytotoxic T lymphocytes (CTL), against cancer cells and virus-infected cells.


BACKGROUND INFORMATION

In recent years, peptides derived from tumor-associated antigens (TAA) have been identified for a variety of human cancers. Thus far, however, effective peptide vaccination of patients with cancer has been limited to very few trials. A major obstacle for effective immunotherapy of cancer is that most TAA described to date are expressed in one or a few tumor types, and among patients with these types of tumors, TAA expression is not universal. The relative paucity of responsiveness after conventional peptide vaccination may also be due to the fact that the peptides do not efficiently enter the antigen-presenting cells and do not translocate through the endoplasmic reticulum membrane in order to associate with the MHC molecules. In addition, the immunogenic tumor peptides have short half-life in vivo, and their affinity to class I MHC molecules is not optimal.


Cytotoxic T lymphocytes (CTL) appear to be among the most direct and effective elements of the immune system that are capable of generating anti-tumor immune responses. Tumor cells expressing the appropriate tumor-associated antigens can be effectively recognized and destroyed by these immune effector cells, which may result in dramatic clinical responses. Both the adoptive transfer of tumor-reactive CTL and active immunization designed to elicit CTL responses have been reported to lead to significant therapeutic anti-tumor responses in patients with malignant melanoma. However, these promising approaches and their applicability to other tumor types besides melanoma are more restricted because of the limited number of tumor-associated antigens or epitopes for CTL. Ideal targets for cancer immunotherapy would include antigens that are: (i) highly expressed in the cancer cells; (ii) not expressed in normal tissues; and (iii) able to induce potent cytotoxic immune responses.


Recently, four class I-restricted PRAME-derived peptides recognized by CTL have been identified. It was shown that CTL clones induced against the four identified epitopes lysed lung carcinoma, melanoma, renal cell carcinoma, and mammary carcinoma cell lines expressing PRAME in a class I-restricted fashion. However, the PRAME-derived peptides have never been modified in any way in order to improve their immunogenicity and efficacy as vaccines.


The identification of peptide sequences recognized by CTL has led to attempts to directly immunize with synthetic peptides. These approaches have met with mixed success and inconsistent results. Several strategies to improve immunization with peptides have been reported. Successful generation of CTL-responses in mice in vivo have been described using peptides formulated with immunostimulating complex (ISCOM), entrapped in liposomes, osmotically loaded into syngeneic splenocytes or coated on their surface. Synthetic viral peptides, covalently linked to a lipophilic compound were also capable of inducing a CTL-response. It was found that immunizations of mice with the minimal peptide OVA257-264 were not effective. OVA-ES (OVA with a signal sequence at its carboxy-terminus) was not as effective as ES-OVA (OVA with a signal sequence at its amino-terminus) probably because the signal peptidase requires NH2-terminal localization of the signal sequence to cleave off the minimal peptide. This possibility has previously been suggested in a study showing that TAP-deficient T2 cells could be sensitized to lysis by CTL when infected with recombinant vaccinia viruses expressing minimal peptides situated COOH-terminal, but not NH2-terminal to the signal sequences. A similar strategy later showed that replacing the signal sequence of the influenza virus hemaglutinin molecule H3 with an artificial sequence containing a HLA-A2-restricted T cell epitope results in efficient translocation into the ER and transport to the cell surface. This signal sequence-derived epitope was presented to HLA-A2-restricted T cells. However, the use of synthetic insertion signal sequences to improve the antigen presentation of human tumor antigens has never been attempted before.


Therefore, there remains a need in the art to discover new peptides useful in vaccination of patients with cancer and viral diseases. Such peptides should lead to a marked improvement in antigen presentation and induction of potent anti-tumor and anti-viral immune responses.


SUMMARY OF THE INVENTION

The invention relates generally to the treatment and prevention of human cancer and viral diseases. More specifically, the invention relates to development of a new generation of peptides and peptide vaccines for cancer and viral diseases that rely on eliciting cellular immune responses, specifically induction of cytotoxic T lymphocytes (CTL), against cancer cells and virus-infected cells.


In one aspect, the invention provides new peptides that induce the activity of CTL against cancer cells. In one embodiment, the invention provides non-HLA-A2 peptides and peptide vaccines derived from PRAME. In another embodiment, the invention provides peptides and peptide vaccines derived from OFA/iLRP. In yet another embodiment, the invention provides peptides and peptide vaccines derived from STEAP.


The peptides of the invention may be modified using any of the approaches described in the invention. In one embodiment, the peptides are operably linked to a signal sequence.


In another aspect, the invention provides a method of treating or preventing cancer by administering a class I restricted peptide. The cancer may be any type of cancer expressing the antigens PRAME, OFA/iLRP, STEAP, or SURVIVIN. In one embodiment, the cancer is lung cancer. In another embodiment, the cancer is breast cancer. In yet another embodiment, the cancer is prostate cancer. In yet another embodiment, the cancer is a brain tumor.


In another aspect, the invention provides a vaccine containing one or more fusion peptides for treating or preventing cancer or virus-infected cells. Such fusion peptides are composed of an insertion signal sequence and an antigen-derived peptide, which improves antigen presentation and induces antitumor and antiviral CTL with higher efficiency. The vaccines of the invention are useful for treating or preventing cancer or virus-infected cells as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 sets forth the amino acid sequence of the full length PRAME protein (SEQ ID NO: 1).



FIG. 2 sets forth the nucleic acid and amino acid sequence of the full length OFA/iLRP protein (SEQ ID NO: 70) and (SEQ ID NO: 78).



FIG. 3 sets forth the amino acid sequence of the full length STEAP protein (SEQ ID NO: 95).



FIG. 4 shows the results of loading/pulsing T2 cells with peptide constructs composed of synthetic signal sequences attached to amino-terminus or to carboxy-terminus of HER2/neu48-56. T2 cells were loaded (left column) or pulsed (right column) with ES-HER48-56 (♦), HER48-56-ES (⋄), IS-HER48-56 (▾), HER48-56-IS (∇) or HER48-56 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 5 shows the results of loading/pulsing T2 cells with peptide constructs composed of synthetic signal sequences attached to amino-terminus or to carboxy-terminus of HER2/neu369-377. T2 cells were loaded (left column) or pulsed (right column) with ES-HER369-377 (♦), HER369-377-ES (⋄), IS-HER369-377 (▾), HER369-377-IS (∇) or HER369-377 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 6 shows the results of loading/pulsing T2 cells with peptide constructs composed of synthetic signal sequences attached to amino-terminus or to carboxy-terminus of HER2/neu654-662. T2 cells were loaded (left column) or pulsed (right column) with ES-HER654-662 (♦), HER654-662-ES (⋄), IS-HER654-662 (▾), HER654-662-IS (∇) or HER654-662 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 7 shows the results of loading/pulsing T2 cells with peptide constructs composed of synthetic signal sequences attached to amino-terminus or to carboxy-terminus of HER2/neu789-797. T2 cells were loaded (left column) or pulsed (right column) with ES-HER789-797 (♦), HER789-797-ES (⋄), IS-HER789-797 (▾), HER789-797-IS (∇) or HER789-797 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 8 shows the results of loading/pulsing T2 cells with peptide constructs composed of HER2/neu48-56 incorporated into synthetic signal sequences. T2 cells were loaded (left column) or pulsed (right column) with HER48-56-IN-AF (), HER48-56-IN-ES (▴) or HER48-56 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 9 shows the results of loading/pulsing T2 cells with peptide constructs composed of HER2/neu369-377 incorporated into synthetic signal sequences. T2 cells were loaded (left column) or pulsed (right column) with HER369-377-IN-AF (), HER369-377-IN-ES (▴) or HER369-377 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 10 shows the results of loading/pulsing T2 cells with peptide constructs composed of HER2/neu654-662 incorporated into synthetic signal sequences. T2 cells were loaded (left column) or pulsed (right column) with HER654-662-IN-AF (), HER654-662-IN-ES (▴) or HER654-662 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 11 shows the results of loading/pulsing T2 cells with peptide constructs composed of HER2/neu789-797 incorporated into synthetic signal sequences. T2 cells were loaded (left column) or pulsed (right column) with HER789-797-IN-AF (), HER789-797-IN-ES (▴) or HER789-797 (▪). At different periods after loading, T2 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 12 shows the results of loading/pulsing breast cancer cells MDA-MB-231 with peptide constructs composed of synthetic signal sequences attached to amino-terminus or to carboxy-terminus of HER2/neu369-377. MDA-MB-231 cells were loaded (left column) or pulsed (right column) with ES-HER2/neu369-377 (♦), HER2/neu369-377-ES (⋄), IS-HER2/neu369-377 (▾), HER2/neu369-377-IS (∇) or HER2/neu369-377 (▪). At different periods after loading, MDA-MB-231 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 13 shows the results of loading/pulsing breast cancer cells MDA-MB-231 with peptide constructs composed of synthetic signal sequences attached to amino-terminus or to carboxy-terminus of HER2/neu654-662. MDA-MB-231 cells were loaded (left column) or pulsed (right column) with ES-HER2/neu654-662 (♦), HER2/neu654-662-ES (⋄), IS-HER2/neu654-662 (▾), HER2/neu654-662-IS (∇) or HER2/neu654-662 (▪). At different periods after loading, MDA-MB-231 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 14 shows the results of loading/pulsing breast cancer cells MDA-MB-231 with peptide constructs composed of HER2/neu369-377 incorporated into synthetic signal sequences. MDA-MB-231 cells were loaded (left column) or pulsed (right column) with HER369-377-IN-AF (), HER369-377-IN-ES (▴) or HER369-377 (▪). At different periods after loading, MDA-MB-231 cells were used as targets in 51Cr-release assays for the CTL.



FIG. 15 shows the results of loading/pulsing breast cancer cells MDA-MB-231 with peptide constructs composed of HER2/neu654-662 incorporated into synthetic signal sequences. MDA-MB-231 cells were loaded (left column) or pulsed (right column) with HER654-662-IN-AF (), HER654-662-IN-ES (▴) or HER654-662 (▪). At different periods after loading, MDA-MB-231 cells were used as targets in 51Cr-release assays for the CTL



FIG. 16 is a graph showing loading of dendritic cells with HER2/neu-derived peptides fused to synthetic signal sequences.



FIG. 17 is a graph showing loading of dendritic cells with HER2/neu-derived peptides included within synthetic signal sequences.



FIG. 18 illustrates the path of transport of peptides into a cell and expression of the peptide on the cell surface.



FIG. 19 sets forth the amino acid sequence of the full length SURVIVIN protein (SEQ ID NO: 193).





DETAILED DESCRIPTION OF THE INVENTION

The present invention relates generally to the treatment and prevention of human cancer and viral diseases and, more specifically, to development of a new generation of vaccines for cancer and viral diseases that rely on eliciting cellular immune responses, specifically induction of antitumor and antiviral cytotoxic T lymphocytes (CTL). CTL can recognize and kill cancer cells and virus-infected cells, but only if they recognize complexes of peptides associated with the major histocompatibility complex (MHC) class I molecules on the cell surface.


CTL appear to be among the most direct and effective elements of the immune system that are capable of generating anti-tumor immune responses. Tumor cells expressing the appropriate tumor-associated antigens can be effectively recognized and destroyed by these immune effector cells, which may result in dramatic clinical responses in a limited number of patients. The paucity of responsiveness in most patients may be due to the inefficient presentation of the antigens used to immunize patients with cancer. Consequently, methods to overcome this obstacle should lead to a marked improvement in antigen presentation and induction of potent anti-tumor CTL.


The recognition of antigens by specific CTL is essential for a successful anti-cancer response. CTL recognize peptides generated from intracellular proteins that are presented by MHC class I molecules on the cell surface. In the cytosol, intracellular proteins are degraded to peptide fragments by multicatalytic protease complexes, the proteasomes. For binding and stabilization of MHC class I molecules these peptides are translocated across the membrane of the endoplasmic reticulum (ER) by the TAP peptide transporter in an ATP-dependent fashion. Following biosynthesis into the ER membrane, MHC class I molecules transiently associate with various helper molecules (chaperones) that facilitate folding and peptide loading. After successful peptide loading MHC class I molecules leave the ER to the cell surface. Once on the cell surface, the peptide is recognized by CTL, which can then kill the cancer cell or virus-infected cell. The present invention, therefore, provides novel peptides, which induce CTL against the cancer or virus on the surface of which the peptides are present, for treatment and prevention of human cancer and virus-infected cells.


One of the most promising of these new antigens, PRAME, is a member of the cancer/testis family of antigens. PRAME is a particularly attractive antigen because it is widely expressed in many different tumor types, but not in normal tissues, except testis. This antigen is detectable in many lung cancers, as well as in melanoma, renal cell cancer, breast cancer, acute leukemias, and multiple myeloma. Undesirable autoimmune reactivity against the few tissues expressing PRAME at low levels is not to be expected, because expression levels are too low to ensure CTL recognition, as shown in vitro with human MAGE-specific CTL and in vivo in a murine p53 model. The high immunogenicity of PRAME, and its broad tumor expression make this protein a very promising target for tumor-specific vaccination strategies.


In one embodiment, the invention provides PRAME-derived peptides for inducing CTL against cancer or virus-infected cells. By “PRAME-derived sequence” is meant an amino acid sequence with: (i) terminal modifications to inhibit proteolytic degradation of the PRAME peptides; (ii) amino-acid substitutions at HLA-A2.1 binding anchor positions to enhance MHC Class I binding affinity of the PRAME peptides; (iii) amino acid substitutions at NON-anchor positions to enhance the T cell receptor binding affinity for the peptide-MHC complex, or (iv) insertion signal sequences to enhance the immunogenicity of the PRAME peptides.


Four peptides within the PRAME protein sequence have been utilized in the invention to design optimized synthetic vaccines (Table 1).










TABLE 1







HLA-A2.1-restricted peptides,



identified within the PRAME sequence









PEPTIDES
SEQUENCE
REFERENCE













PRAME100-108
VLDGLDVLL
Kessler, J.




(SEQ ID NO: 2)
(J.Exp.Med.193: 73-88,




2001)





PRAME142-151
SLYSFPEPEA
Kessler, J.



(SEQ ID NO: 3)
(J.Exp.Med.193: 73-88,




2001)


PRAME300-309
ALYVDSLFFL
Kessler, J.



(SEQ ID NO: 4)
(J.Exp.Med.193: 73-88,




2001)


PRAME425-433
SLLQHLIGL
Kessler, J.



(SEQ ID NO: 5)
(J.Exp.Med.193: 73-88,




2001)









Another promising target is the oncofetal antigen (OFA/iLRP) identified as a 37-44 kDa immunogenic glycoprotein expressed in all human tumors examined and also in embryos/early fetuses, but not in term fetus, neonate or adult normal tissues. It was found that OFA reappears as an immunogen in early tumor development, which gives all tumor cells the capacity to activate OFA-specific CTL. Recently, it was found that an oncofetal antigen (OFA/iLRP) could induce in vitro OFA/iLRP-specific effector and regulatory T lymphocytes in patients with cancer. OFA/iLRP is expressed during early to mid-gestation fetal development and re-expressed as a surface antigen by tumor cells soon after transformation. The antigen is detectable on all types of human and rodent tumors tested, but cannot be detected on normal cells.


In one embodiment, the invention provides the identification of class I-restricted peptides derived from the widely expressed tumor antigen OFA/iLRP. These natural and modified peptides might be used directly to immunize patients with cancer. Dendritic cells loaded with the OFA/iLRP peptides can also be used to elicit powerful anti-tumor immune responses. In addition, the OFA/iLRP-specific CTL might be extremely useful for cellular immunotherapy of cancer.


Recently, another novel gene that is highly expressed in many types of cancer was identified. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is found in multiple cancers, including prostate, bladder, colon, ovarian, and Ewing sarcoma. The discovery of immunogenic peptides derived from STEAP is innovative and holds great promise. STEAP may be an ideal target for T-cell-mediated immunotherapy of advanced cancer, as STEAP is highly expressed at all stages of many cancers, including metastases; there is little or no expression of STEAP in normal human tissues; STEAP has cell surface localization and predicted secondary structure; and STEAP is not modulated by hormones, a property that is beneficial when managing hormone-refractory prostate cancer or during anti-androgen therapy for advanced metastatic disease. Protein analysis located STEAP at the cell surface of prostate cancer cells. Its strong expression in many cancers, little or no expression in normal tissues, and cell surface localization suggest that STEAP may be an ideal target for the immunotherapy of cancer.


Accordingly, in one embodiment, the invention provides immunogenic STEAP-derived peptide sequences that can be used for therapy of a variety of cancers. STEAP-specific CTL were also generated in vitro by direct immunization of blood cells from healthy volunteers and from patients with cancer. The STEAP-specific CTL were found to kill STEAP-expressing cancer cells in vitro. In addition, the invention demonstrates further enhancement of the immunogenicity of these peptides by specific modifications of their sequence.


CTL play an important role in eradicating tumor cells and virus-infected cells. Unlike antibodies, which bind foreign proteins in their native form, CTL recognize short fragments of intracellular antigens, 8-10 amino acids in length, complexed with MHC Class I molecules. Cytosolic peptides are transported across the endoplasmic reticulum (ER) membrane with the help of the ATP-dependent transporters associated with antigen processing (TAP). Peptides complexed with Class I molecules in the ER are then transported to the cell surface for recognition by CTL. Studies with cell lines with deficits in antigen processing, (e.g., human T2 and murine RMA-S) have confirmed that TAP proteins are intimately involved in peptide transport. Alternatively, the translocation of processed proteins from the cytosol across the endoplasmic reticulum (ER) membrane is accomplished by endoplasmic reticulum-insertion signal sequences. As soon as the signal sequence of a growing polypeptide chain has emerged from the ribosome, it is bound by the signal recognition particle (SRP) and the complex is specifically targeted to the ER membrane by an interaction with the membrane bound SRP receptor (FIG. 18). An additional targeting pathway is the signal sequence receptor complex, which is a major protein of the eukaryotic ER membrane. While translocation usually occurs during translation, protein precursors have also been shown to be imported into the ER after their synthesis has been completed. After translocation, peptides complexed with class I molecules in the ER are transported to the cell surface for recognition by the CTL.


The T cell epitopes identified in the invention were utilized to construct fusion peptides with natural or artificial signal sequences. The effectiveness of the following signal sequences were compared in improving the antigen presentation: a) one from early region 3 of the adenovirus type 2, b) one from interferon gamma and c) several artificial sequences, generated according to the structure and the distribution frequency of the amino acids in the natural signal sequences. Since the hydrophobicity of the fusion peptides is higher than that of the minimal peptide, a set of control fusion peptides with signal sequences situated on the carboxy-terminus of the minimal peptides was used. Thus, determination was possible of whether an improved immune response generated with fusion peptides is due only to the higher hydrophobicity of the fusion peptide, or it is related to a better translocation of the minimal peptide through the ER-membrane. Since signal sequences do not contain specific amino acid residues other than a hydrophobic region of about eight residues, it was tested whether replacing this region with the hydrophobic HER2/neu-derived peptides would result in a more efficient presentation of these epitopes. To study the generality of the signal sequence approach similar constructs were designed utilizing several HER2/neu-derived peptides. The amino-acid sequences of the synthetic peptide constructs utilizing the epitopes HER2/neu48-56, HER2/neu369-377, HER2/neu654-662, and HER2/neu789-797 are shown in tables 32-35.


In one embodiment, the invention peptides are administered to a subject as fusion peptides containing a signal sequence. The PRAME-derived, OFA/iLRP derived, STEAP-derived, or SURVIVIN-derived peptide antigen is attached to, or incorporated into a synthetic insertion signal sequence, which can improve the translocation of the peptide antigen into the ER. Such fusion peptides can be used to treat patients with cancer by the following approaches: a) Patients can be immunized with fusion peptides composed of natural or artificial signal sequences and tumor-associated or viral peptide antigens. This way it might be possible to generate specific T-cell responses against the tumor and especially micro-metastases; b) Another way of practicing this invention is to load these peptide constructs into professional antigen-presenting cells and treat patients with these cells. This approach offers the advantage of having the specific antigen presented to the T-cells for a long period of time in the context of appropriate MHC molecules; and c) Patients can be treated with autologous CTL generated in vitro with fusion peptide-loaded dendritic cells or other antigen-presenting cells.


The term “signal sequence,” as used herein, refers to a short amino acid sequence added to an end of an antigenic peptide, or incorporating an antigenic peptide. This modification allows transfer of the antigenic peptide through membranes such as the ER or the cell membrane. The signal sequence is cleaved after the polypeptide has crossed the membrane.


The term “subject” as used herein refers to any individual or patient to which the subject methods are performed. Generally the subject is human, although as will be appreciated by those in the art, the subject may be an animal. Thus other animals, including mammals such as rodents (including mice, rats, hamsters and guinea pigs), cats, dogs, rabbits, farm animals including cows, horses, goats, sheep, pigs, etc., and primates (including monkeys, chimpanzees, orangutans and gorillas) are included within the definition of subject.


As used herein, the term “treating” means that the clinical signs and/or the symptoms associated with the cancer or melanoma are lessened as a result of the actions performed. The signs or symptoms to be monitored will be characteristic of a particular cancer or melanoma and will be well known to the skilled clinician, as will the methods for monitoring the signs and conditions. For example, the skilled clinician will know that the size or rate of growth of a tumor can monitored using a diagnostic imaging method typically used for the particular tumor (e.g., using ultrasound or magnetic resonance image (MRI) to monitor a tumor).


Immunization with such fusion peptides may be used both for prevention and for treatment of tumors expressing specific tumor antigens. As more specific tumor antigens are revealed, this approach may provide a model for development of more effective vaccines for lung cancer, prostate cancer, melanoma, breast cancer and other tumors. This strategy of immunization may also be useful for eliciting CTL responses against viral diseases. The use of common HLA Class I molecules, such as HLA-A2 may make it possible to immunize a large proportion of patients by this strategy. Moreover, the ability to immunize against a minimal peptide, as opposed to complete proteins, may eliminate cross-reactivity with self-antigens or other highly homologous proteins.


The term “cancer” as used herein, includes any malignant tumor including, but not limited to, carcinoma and sarcoma. Cancer arises from the uncontrolled and/or abnormal division of cells that then invade and destroy the surrounding tissues. As used herein, “proliferating” and “proliferation” refer to cells undergoing mitosis. As used herein, “metastasis” refers to the distant spread of a malignant tumor from its sight of origin. Cancer cells may metastasize through the bloodstream, through the lymphatic system, across body cavities, or any combination thereof. The term “cancerous cell” as provided herein, includes a cell afflicted by any one of the cancerous conditions provided herein. Thus, the methods of the present invention include treatment of benign overgrowth of melanocytes, glia, brain tumors, prostate cancer, breast cancer, and lung cancer. The term “carcinoma” refers to a malignant new growth made up of epithelial cells tending to infiltrate surrounding tissues, and to give rise to metastases.


Accordingly, in one embodiment, the invention provides fusion peptides composed of insertion signal sequences and peptides derived from the breast cancer antigen HER2/neu. The fusion peptides improve antigen presentation and induce antitumor CTL with higher efficiency against breast cancer. The addition of a synthetic signal sequence at the NH2-terminus, but not at the COOH-terminus, of the HER2/neu epitopes greatly enhanced their presentation in T2 target cells, breast cancer cells and dendritic cells. Importantly, peptide constructs, composed of the HER2/neu epitopes replacing the hydrophobic part of the signal sequences were the most effective. The efficiency of the signal sequences in facilitating the HER2/neu peptide presentation was confirmed also by using cytokine-release assays. The mechanisms involved in the enhancement of antigen presentation by the fusion peptides proved that the effective presentation of the loaded peptide constructs is a result of their efficient loading into the cytosol and not simple binding to the surface HLA molecules.


By “loading” of the fusion peptides into the cytosol of T2 cells, cancer cells and dendritic cells is meant use of a technology called “osmotic lysis of pinocytic vesicles.” T2 cells were exposed to hypertonic medium containing the peptide constructs. Pinocytic vesicles form in this medium, and because of their increased internal osmotic pressure, they break in the cytosol when the cells are placed in hypotonic culture medium. The invention is based on a hypothesis that the signal sequence will translocate the minimal tumor-specific peptide from the cytosol into the ER, improving its presentation to CTL.


HER2/neu proto-oncogene, expressed in breast cancer and other human cancers, encodes a tyrosine kinase with homology to epidermal growth factor receptor. HER2/neu protein is a receptor-like transmembrane protein comprising a large cysteine-rich extracellular domain that functions in ligand binding, a short transmembrane domain, and a small cytoplasmic domain. HER2/neu is amplified and expressed in many human cancers, largely adenocarcinomas of breast, ovary, colon, and lung. In breast cancer, HER2/neu over-expression is associated with aggressive disease and is an independent predictor of poor prognosis. HER2/neu is considered a possible target for T-cell-mediated immunotherapy for several reasons: (i) the protein is large (1255 amino acids), contains epitopes appropriate for binding to most MHC molecules and thus is potentially recognizable by all individuals; (ii) HER2/neu is greatly over-expressed on malignant cells and thus T-cell therapy may be selective with minimal toxicity; (iii) the oncogenic protein is intimately associated with the malignant phenotype and with the aggressiveness of the malignancy, especially in breast and ovarian carcinomas.


As shown in the Examples below, peptide signal sequences could improve presentation of the human tumor antigen HER2/neu. Since the transport of antigenic peptides from the cytosol to the endoplasmic reticulum (ER) is a limiting step in the processing of Class I-restricted antigens, bypassing this step of antigen processing is a clear advantage, resulting in more effective generation of CTL specifically directed against human cancers and viral diseases.


Signal sequences consist of three regions with specific characteristics shared by both eukaryotes and prokaryotes: (i) basic N-terminal region (n-region, pre-core, 1-3 positively charged residues); (ii) central hydrophobic region (h-region, core, 8-12 hydrophobic residues); and (iii) polar C-terminal region (c-region, post-core, 5-7 residues with higher average polarity than the h-region). The central hydrophobic region is the true hallmark of the signal sequences.


The primary structure is not critical to signal sequence functions. Comparison to all known signal sequences reveals no regions of strict homology. The cleavage site shows the strongest conservation, probably because it must be recognized by the signal peptidase.


Accordingly, the present invention provides peptide constructs composed of signal sequences, situated on the amino-terminus or the carboxy-terminus of several HER2/neu-derived peptides. In addition, the invention provides fusion peptides composed of natural or artificial signal sequences and HER2/neu peptides, replacing the hydrophobic part of the signal sequences.


Natural Signal Sequences:












E3/19 adenoviral signal sequence:









(SEQ ID NO: 68)











MRYMILGLLALAAVCSA








Gamma interferon signal sequence:








(SEQ ID NO: 69)











MTNKCLLQIALLLCFSTTALS







In performance of the present invention, the hydrophobic region of some signal sequences (natural and artificial) was replaced. Where this was performed, the following was noted: signal sequences do not contain specific amino acid residues other than a hydrophobic region of 8-12 residues; cleavage usually occurs after a small non-polar residue, which is the case with Val in position 9; Ala is the most abundant residue, associated with the cleavage site; the spacer of five Ala residues contributes to the predicted β-turn, which is found immediately before or after the cleavage site. The β-turn is thought to be important for peptidase access to the cleavage site.


In one embodiment, protein signal sequences are fused to HLA Class I-restricted minimal peptides for the development of synthetic vaccines against neoplastic and viral diseases. Immunizing with minimal determinant constructs may avoid the possible oncogenic effect of full-length proteins containing ras, p53 or other potential oncogenes. In addition, in vivo or in vitro immunization with peptide antigens “packaged” in dendritic cells or other antigen-presenting cells opens an exciting opportunity for eliciting powerful CTL-responses.


In another embodiment, the invention provides vaccines containing one or more fusion peptides as set forth above. The new vaccines can be used in subjects with advanced metastatic cancers, which are normally resistant to the conventional methods for treatment. Other cancers for which the synthetic vaccines are useful include, but are not limited to, melanoma, gliomas (Schwannoma, glioblastoma, astrocytoma), prostate cancer, renal cancer, breast cancer, lung cancer, acute leukemias, and many other cancers expressing known tumor-associated antigens. Dendritic cells loaded with these vaccines can also be used to elicit powerful anti-tumor immune responses in patients with cancer. In addition, fusion-peptide induced CTL might be extremely useful for cellular immunotherapy of cancer. This new approach may also be used to induce potent anti-viral immune responses.


All of the above-mentioned approaches can be applied using combinations of different tumor-associated or viral peptide antigens. This may allow generation of broader immune responses against the tumor or the virus-infected cell(s).


In another aspect, the methods of the invention are useful for providing a means for practicing personalized medicine, wherein treatment is tailored to a subject based on the particular characteristics of the cancer cells in the subject. The method can be practiced, for example, by contacting a sample of cells from the subject with at least one test peptide, wherein an increase in CTL in the presence of the test peptide as compared to CTL in the absence of the test peptide identifies the peptide as useful for treating the cancer. The sample of cells examined according to the present method can be obtained from the subject to be treated, or can be cells of an established cancer cell line of the same type as that of the subject. In one aspect, the established cancer cell line can be one of a panel of such cell lines, wherein the panel can include different cell lines of the same type of cancer and/or different cell lines of different cancers. Such a panel of cell lines can be useful, for example, to practice the present method when only a small number of cancer cells can be obtained from the subject to be treated, thus providing a surrogate sample of the subject's cancer, and also can be useful to include as control samples in practicing the present methods.


Preferred cell types for use in the invention include, but are not limited to, mammalian cells, including animal (rodents, including mice, rats, hamsters and gerbils), primates, and human cells, particularly cancer cells of all types, including breast, skin, lung, cervix, colorectal, leukemia, brain, etc.


Once disease is established and a treatment protocol is initiated, the methods of the invention may be repeated on a regular basis to evaluate whether the level of peptide-specific CTL activity in the subject remains elevated as compared to that which is observed in a normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months. Accordingly, the invention is also directed to methods for monitoring a therapeutic regimen for treating a subject having cancer. A comparison of the peptide-specific CTL activity prior to and during therapy indicates the efficacy of the therapy. Therefore, one skilled in the art will be able to recognize and adjust the therapeutic approach as needed.


All methods may further include the step of bringing the active ingredient(s) into association with a pharmaceutically acceptable carrier, which constitutes one or more accessory ingredients. The term “pharmaceutically acceptable”, when used in reference to a carrier, is meant that the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.


Pharmaceutically acceptable carriers useful for formulating a peptide or synthetic vaccine for administration to a subject are well known in the art and include, for example, aqueous solutions such as water or physiologically buffered saline or other solvents or vehicles such as glycols, glycerol, oils such as olive oil or injectable organic esters. A pharmaceutically acceptable carrier can contain physiologically acceptable compounds that act, for example, to stabilize or to increase the absorption of the conjugate. Such physiologically acceptable compounds include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients. One skilled in the art would know that the choice of a pharmaceutically acceptable carrier, including a physiologically acceptable compound, depends, for example, on the physico-chemical characteristics of the therapeutic agent and on the route of administration of the composition, which can be, for example, orally or parenterally such as intravenously, and by injection, intubation, or other such method known in the art. The pharmaceutical composition also can contain a second (or more) compound(s) such as a, diagnostic reagent, nutritional substance, toxin, or therapeutic agent, for example, a cancer chemotherapeutic agent and/or vitamin(s).


The peptides and peptide vaccines of the invention can be incorporated within an encapsulating material such as into an oil-in-water emulsion, a microemulsion, a micelle, mixed micelle, a liposome, a microsphere, a polymeric nanoparticle, or other polymer matrix (see, for example, Gregoriadis, Liposoine Technology, Vol. 1 (CRC Press, Boca Raton, Fla. 1984); Fraley, et al., Trends Biochem. Sci., 6:77 (1981), each of which is incorporated herein by reference).


Liposomes, for example, which consist of phospholipids or other lipids, are nontoxic, physiologically acceptable and metabolizable carriers that are relatively simple to make and administer. “Stealth” liposomes (see, for example, U.S. Pat. Nos. 5,882,679; 5,395,619; and 5,225,212, each of which is incorporated herein by reference) are an example of such encapsulating materials particularly useful for preparing a pharmaceutical composition useful for practicing a method of the invention, and other “masked” liposomes similarly can be used, such liposomes extending the time that the therapeutic agent remain in the circulation. Cationic liposomes, for example, also can be modified with specific receptors or ligands (Morishita et al., J. Clin. Invest. 91:2580-2585 (1993), which is incorporated herein by reference). In addition, a polynucleotide agent can be introduced into a cell using, for example, adenovirus-polylysine DNA complexes (see, for example, Michael et al., J. Biol. Chem. 268:6866-6869 (1993), which is incorporated herein by reference).


Polymeric nanoparticles, on the other hand, are defined as solid particles having a size in the range of 10-1000 nm. Polymeric nanoparticles may allow encapsulation of the peptides or peptide vaccines inside a polymeric matrix, protecting them against enzymatic and hydrolytic degradation. In addition, the nanoparticle-vaccine approach provides the ability to customize various properties of the vaccine materials that may improve their function. Such variable properties include, but are not limited to, particle size, pH sensitivity, surface charge, and hydrophobicity.


The carriers, in addition to those disclosed above, can include glucose, lactose, mannose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, medium chain length triglycerides, dextrans, and other carriers suitable for use in manufacturing preparations, in solid, semisolid, or liquid form. In addition auxiliary, stabilizing, thickening or coloring agents and perfumes can be used, for example a stabilizing dry agent such as triulose (see, for example, U.S. Pat. No. 5,314,695, which is incorporated herein by reference).


The route of administration of a composition containing the peptides of the invention will depend, in part, on the chemical structure of the molecule. As used herein, the terms “administration” or “administering” are defined to include an act of providing a compound or pharmaceutical composition of the invention to a subject in need of treatment. Polypeptides and polynucleotides, for example, are not particularly useful when administered orally because they can be degraded in the digestive tract. However, methods for chemically modifying polynucleotides and polypeptides, for example, to render them less susceptible to degradation by endogenous nucleases or proteases, respectively, or more absorbable through the alimentary tract are well known (see, for example, Blondelle et al., Trends Anal. Chem. 14:83-92, 1995; Ecker and Crook, BioTechnology, 13:351-360, 1995). For example, a peptide of the invention can be prepared using D-amino acids, or can contain one or more domains based on peptidomimetics, which are organic molecules that mimic the structure of peptide domain; or based on a peptoid such as a vinylogous peptoid. The peptides of the invention can further be administered in a form that releases the peptide at the desired position in the body (e.g., the stomach), or by injection into a blood vessel such that the peptide circulates to the target cells (e.g., cancer cells).


Exemplary routes of administration include, but are not limited to, orally or parenterally, such as intravenously, intramuscularly, subcutaneously, intraperitoneally, intrarectally, intracistemally or, if appropriate, by passive or facilitated absorption through the skin using, for example, a skin patch or transdermal iontophoresis, respectively. Furthermore, the pharmaceutical composition can be administered by injection, intubation, orally or topically, the latter of which can be passive, for example, by direct application of an ointment, or active, for example, using a nasal spray or inhalant, in which case one component of the composition is an appropriate propellant. As mentioned above, the pharmaceutical composition also can be administered to the site of a tumor, for example, intravenously or intra-arterially into a blood vessel supplying the tumor.


The total amount of a peptide or vaccine to be administered in practicing a method of the invention can be administered to a subject as a single dose, either as a bolus or by infusion over a relatively short period of time, or can be administered using a fractionated treatment protocol, in which multiple doses are administered over a prolonged period of time. One skilled in the art would know that the amount of peptide or synthetic vaccine to treat cancer in a subject depends on many factors including the age and general health of the subject as well as the route of administration and the number of treatments to be administered. In view of these factors, the skilled artisan would adjust the particular dose as necessary. In general, the formulation of the pharmaceutical composition and the routes and frequency of administration are determined, initially, using Phase I and Phase II clinical trials.


In general, a suitable daily dose of a compound or composition of the invention will be that amount of the compound or composition that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. As used herein, the term “therapeutically effective amount” or “effective amount” means the amount of a compound or pharmaceutical composition that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.


Additionally, the compositions and methods of the invention can be used in conjunction with other standard cancer therapies, e.g., surgery, chemotherapy and radiation.


The following examples are provided to further illustrate the advantages and features of the present invention, but are not intended to limit the scope of the invention. While they are typical of those that might be used, other procedures, methodologies, or techniques known to those skilled in the art may alternatively be used.


EXAMPLE 1
Enhancing the Stability, Immunogenicity, and Antigen Presentation of PRAME-Derived Synthetic Peptides

Most attempts to treat cancer patients with TAA-derived synthetic peptides have not been successful. The following is therefore further research aimed at enhancing the stability and immunogenicity of the peptides used for vaccination of patients with cancer is essential.


When biologically active peptides are used clinically in their natural form, their biologic effects are often rapidly lost in vivo due to rapid elimination of the active form of the peptide. Since the skin is an enzymatically active organ, in vaccinations that utilize subcutaneous injections, peptides may be degraded by skin peptidases prior to effecting a significant immunological response. Thus, it is critical to design stable peptide formulations for vaccination of patients with cancer. The natural HLA-A2.1 restricted PRAME peptides were modified by N-terminal acetylation and/or C-terminal amidation. Examples of modifications to the native HLA-A2.1 restricted PRAME peptides are shown (Tables 2-5):










TABLE 2







Terminal modifications of the



PRAME-derived peptide PRAME100-108











Modifications










Peptide Name
Peptide Sequence
N-Terminus
C-Terminus














PRAME100-108

100VLDGLDVLL108







(SEQ ID NO: 2)





N-PRAME100-108
Ac-VLDGLDVLL
Acetyl




(SEQ ID NO: 6)





C-PRAME100-108
VLDGLDVLL-amide

Amide



(SEQ ID NO: 7)





Cap-PRAME100-108
Ac-VLDGLDVLL-amide
Acetyl
Amide



(SEQ ID NO: 8)

















TABLE 3







Terminal modifications of the



PRAME-derived peptide PRAME142-151











Modifications










Peptide Name
Peptide Sequence
N-Terminus
C-Terminus














PRAME142-151

142SLYSFPEPEA151







(SEQ ID NO: 3)





N-PRAME142-151
Ac-SLYSFPEPEA
Acetyl




(SEQ ID NO: 9)





C-PRAME142-151
SLYSFPEPEA-amide

Amide



(SEQ ID NO: 10)





ap-PRAME142-151

Ac-SLYSFPEPEA-amide

Acetyl
Amide



(SEQ ID NO: 11)

















TABLE 4







Terminal modifications of the



PRAME-derived peptide PRAME300-309











Modifications










Peptide Name
Peptide Sequence
N-Terminus
C-Terminus














PRAME300-309

300ALYVDSLFFL309







(SEQ ID NO: 4)





N-PRAME300-309
Ac-ALYVDSLFFL
Acetyl




(SEQ ID NO: 12)





C-PRAME300-309
ALYVDSLFFL-amide

Amide



(SEQ ID NO: 13)





Cap-PRAME300-309
Ac-ALYVDSLFFL-amide
Acetyl
Amide



(SEQ ID NO: 14)

















TABLE 5







Terminal modifications of the



PRAME-derived peptide PRAME425-433











Modifications










Peptide Name
Peptide Sequence
N-Terminus
C-Terminus














PRAME425-433

425SLLQHLIGL433







(SEQ ID NO: 5)





N-PRAME425-433
Ac-SLLQHLIGL
Acetyl




(SEQ ID NO: 15)





C-PRAME425-433
SLLQHLIGL-amide

Amide



(SEQ ID NO: 16)





Cap-PRAME425-433
Ac-SLLQHLIGL-amide
Acetyl
Amide



(SEQ ID NO: 17)









Amino Acid Substitutions at HLA-A2.1 Binding Anchor Positions to Enhance MHC Class Binding Affinity of the PRAME Peptides (Fixed Anchor Analogs):

Upon stimulation with natural peptides, tumor-reactive CTL have been induced in vitro from peripheral blood lymphocytes of some patients with cancer. However, tumor-specific CTL could only be induced in a limited number of patients, and numerous re-stimulations were required to generate anti-tumor reactivity. These findings prompted this section of the current invention aimed at enhancing the immunogenicity of peptides derived from PRAME.


As an example, the following anchor amino acid substitutions to the native HLA-A2.1 restricted PRAME peptides were created (Tables 6-9):










TABLE 6







Substitutions at the HLA-A2.1 binding anchor



positions of the peptide PRAME100-108









Peptide Name
Peptide Sequence
Substitutions













PRAME100-108

100VLDGLDVLL108






(SEQ ID NO: 2)





PRAME100-408 - 1F


F
LDGLDVLL

F for V at



(SEQ ID NO: 18)
position 1





PRAME100-108 - 3W
VLWGLDVLL
W for D at



(SEQ ID NO: 19)
position 3





PRAME100-108 - 9V
VLDGLDVLV
V for L at



(SEQ ID NO: 20)
position 9





PRAME100-108 -
FLWGLDVLV
all of the above


1F/3W/9V
(SEQ ID NO: 21)

















TABLE 7







Substitutions at the HLA-A2.1 binding



anchor positions of the peptide PRAME142-151









Peptide Name
Peptide Sequence
Substitutions













PRAME142-151

142SLYSFPEPEA151






(SEQ ID NO: 3)





PRAME142-151 - 1F


F
LYSFPEPEA

F for S at



(SEQ ID NO: 22)
position 1





PRAME142.151 3W
SLWSFPEPEA
W for Y at



(SEQ ID NO: 23)
position 3





PRAME142-151 10V
SLYSFPEPEV
V for A at



(SEQ ID NO: 24)
position 10





PRAME142-151 -

FLWSFPEPEV

all of the above


1F/3W/10V
(SEQ ID NO: 25)

















TABLE 8







Substitutions at the HLA-A2.1 binding anchor



positions of the peptide FRAME300-309









Peptide Name
Peptide Sequence
Substitutions













PRAME300-309

300ALYVDSLFFL309






(SEQ ID NO: 4)





PRAME300-309 - 3W
ALFVDSLFFL
F for Y at



(SEQ ID NO: 26)
position 3





PRAME300-309 - 10V
ALYVDSLFFV
V for L at



(SEQ ID NO: 27)
position 10





PRAME300-309 - 3F/10V
ALFVDSLFFV
all of the



(SEQ ID NO: 28)
above

















TABLE 9







Substitutions at the HLA-A2.1 binding anchor



positions of the peptide PRAME425-433









Peptide Name
Peptide Sequence
Substitutions













PRAME425-433

425SLLQHLIGL433






(SEQ ID NO: 5)





PRAME425-433 - 1F


F
LLQHLIGL

F for S at



(SEQ ID NO: 29)
position 1





PRAME425-433 - 3W
SLWQHLIGL
W for L at



(SEQ ID NO: 30)
position 3





PRAME425-433 - 9V
SLLQHLIGV
V for L at



(SEQ ID NO: 31)
position 9





PRAME425-433 -

FLWQHIIGV

all of the above


1F/3W/9V
(SEQ ID NO: 32)









Amino Acid Substitutions at Non-Anchor Positions to Enhance the T Cell Receptor Binding Affinity for the Peptide-MHC Complex (Heteroclitic Analogs)

Certain peptide analogs that carry amino acid substitutions at residues other than the main MHC anchors (heteroclitic analogs) have shown a significantly increased potency, and are surprisingly much more antigenic than wild-type peptides. These analogs may provide considerable benefit in vaccine development, as they induce stronger T cell responses than the native epitope, and have been shown to be associated with increased affinity of the epitope/MHC complex for the T cell receptor (TCR) molecule. Important advantages of the heteroclitic analogs related to their clinical application include their ability to break/overcome tolerance by reversing a state of T cell energy and/or recruiting new T cell specificities, and the significantly smaller amounts of heteroclitic analogs that is needed for treatment.


The scheme that used for selection of the single amino acid substitutions includes rank coefficient scores for PAM250, hydrophobicity, and side chain volume. The Dayhoff PAM250 score (hyper text transfer protocol address prowl.rockefeller.edu/aainfo/pam250.htm) is a commonly used protein alignment scoring matrix which measures the percentage of acceptable point mutations within a defined time frame.


The following NON-anchor amino acid substitutions were made to the native HLA-A2.1 restricted PRAME peptides (Tables 10-13):










TABLE 10







Substitutions at NON-anchor positions



of the peptide PRAME100-108









Peptide Name
Peptide Sequence
Substitutions













PRAME100-108

100VLDGLDVLL108






(SEQ ID NO: 2)





PRAME100-108 - 3K
VLKGLDVLL
K for D at



(SEQ ID NO: 33)
position 3





PRAME100-108 - 5H
VLDGHDVLL
H for L at



(SEQ ID NO: 34)
position 5





PRAME100-108 - 7P
VLDGLDPLL
P for V at



(SEQ ID NO: 35)
position 7

















TABLE 11







Substitutions at NON-anchor positions



of the peptide PRAME142-151









Peptide Name
Peptide Sequence
Substitutions













PRAME142-51

142SLYSFPEPEA151






(SEQ ID NO: 3)





PRAME142-151 - 3K
SLKSFPEPEA
K for Y at



(SEQ ID NO: 36)
position 3





PRAME142-151 - 5H
SLYSHPEPEA
H for F at



(SEQ ID NO: 37)
position 5





PRAME142-151 - 7P
SLYSFPPPEA
P for E at



(SEQ ID NO: 38)
position 7

















TABLE 12







Substitutions at NON-anchor positions



of the peptide PRAME300-309









Peptide Name
Peptide Sequence
Substitutions













PRAME300-309

300ALYVDSLFFL309






(SEQ ID NO: 4)





PRAME300-309 - 3K
ALKVDSLFFL
K for Y at



(SEQ ID NO: 39)
position 3





PRAME300-309 - 5H
ALYVHSLFFL
H for D at



(SEQ ID NO: 40)
position 5





PRAME300-309 - 7P
ALYVDSPFFL
P for L at



(SEQ ID NO: 41)
position 7

















TABLE 13







Substitutions at NON-anchor positions



of the peptide PRAME425-433









Peptide Name
Peptide Sequence
Substitutions













PRAME425-433

425SLLQHLIGL433






(SEQ ID NO: 5)





PRAME425-433 - 3K
SLKQHLIGL
K for L at



(SEQ ID NO: 42)
position 3





PRAME425-433 - 7P
SLLQHLPGL
P for I at



(SEQ ID NO: 43)
position 3










Enhancing the Immunogenicity of the Peptides with Insertion Signal Sequences


The transport of antigenic peptides from the cytosol to the endoplasmic reticulum (ER) is a limiting step in processing and presentation of class I-restricted antigens. Bypassing this step by direct targeting of the antigen to the ER can result in more effective generation of CTL. This could amount to a more potent CTL induction and anti-tumor immunity against cancer. A variety of fusion peptides composed of natural or modified PRAME peptides and endoplasmic reticulum insertion signal sequences were designed. The following signal sequences were utilized to improve the antigen presentation: a) one from early region 3 of the adenovirus type 2-ES (MRYMILGLLALAAVCSA) (SEQ ID NO: 68), b) one from IFN-beta-IS (MTNKCLLQIALLLCFSTTALS) (SEQ ID NO: 69), and c) several artificial sequences, generated according to the structure and the distribution frequency of the amino acids in the natural signal sequences. Examples of synthetic peptide constructs utilizing the PRAME epitopes are shown (Tables 14-17).










TABLE 14







Synthetic peptide constructs



utilizing the epitope PRAME100-108








Designation
Peptide Sequence












1. PRAME-PRAME100-108

VLDGLDVLL





(SEQ ID NO: 2)





2. ES-PRAME
M R Y M I L G L L A L A A V C



S A VLDGLDVLL



(SEQ ID NO: 44)





3. PRAME-ES

VLDGLDVLL M R Y M I L G L L A




L A A V C S A



(SEQ ID NO: 45)





4. IS-PRAME
M T N K C L L Q I A L L L C F



S T T A L S VLDGLDVLL



(SEQ ID NO: 46)





5. PRAME-IS

VLDGLDVLL M T N K C L L Q I A




L L L C F S T T A L S



(SEQ ID NO: 47)





6. PRAME-IN-ES
M R VLDGLDVLL A A V C S A



(SEQ ID NO: 48)





7. PRAME-IN-AF
M A VLDGLDVLL A A A A A G



(SEQ ID NO: 49)





Synthetic peptide constructs:


1. Peptide antigen PRAME100-108


2. Adenoviral signal sequence ES attached to the amino-terminus of PRAME100-108


3. Adenoviral signal sequence ES attached to the carboxy-terminus of PRAME100-108


4. Interferon signal sequence IS attached to the amino-terminus of PRAME100-108


5. Interferon signal sequence IS attached to the carboxy-terminus of PRAME100-108


6. Peptide antigen PRAME100-108 replacing the hydrophobic portion of ES


7. Peptide antigen PRAME100-108 incorporated into an artificial signal sequence - AF














TABLE 15







Synthetic peptide constructs



utilizing the epitope PRAME142-151








Designation
Peptide Sequence












1. PRAME-PRAME142-151

SLYSFPEPEA





(SEQ ID NO: 3)





2. ES-PRAME
M R Y M I L G L L A L A A V C



S A SLYSFPEPEA



(SEQ ID NO: 50)





3. PRAME-ES

SLYSFPEPEA M R Y M I L G L L




A L A A V C S A



(SEQ ID NO: 51)





4. IS-PRAME
M T N K C L L Q I A L L L C F



S T T A L S SLYSFPEPEA



(SEQ ID NO: 52)





5. PRAME-IS

SLYSFPEPEA M T N K C L L Q I




A L L L C F S T T A L S



(SEQ ID NO: 53)





6. PRAME-IN-ES
M R SLYSFPEPEA A A V C S A



(SEQ ID NO: 54)





7. PRAME-IN-AF
M A SLYSFPEPEA A A A A A G



(SEQ ID NO: 55)





Synthetic peptide constructs:


1. Peptide antigen PRAME142-151


2. Adenoviral signal sequence ES attached to the amino-terminus of PRAME142-151


3. Adenoviral signal sequence ES attached to the carboxy-terminus of PRAME142-151


4. Interferon signal sequence IS attached to the amino-terminus of PRAME142-151


5. Interferon signal sequence IS attached to the carboxy-terminus of PRAME142-151


6. Peptide antigen PRAME142-151 replacing the hydrophobic portion of ES


7. Peptide antigen PRAME142-151 incorporated into an artificial signal sequence - AF














TABLE 16







Synthetic peptide constructs



utilizing the epitope PRAME300-309








Designation
Peptide Sequence












1. PRAME-PRAME300-309

ALYVDSLFFL





(SEQ ID NO: 4)





2. ES-PRAME
M R Y M I L G L L A L A A V C



S A ALYVDSLFFL



(SEQ ID NO: 56)





3. PRAME-ES

ALYVDSLFFL M R Y M I L G L L




A L A A V C S A



(SEQ ID NO: 57)





4. IS-PRAME
M T N K C L L Q I A L L L C F



S T T A L S ALYVDSLFFL



(SEQ ID NO: 58)





5. PRAME-IS

ALYVDSLFFL M T N K C L L Q I




A L L L C F S T T A L S



(SEQ ID NO: 59)





6. PRAME-IN-ES
M R ALYVDSLFFL A A V C S A



(SEQ ID NO: 60)





7. PRAME-IN-AF
M A ALYVDSLFFL A A A A A G



(SEQ ID NO: 61)





Synthetic peptide constructs:


1. Peptide antigen PRAME300-309


2. Adenoviral signal sequence ES attached to the amino-terminus of PRAME300-309


3. Adenoviral signal sequence ES attached to the carboxy-terminus of PRAME300-309


4. Interferon signal sequence IS attached to the amino-terminus of PRAME300-309


5. Interferon signal sequence IS attached to the carboxy-terminus of PRAME300-309


6. Peptide antigen PRAME300-309 replacing the hydrophobic portion of ES


7. Peptide antigen PRAME300-309 incorporated into an artificial signal sequence - AF














TABLE 17







Synthetic peptide constructs



utilizing the epitope PRAME425-433








Designation
Peptide Sequence












1. PRAME-PRAME425-433

SLLQHLIGL





(SEQ ID NO: 5)





2. ES-PRAME
M R Y M I L G L L A L A A V C



S A SLLQHLIGL



(SEQ ID NO: 62)





3. PRAME-ES

SLLQHLIGL M R Y M I L G L L A




L A A V C S A



(SEQ ID NO: 63)





4. IS-PRAME
M T N K C L L Q I A L L L C F



S T T A L S SLLQHLIGL



(SEQ ID NO: 64)





5. PRAME-IS

SLLQHLIGL M T N K C L L Q I A




L L L C F S T T A L S



(SEQ ID NO: 65)





6. PRAME-IN-ES
M R SLLQHLIGL A A V C S A



(SEQ ID NO: 66)





7. PRAME-IN-AF
M A SLLQHLIGL A A A A A G



(SEQ ID NO: 67)





Synthetic peptide constructs:


1. Peptide antigen PRAME425-433


2. Adenoviral signal sequence ES attached to the amino-terminus of PRAME425-433


3. Adenoviral signal sequence ES attached to the carboxy-terminus of PRAME425-433


4. Interferon signal sequence IS attached to the amino-terminus of PRAME425-433


5. Interferon signal sequence IS attached to the carboxy-terminus of PRAME425-433


6. Peptide antigen PRAME425-433 replacing the hydrophobic portion of ES


7. Peptide antigen PRAME425-433 incorporated into an artificial signal sequence - AF






Since the hydrophobicity of the fusion peptides is higher than that of the minimal peptide, a set of control fusion peptides with signal sequences situated on the carboxy-terminus of the minimal peptides were designed. Since signal sequences do not contain specific amino acid residues other than a hydrophobic region of about eight residues, modified peptides were designed by replacing this region with the hydrophobic PRAME-derived peptides.


EXAMPLE 2
Identification of HLA-A2.1-Restricted Immunogenic Peptides, Derived from the Antigen OFA/iLRP

OFA/iLRP-derived peptide sequences were identified that are immunogenic and can induce CTL both in healthy volunteers as well as in patients with cancer. The antigen-recognition activity of CTL is intimately linked with recognition of MHC (HLA in humans) molecules. In this invention the focus was on the HLA-A2 allele, which is the most common HLA molecule expressed by the general population in the United States. About 95% of HLA-A2+ individuals express the HLA-A2.1 subtype. For this reason, the identification of immunogenic peptides restricted by the HLA-A2.1 allele would not only serve as a proof of principle, but would also be applicable to a large portion of the patient population. The following modern methods were utilized for identification of immunogenic peptide sequences:


Manual step-wise approach to identify peptide sequences based on the known binding motifs for the HLA-A2.1 molecule. The majority of peptides bound to MHC class I molecules have a restricted size of 9±1 amino acids and require free N- and C-terminal ends. In addition to a specific size, different class I molecules appear to require a specific combination of usually two main anchor residues within their peptide ligands. In the case of the human allele HLA-A2.1, these anchor residues have been described as leucine (L) at position 2, and L or valine (V) at the C-terminal end. More recently, it was found that a “canonical” A2.1 motif could be defined as L or M (methionine) at position 2 and L, V, or I (isoleucine) at position 9. Using this approach, several 9 amino acid-long (9mer) peptides have been identified within the OFA/iLRP protein sequence (Table 18):










TABLE 18







HLA-A2.1-restricted peptides,



identified within the OFA/iLRP sequence











ANCHOR
ANCHOR
ANCHOR
ANCHOR



POSITION
POSITION
POSITION
POSITION





L at position 2
L at position 2
L at position 2
M at position 2






V at position 9
L at position 9
I at position 9
V, L or I at





position 9





7VLQMKEEDV15

50NLKRTWEKL58


57KLLLAARAI65

NONE


(SEQ ID NO: 71)
(SEQ ID NO: 72)
(SEQ ID NO: 73)






58LLLAARAIV66


146ALCNTDSPL154


153PLRYVDIAI161



(SEQ ID NO: 74)
(SEQ ID NO: 75)
(SEQ ID NO: 76)









A combination of three computer algorithms for peptide identification. The predictive algorithm, “BIMAS” ranks potential MHC binders according to the predictive half-time disassociation of peptide/MHC complexes. The second algorithm, “SYFPEITHI” ranks the peptides according to a score that takes into account the presence of primary and secondary MHC-binding anchor residues. The third algorithm, “PAProC”, predicts the proteasomal cleavages of the tumor antigens, which is a very important step in the generation of class I-restricted antigenic peptides.


The amino acid sequence of OFA/iLRP was analyzed using the “BIMAS” and the “SYFPEITHI” predictive algorithms for the existence of 9-amino acid peptides predicted to bind to HLA-A2.1. The focus was on peptides of 9 amino acids because it has been reported that HLA-A2.1 favor binding peptides of this size as compared with peptides of 8 or 10 residues. The analysis resulted in several candidate peptides for HLA-A2.1-restricted CTL epitopes. These epitopes were then analyzed with the third algorithm, “PAProC”, to verify the proteasome-mediated generation of the peptides. It was recently found that the COOH terminus of CTL epitopes requires exact cleavage by the proteasome, whereas NH2-terminal extensions of the epitope can be trimmed by putative aminopeptidase activity mainly in the ER, or in the cytosol. Therefore, the focus was on identifying peptides with the highest cleavage strength at the COOH terminus. Using all three algorithms, the search was narrowed to the following four peptides: OFA/iLRP58 (LLLAARAIV) (SEQ ID NO: 74), OFA/iLRP7 (VLQMKEEDV) (SEQ ID NO: 71), OFA/iLRP57 (KLLLAARAI) (SEQ ID NO: 73), and OFA/iLRP146 (ALCNTDSPL) (SEQ ID NO: 75). These four natural peptides were used to design synthetic vaccines with modified amino-acid residues to improve their stability, immunogenicity and antigen presentation.


EXAMPLE 3
Enhancing Stability, Immunogenicity, and Antigen Presentation of OFA/iLRP-Derived Synthetic Peptides

Because most attempts to treat cancer patients with TAA-derived synthetic peptides were not successful, further research aimed at enhancing the stability and immunogenicity of the peptides used for vaccination of patients with cancer is essential. The following methods were utilized.


Terminal Modifications to Inhibit Proteolytic Degradation of the OFA/iLRP Peptides:

When biologically active peptides are used clinically in their natural form, their biologic effects are often rapidly lost in vivo due to rapid elimination of the active form of the peptide. Since the skin is an enzymatically active organ, in vaccinations that utilize subcutaneous injections, peptides may be degraded by skin peptidases prior to effecting a significant immunological response. Thus, it is critical to design stable peptide formulations for vaccination of patients with cancer. The natural HLA-A2.1 restricted OFA/iLRP peptides were modified by N-terminal acetylation and/or C-terminal amidation. An example of modifications to the native HLA-A2.1 restricted peptide OFA/iLRP58-66 is shown (Table 19):










TABLE 19







Terminal modifications of the



OFA/iLRIP-derived peptide OFA/iLRP58-66











Modifications










Peptide Name
Peptide Sequence
N-terminus
C-terminus














OFA/iLRP58-66

58LLLAARAIV66







(SEQ ID NO: 74)





N-OFA/iLRP58-66
Ac-LLLAARAIV
Acetyl




(SEQ ID NO: 77)





C-OFA/iLRP58-66
LLLAARAIV-amide

Amide



(SEQ ID NO: 79)





Cap-OFA/iLRP58-66

Ac-LLLAARAIV-amide

Acetyl
Amide



(SEQ ID NO: 80)









Amino Acid Substitutions at HLA-A2.1 Binding Anchor Positions to Enhance MHC Class I Binding Affinity of the OFA/iLRP Peptides (Fixed Anchor Analogs):

Upon stimulation with natural peptides, tumor-reactive CTL have been induced in vitro from peripheral blood lymphocytes of some patients with cancer. However, tumor-specific CTL could only be induced in a limited number of patients, and numerous re-stimulations were required to generate anti-tumor reactivity. These findings prompted this section of the current invention aimed at enhancing the immunogenicity of peptides derived from OFA/iLRP.


As an example, the following anchor amino acid substitutions were introduced to the native HLA-A2.1 restricted peptide OFA/iLRP57-65 (Table 20):










TABLE 20







Substitutions at the HLA-A2.1



binding anchor positions









Peptide Name
Peptide Sequence
Substitutions













OFA/iLRP57-65

51KLLLAARAI65






(SEQ ID NO: 73)





OFA/iLRP57-65 - 1F


F
LLLAARAI

F for K at



(SEQ ID NO: 81)
position 1





OFA/iLRP57-65 - 3W
KLWLAARAI
W for L at



(SEQ ID NO: 82)
position 3





OFA/iLRP57-65 - 9V
KLLLAARAV
V for I at



(SEQ ID NO: 83)
position 9





OFA/iLRP57-65 -

FLWLAARAV

all of the above


1F/3W/9V
(SEQ ID NO: 84)









Amino Acid Substitutions at Non-Anchor Positions to Enhance the T Cell Receptor Binding Affinity for the Peptide-MHC Complex (Heteroclitic Analogs)

Certain peptide analogs that carry amino acid substitutions at residues other than the main MHC anchors (heteroclitic analogs) have shown a significantly increased potency, and are surprisingly much more antigenic than wild-type peptides. These analogs may provide considerable benefit in vaccine development, as they induce stronger T cell responses than the native epitope, and have been shown to be associated with increased affinity of the epitope/MHC complex for the T cell receptor (TCR) molecule. Important advantages of the heteroclitic analogs related to their clinical application include their ability to break/overcome tolerance by reversing a state of T cell energy and/or recruiting new T cell specificities, and the significantly smaller amounts of heteroclitic analogs that is needed for treatment.


The scheme used for selection of the single amino acid substitutions includes rank coefficient scores for PAM250, hydrophobicity, and side chain volume. The Dayhoff PAM250 score (http://prowl.rockefeller.edu/aainfo/pam250.html) is a commonly used protein alignment scoring matrix which measures the percentage of acceptable point mutations within a defined time frame.


As an example, the following NON-anchor amino acid substitutions were made to the native HLA-A2.1 restricted peptide OFA/iLRP7-15 (Table 21):









TABLE 21







Substitutions at NON-anchor positions









Peptide Name
Peptide Sequence
Substitutions













OFA/iLRP7-15

7VLQMKEEDV15






(SEQ ID NO: 71)





OFA/iLRP7-15 -3K
VLKMKEEDV
K for Q at



(SEQ ID NO: 85)
position 3





OFA/iLRP7-15 - 5H
VLQMHEEDV
H for K at



(SEQ ID NO: 86)
position 5





OFA/iLRP7-15 - 7P
VLQMKEPDV
P for E at



(SEQ ID NO: 87)
position 7










Enhancing the Immunogenicity of the Peptides with Insertion Signal Sequences


A variety of fusion peptides composed of natural or modified OFA/iLRP peptides and endoplasmic reticulum insertion signal sequences were designed. The following signal sequences were utilized to improve the antigen presentation: a) one from early region 3 of the adenovirus type 2-ES (MRYMILGLLALAAVCSA) (SEQ ID NO: 68), b) one from IFN-beta-IS (MTNKCLLQIALLLCFSTTALS) (SEQ ID NO: 69), and c) several artificial sequences, generated according to the structure and the distribution frequency of the amino acids in the natural signal sequences. An example of synthetic peptide constructs utilizing the epitope OFA/iLRP58-66 is shown (Table 22).










TABLE 22







Synthetic peptide constructs



utilizing the epitope OFA/iLRP58-66








Designation
Peptide Sequence












1. OFA/iLRP-OFA/iLRP58-66

58
LLLAARAIV
66





(SEQ ID NO: 74)





2. ES-OFA/iLRP
M R Y M I L G L L A L A



A V C S A LLLAARAIV



(SEQ ID NO: 89)





3. OFA/iLRP-ES

LLLAARAIV M R Y M I L G




L L A L A A V C S A



(SEQ ID NO: 90)





4. IS-OFA/iLRP
M T N K C L L Q I A L L



L C F S T T A L S LLLAA




RAIV




(SEQ ID NO: 91)





5. OFA/iLRP-IS

LLLAARAIV M T N K C L L




Q I A L L L C F S T T A



L S



(SEQ ID NO: 92)





6. OFA/iLRP-IN-ES
M R LLLAARAIV A A V C S



A



(SEQ ID NO: 93)





7. OFA/iLRP-IN-AF
M A LLLAARAIV A A A A A



G



(SEQ ID NO: 94)





Synthetic peptide constructs:


1. Peptide antigen OFA/iLRP58-66


2. Adenoviral signal sequence ES attached to the amino-terminus of OFA/iLRP58-66


3. Adenoviral signal sequence ES attached to the carboxy-terminus of OFA/iLRP58-66


4. Interferon signal sequence IS attached to the amino-terminus of OFA/iLRP58-66


5. Interferon signal sequence IS attached to the carboxy-terminus of OFA/iLRP58-66


6. Peptide antigen OFA/iLRP58-66 replacing the hydrophobic portion of ES


7. Peptide antigen OFA/iLRP58-66 incorporated into an artificial signal sequence - AF






Since the hydrophobicity of the fusion peptides is higher than that of the minimal peptide, a set of control fusion peptides was designed with signal sequences situated on the carboxy-terminus of the minimal peptides. Since signal sequences do not contain specific amino acid residues other than a hydrophobic region of about eight residues, modified peptides were designed by replacing this region with the hydrophobic OFA/iLRP-derived peptides.


EXAMPLE 4
Identification of HLA-A2.1-Restricted Immunogenic Peptides Derived from the Antigen STEAP

By the present invention, STEAP-derived peptide sequences are identified that are immunogenic and can induce CTL both in healthy volunteers as well as in patients with cancer. The antigen-recognition activity of CTL is intimately linked with recognition of MHC (HLA in humans) molecules. The invention focuses on the HLA-A2 allele, which is the most common HLA molecule expressed by the general population in the United States. About 95% of HLA-A2+ individuals express the HLA-A2.1 subtype. For this reason, the identification of immunogenic peptides restricted by the HLA-A2.1 allele would not only serve as a proof of principle, but would also be applicable to a large portion of the patient population. The following modern methods were utilized for identification of immunogenic peptide sequences:


A manual step-wise approach was used to identify peptide sequences based on the known binding motifs for the HLA-A2.1 molecule. The majority of peptides bound to MHC class I molecules have a restricted size of 9±1 amino acids and require free N- and C-terminal ends. In addition to a specific size, different class I molecules appear to require a specific combination of usually two main anchor residues within their peptide ligands. In the case of the human allele HLA-A2.1, these anchor residues have been described as leucine (L) at position 2, and L or valine (V) at the C-terminal end. More recently, it was found that a “canonical” A2.1 motif could be defined as L or M (methionine) at position 2 and L, V, or I (isoleucine) at position 9. Using this approach several 9 amino acid-long (9mer) peptides have been identified within the STEAP protein sequence (Table 23):









TABLE 23







HLA-A2.1-restricted peptides, identified within the STEAP sequence











ANCHOR
ANCHOR
ANCHOR
ANCHOR



POSITION
POSITION
POSITION
POSITION





L at position 2
L at position 2
L at position 2
M at position 2






V at position 9
L at position 9
I at position 9
V, L or I at position 9






86FLYTLLREV94


83SLTFLYTLL91


72HLPIKIAAI80


36SMLKRPVLL44



(SEQ ID NO: 96)
(SEQ ID NO: 97)
(SEQ ID NO: 98)
(SEQ ID NO: 99)






165GLLSFFFAV173


90LLREVIHPL98


127ALVYLPGVI135


291FMIAVFLPI299



(SEQ ID NO: 100)
(SEQ ID NO: 101)
(SEQ ID NO: 102)
(SEQ ID NO: 103)






192LLNWAYQQV200


117VLPMVSITL125


130YLPGVIAAI138



(SEQ ID NO: 104)
(SEQ ID NO: 105)
(SEQ ID NO: 106)







158MLTRKQFGL166


221SLGIVGLAI229




(SEQ ID NO: 107)
(SEQ ID NO: 108)







166LLSFFFAVL174


263LLGTIHALI271




(SEQ ID NO: 109)
(SEQ ID NO: 110)







256KLGIVSLLL264


309FLPCLRKKI317




(SEQ ID NO: 111)
(SEQ ID NO: 112)







262LLLGTIHAL270


312CLRKKILKI320




(SEQ ID NO: 113)
(SEQ ID NO: 114)









A combination of three computer algorithms was utilized for peptide identification. The predictive algorithm, “BIMAS” ranks potential MHC binders according to the predictive half-time disassociation of peptide/MHC complexes. The second algorithm, “SYFPEITHI” ranks the peptides according to a score that takes into account the presence of primary and secondary MHC-binding anchor residues. The third algorithm, “PAProC”, predicts the proteasomal cleavages of the tumor antigens, which is a very important step in the generation of class I-restricted antigenic peptides.


The amino acid sequence of STEAP was analyzed by using the “BIMAS” and the “SYFPEITHI” predictive algorithms for the existence of 9-amino acid peptides predicted to bind to HLA-A2.1. Peptides of 9 amino acids were the focus because it has been reported that HLA-A2.1 favor binding peptides of this size as compared with peptides of 8 or 10 residues. The analysis resulted in several candidate peptides for HLA-A2.1-restricted CTL epitopes. These epitopes were then analyzed with the third algorithm, “PAProC”, to verify the proteasome-mediated generation of the peptides. It was recently found that the COOH terminus of CTL epitopes requires exact cleavage by the proteasome, whereas NH2-terminal extensions of the epitope can be trimmed by putative aminopeptidase activity mainly in the ER, or in the cytosol. Therefore, the focus was on identifying peptides with the highest cleavage strength at the COOH terminus. Using all three algorithms, the search was narrowed to the following five peptides: 130YLPGVIAAI138 (SEQ ID NO: 106), 165GLLSFFFAV173 (SEQ ID NO: 100), 166LLSFFFAVL174 (SEQ ID NO: 109), 192LLNWAYQQV200 (SEQ ID NO: 104) and 302LIFKSILFL310 (SEQ ID NO: 115). These five natural peptides were the starting point, however, more peptides were designed with modification of amino-acid residues to improve the stability, immunogenicity and antigen presentation of the peptides.


EXAMPLE 5
Enhancing the Stability, Immunogenicity, and Antigen Presentation of STEAP-Derived Synthetic Peptides
Terminal Modifications to Inhibit Proteolytic Degradation of the STEAP Peptides:

When biologically active peptides are used clinically in their natural form, their biologic effects are often rapidly lost in vivo due to rapid elimination of the active form of the peptide. Since the skin is an enzymatically active organ, in vaccinations that utilize subcutaneous injections, peptides may be degraded by skin peptidases prior to effecting a significant immunological response. Thus, it is critical to design stable peptide formulations for vaccination of patients with cancer. The natural HLA-A2.1 restricted STEAP peptides were modified by N-terminal acetylation and/or C-terminal amidation. An example of modifications to the native HLA-A2.1 restricted peptide STEAP130-138 is shown (Table 24):










TABLE 24







Terminal modifications of the



STEAP-derived peptide STEAP130-135











Modifications










Peptide Name
Peptide Sequence
N-Terminus
C-Terminus














STEAP130-138

130YLPGVIAAI138







(SEQ ID NO: 106)





N-STEAP130-138
Ac-YLPGVIAAI
Acetyl




(SEQ ID NO: 116)





C-STEAP130-138
YLPGVIAAI-amide

Amide



(SEQ ID NO: 117)





Cap-STEAP130-138
Ac-YLPGVIAAI-amide
Acetyl
Amide



(SEQ ID NO: 118)









Amino Acid Substitutions at HLA-A2.1 Binding Anchor Positions to Enhance MHC Class I Binding Affinity of the STEAP Peptides (Fixed Anchor Analogs):

Upon stimulation with natural peptides, tumor-reactive CTL have been induced in vitro from peripheral blood lymphocytes of some patients with cancer. However, tumor-specific CTL could only be induced in a limited number of patients, and numerous restimulations were required to generate anti-tumor reactivity. These findings prompted this section of the current invention aimed at enhancing the immunogenicity of peptides derived from STEAP.


As an example, the following anchor amino acid substitutions were made to the native HLA-A2.1 restricted peptide STEAP130-138 (Table 25):










TABLE 25







Substitutions at the HLA-A2.1



binding anchor positions









Peptide Name
Peptide Sequence
Substitutions













STEAP130-138

130YLPGVIAAI138






(SEQ ID NO: 106)





STEAP130-138 - 1F


F
LPGVIAAI

F for Y at



(SEQ ID NO: 119)
position 1





STEAP130-138 - 3W
YLWGVIAAI
W for P at



(SEQ ID NO: 120)
position 3





STEAP130-138 - 9V
YLPGVIAAV
V for I at



(SEQ ID NO: 121)
position 9





STEAP130-138 -

FLWGVIAAV

all of the above


1F/3W/9V
(SEQ ID NO: 122)









Amino Acid Substitutions at Non-Anchor Positions to Enhance the T Cell Receptor Binding Affinity for the Peptide-MHC Complex (Heteroclitic Analogs)

Certain peptide analogs that carry amino acid substitutions at residues other than the main MHC anchors (heteroclitic analogs) have shown a significantly increased potency, and are surprisingly much more antigenic than wild-type peptides. These analogs may provide considerable benefit in vaccine development, as they induce stronger T cell responses than the native epitope, and have been shown to be associated with increased affinity of the epitope/MHC complex for the T cell receptor (TCR) molecule. Important advantages of the heteroclitic analogs related to their clinical application include their ability to break/overcome tolerance by reversing a state of T cell anergy and/or recruiting new T cell specificities, and the significantly smaller amounts of heteroclitic analogs that is needed for treatment.


The scheme that used for selection of the single amino acid substitutions includes rank coefficient scores for PAM250, hydrophobicity, and side chain volume. The Dayhoff PAM250 score (hyper text transfer protocol address prowl.rockefeller.edu/aainfo/pam250.htm) is a commonly used protein alignment scoring matrix which measures the percentage of acceptable point mutations within a defined time frame.


As an example, the following NON-anchor amino acid substitutions were made to the native HLA-A2.1 restricted peptide STEAP130-138 (Table 26):









TABLE 26







Substitutions at NON-anchor positions









Peptide Name
Peptide Sequence
Substitutions













STEAP130-138

130YLPGVIAAI138






(SEQ ID NO: 106)





STEAP130-138 - 3K
YLKGVIAAI
K for P at



(SEQ ID NO: 123)
position 3





STEAP130-138 - 5H
YLPGHIAAI
H for V at



(SEQ ID NO: 124)
position 5





STEAP130-138 - 7P

YLPGVIPAI

P for A at



(SEQ ID NO: 125)
position 7










Enhancing the Immunogenicity of the Peptides with Insertion Signal Sequences


The transport of antigenic peptides from the cytosol to the endoplasmic reticulum (ER) is a limiting step in processing and presentation of class I-restricted antigens. Bypassing this step by direct targeting of the antigen to the ER can result in more effective generation of CTL. This could amount to a more potent CTL induction and anti-tumor immunity against prostate cancer and breast cancer. A variety of fusion peptides composed of natural or modified STEAP peptides and endoplasmic reticulum insertion signal sequences were designed. The following signal sequences were utilized to improve the antigen presentation: a) one from early region 3 of the adenovirus type 2-ES (MRYMILGLLALAAVCSA) (SEQ ID NO:68), b) one from IFN-beta-IS (MTNKCLLQIALLLCFSTTALS) (SEQ ID NO: 69), and c) several artificial sequences, generated according to the structure and the distribution frequency of the amino acids in the natural signal sequences. An example of synthetic peptide constructs utilizing the epitope STEAP130-138 is shown (Table 27).










TABLE 27







Synthetic peptide constructs



utilizing the epitope STEAP130-138








Designation
Peptide Sequence












1. STEAP-STEAP130-138

YLPGVIAAI





(SEQ ID NO: 106)





2. ES-STEAP
M R Y M I L G L L A L A A V C



S A YLPGVIAAI



(SEQ ID NO: 126)





3. STEAP-ES

YLPGVIAAI M R Y M I L G L L A




L A A V C S A



(SEQ ID NO: 127)





4. IS-STEAP
M T N K C L L Q I A L L L C F



S T T A L S YLPGVIAAI



(SEQ ID NO: 128)





5. STEAP-IS

YLIPGVIAAI M T N K C L L Q I




A L L L C F S T T A L S



(SEQ ID NO: 129)





6. STEAP-IN-ES
M R YLPGVIAAI A A V C S A



(SEQ ID NO: 130)





7. STEAP-IN-AF
M A YLPGVIAAI A A A A A G



(SEQ ID NO: 131)





Synthetic peptide constructs:


1. Peptide antigen STEAP130-138


2. Adenoviral signal sequence ES attached to the amino-terminus of STEAP130-138


3. Adenoviral signal sequence ES attached to the carboxy-terminus of STEAP130-138


4. Interferon signal sequence IS attached to the amino-terminus of STEAP130-138


5. Interferon signal sequence IS attached to the carboxy-terminus of STEAP130-138


6. Peptide antigen STEAP130-138 replacing the hydrophobic portion of ES


7. Peptide antigen STEAP130-138 incorporated into an artificial signal sequence - AF






Since the hydrophobicity of the fusion peptides is higher than that of the minimal peptide, a set of control fusion peptides were designed with signal sequences situated on the carboxy-terminus of the minimal peptides. Since signal sequences do not contain specific amino acid residues other than a hydrophobic region of about eight residues, modified peptides were designed by replacing this region with the hydrophobic STEAP-derived peptides.


EXAMPLE 6
Induction of Peptide-Specific (CTL) In Vitro

This example tested whether the STEAP-derived natural and modified peptides can induce CTL by in vitro immunization of blood cells from healthy donors and from patients with breast cancer with these peptides. Peripheral blood mononuclear cells (PBMC) were isolated from HLA-A2.1+ healthy volunteers and cancer patients by centrifugation on Ficoll-Hypaque gradients. PBMC were then plated in 24-well plates at 5×105 cells/ml/well in RPMI-1640 supplemented with 10% human AB+ serum, L-glutamine and antibiotics (CM). Autologous PBMC were pulsed with 10 μg/ml STEAP peptide for 3 hours at 37° C. These PBMC (stimulators) were then irradiated at 3000 rads, washed once, and added to the responder cells at responder: stimulator ratios ranging between 1:1 and 1:4. The next day, 12 IU/ml IL-2 and 30 IU/ml IL-7 were added to the cultures. Lymphocytes were then re-stimulated weekly with peptide-pulsed adherent cells as follows: previously frozen autologous PBMC were thawed, washed, re-suspended at 4×106 cells/ml in CM containing 10 μg/ml peptide, and plated in 24-well plates at 1 ml/well. Plates were incubated for 3 hours at 37° C. and the non-adherent cells were removed by a gentle wash with PBS. Fresh complete media containing 10 μg/ml peptide were added to the cells, and the plates were incubated again for 3 hours at 37° C. Responder cells were harvested, washed once and added to the peptide-pulsed adherent cells at a concentration of 5×105 cells/ml (2 ml/well) in complete media. IL-2 and IL-7 were added to the cultures on the next day. The activity of these CTL was tested by a LDH-release cytotoxicity assays (Cytotox96 kit, Promega) after at least two rounds of peptide stimulation. K562 cells transfected with HLA-A2.1+ were pulsed with the STEAP peptides, and used as targets.


Most of the tested STEAP-derived peptides were able to induce peptide-specific CTL. The natural peptides STEAP130-138, STEAP166-174, and STEAP192-200, as well as the modified peptides STEAP130-138-3F, STEAP130-138-3W, STEAP130-138-9V, and STEAP130-138-1F/3W/9V induced potent peptide-specific CTL (Table 28):









TABLE 28







Specific recognition of peptide-pulsed target cells by STEAP-induced CTL










Percent LDH released




froma:













K562-A2





pulsed with



CTL specific for:
K562-A2
peptideb







STEAP130-138
1
63



STEAP130-138 - 1F
4
75



STEAP130-138 - 3W
4
63



STEAP130-138 - 9V
1
53



STEAP130-138 - 1F/3W/9V
1
74



STEAP166-174
3
43



STEAP192-200
8
56








aCytotoxicity was evaluated in a 4-hour LDH-release assay





bK562-A2 cells were pulsed with corresponding STEAP peptide for 2 hours at 37° C. and used as targets







The peptide STEAP192-200 induced peptide-specific CTL in three out of three patients with prostate cancer.


These findings suggest that most STEAP-derived peptides tested so far are immunogenic, implying that precursor CTL for STEAP are present in the peripheral adult repertoire.


EXAMPLE 7
Testing the Ability of the STEAP-Specific CTL to Recognize and Kill Prostate Cancer Cells in a Class I-Restricted and Antigen-Dependent Fashion

It was tested whether the STEAP-derived peptides can induce potent CTL capable of recognizing and killing prostate cancer cells in vitro. CTL lines selected for their ability to lyse peptide-pulsed target cells were used as effectors in LDH-release cytotoxicity assays against the cancer cell lines. The HLA-A2+ cancer cell line LnCAP was used, with the HLA-A2-negative cancer cell line DU145 as a control (Table 29).









TABLE 29







Specific recognition of prostate cancer cell lines by CTL reactive


against the STEAP-derived peptides









Percent LDH released froma:









CTL specific for:
LnCap (HLA-A2+)
DU145 (HLA-A2−)












STEAP130-138
53
−1


STEAP130-138 - 1F
73
−1


STEAP130-138 - 3W
69
−2


STEAP130-138 - 9V
68
−2


STEAP130-138 - 1F/3W/9V
84
1


STEAP166-174
65
4


STEAP192-200
43
18






aCytotoxicity was evaluated in a 4-hour LDH-release assay







To determine if the lysis of the target cells is HLA-A2 restricted, blocking experiments were performed using the anti-HLA-A2 antibody BB7.2, which was added to the cancer cells prior to the addition of CTL. As an additional control the anti-HLA class II antibody IVA12 was used. With these experiments, it was confirmed that the STEAP-specific CTL can recognize and kill target cells in a class I-restricted fashion (Table 30).









TABLE 30







Class I-restricted specific recognition of target cells by CTL reactive


against the STEAP-derived peptides









Percent LDH released froma:













K562-A2




CTL specific for:
K562-A2
pulsedb
+BB7.2
+IVA12c














STEAP130-138
1
63
2
37


STEAP130-138 - 1F
4
75
2
69


STEAP130-138 - 3W
4
63
5
64


STEAP130-138 - 9V
1
53
1
47


STEAP130-138 -
1
74
1
75


1F/3W/9V


STEAP166-174
3
43
11
47


STEAP192-200
8
56
7
30






aCytotoxicity was evaluated in a 4-hour LDH-release assay




bK562-A2 cells were pulsed with corresponding STEAP peptide for 2 hours at 37° C. and used as targets




cThe blocking antibodies BB7.2 and IVA12 were added to the peptide-pulsed target cells before the 4-hour LDH-release assay







Collectively, these data indicate that the STEAP-derived peptides are naturally processed in prostate cancer cell lines in a class I-restricted fashion.


EXAMPLE 8
Identification of HLA-A2.1-Restricted Immunogenic Peptides Derived from the Antigen SURVIVIN

By the present invention, SURVIVIN-derived peptide sequences are identified that are immunogenic and can induce CTL, both in healthy volunteers as well as in patients with cancer. The antigen-recognition activity of CTL is intimately linked with recognition of MHC (HLA in humans) molecules. The invention focuses on the HLA-A2 allele, which is the most common HLA molecule expressed by the general population in the United States. About 95% of HLA-A2+ individuals express the HLA-A2.1 subtype. For this reason, the identification of immunogenic peptides restricted by the HLA-A2.1 allele would not only serve as a proof of principle, but would also be applicable to a large portion of the patient population. The following modern methods were utilized for identification of immunogenic peptide sequences.


A manual step-wise approach was used to identify peptide sequences based on the known binding motifs for the HLA-A2.1 molecule. The majority of peptides bound to MHC class I molecules have a restricted size of 9±1 amino acids and require free N- and C-terminal ends. In addition to a specific size, different class I molecules appear to require a specific combination of usually two main anchor residues within their peptide ligands. In the case of the human allele HLA-A2.1, these anchor residues have been described as leucine (L) at position 2, and L or valine (V) at the C-terminal end. More recently, it was found that a “canonical” A2.1 motif could be defined as L or M (methionine) at position 2 and L, V, or I (isoleucine) at position 9. Using this approach several 9 amino acid-long (9mer) peptides have been identified within the SURVIVIN protein sequence (Table 31):










TABLE 31







HLA-A2.1-restricted peptides,



identified within the SURVIVIN sequence










HLA-A*0201 nonamers
HLA-A*0201 decamers
















20STFKNWPFL28


5TLPPAWQPFL14





(SEQ ID NO: 160)
(SEQ ID NO: 161)








23KNWPFLEGC31


122KFEETAKKV131




(SEQ ID NO: 162)
(SEQ ID NO: 163)








96LTLGEFLKL104


95ELTLGEFLKL104




(SEQ ID NO: 164)
(SEQ ID NO: 165)








6LPPAWQPFL14


19ISTFKNWPFL28




(SEQ ID NO: 166)
(SEQ ID NO: 167)








33CTPERMAEA41


48TENEPDLAQC57




(SEQ ID NO: 168)
(SEQ ID NO: 169)








46CPTENEPDL54


93FEELTLGEFL102




(SEQ ID NO: 170)
(SEQ ID NO: 171)








130KVRRAIEQL138


87LSVKKQFEEL96




(SEQ ID NO: 172)
(SEQ ID NO: 173)








37RMAEAGFIH45


129KKVRRAIEQL138




(SEQ ID NO: 174)
(SEQ ID NO: 175)








88SVKKQFEEL96


13FLKDHRISTF22




(SEQ ID NO: 176)
(SEQ ID NO: 177)









32ACTPERMAEA41





(SEQ ID NO: 178)










A combination of three computer algorithms was utilized for peptide identification. The predictive algorithm, “BIMAS” ranks potential MHC binders according to the predictive half-time disassociation of peptide/MHC complexes. The second algorithm, “SYFPEITHI” ranks the peptides according to a score that takes into account the presence of primary and secondary MHC-binding anchor residues. The third algorithm, “PAProC”, predicts the proteasomal cleavages of the tumor antigens, which is a very important step in the generation of class I-restricted antigenic peptides.


The amino acid sequence of SURVIVIN was analyzed by using the “BIMAS” and the “SYFPEITHI” predictive algorithms for the existence of 9-amino acid peptides predicted to bind to HLA-A2.1. Peptides of 9 amino acids were the focus because it has been reported that HLA-A2.1 favor binding peptides of this size as compared with peptides of 8 or 10 residues. The analysis resulted in several candidate peptides for HLA-A2.1-restricted CTL epitopes. These epitopes were then analyzed with the third algorithm, “PAProC”, to verify the proteasome-mediated generation of the peptides. It was recently found that the COOH terminus of CTL epitopes requires exact cleavage by the proteasome, whereas NH2-terminal extensions of the epitope can be trimmed by putative aminopeptidase activity mainly in the ER, or in the cytosol. Therefore, the focus was on identifying peptides with the highest cleavage strength at the COOH terminus.


EXAMPLE 9
Enhancing the Stability, Immunogenicity, and Antigen Presentation of SURVIVIN-Derived Synthetic Peptides
Terminal Modifications to Inhibit Proteolytic Degradation of the SURVIVIN Peptides:

When biologically active peptides are used clinically in their natural form, their biologic effects are often rapidly lost in vivo due to rapid elimination of the active form of the peptide. Since the skin is an enzymatically active organ, in vaccinations that utilize subcutaneous injections, peptides may be degraded by skin peptidases prior to effecting a significant immunological response. Thus, it is critical to design stable peptide formulations for vaccination of patients with cancer. The natural HLA-A2.1 restricted SURVIVIN peptides were modified by N-terminal acetylation and/or C-terminal amidation. An example of modifications to the native HLA-A2.1 restricted peptide survivin20-28 is shown (Table 32):










TABLE 32







Terminal modifications of the



survivin-derived peptide survivin20-28











Modifications










Peptide Name
Peptide Sequence
N-Terminus
C-Terminus














survivin20-28

20STFKNWPFL28







(SEQ ID NO: 160)





N-survivin20-28
Ac-STFKNWPFL
Acetyl




(SEQ ID NO: 179)





C-Survivin20-28
STFKNWPFL-amide

Amide



(SEQ ID NO: 180)





Cap-survivin20-28
Ac-STFKNWPFL-amide
Acetyl
Amide



(SEQ ID NO: 181)









Amino Acid Substitutions at HLA-A2.1 Binding Anchor Positions to Enhance MHC Class I Binding Affinity of the SURVIVIN Peptides (Fixed Anchor Analogs):

Upon stimulation with natural peptides, tumor-reactive CTL have been induced in vitro from peripheral blood lymphocytes of some patients with cancer. However, tumor-specific CTL could only be induced in a limited number of patients, and numerous restimulations were required to generate anti-tumor reactivity. These findings prompted this section of the current invention aimed at enhancing the immunogenicity of peptides derived from SURVIVIN.


As an example, the following anchor amino acid substitutions were made to the native HLA-A2.1 restricted peptide survivin20-28 (Table 33):










TABLE 33







Substitutions at the HLA-A*0201



binding anchor positions









Peptide Name
Peptide Sequence
Substitutions













survivin20-28

20STFKNWPFL28






(SEQ ID NO: 160)





survivin20-28 - 2L
SLFKNWPFL
L for T at P2



(SEQ ID NO: 182)





survivin20-28 - 1A


A
TFKNWPFL

A for S at P1



(SEQ ID NO: 183)





survivin20-28 - 2L/1A


AL
FKNWPFL

both



(SEQ ID NO: 184)
substitutions









Amino Acid Substitutions at Non-Anchor Positions to Enhance the T Cell Receptor Binding Affinity for the Peptide-MHC Complex (Heteroclitic Analogs)

Certain peptide analogs that carry amino acid substitutions at residues other than the main MHC anchors (heteroclitic analogs) have shown a significantly increased potency, and are surprisingly much more antigenic than wild-type peptides. These analogs may provide considerable benefit in vaccine development, as they induce stronger T cell responses than the native epitope, and have been shown to be associated with increased affinity of the epitope/MHC complex for the T cell receptor (TCR) molecule. Important advantages of the heteroclitic analogs related to their clinical application include their ability to break/overcome tolerance by reversing a state of T cell anergy and/or recruiting new T cell specificities, and the significantly smaller amounts of heteroclitic analogs that is needed for treatment.


The scheme that used for selection of the single amino acid substitutions includes rank coefficient scores for PAM250, hydrophobicity, and side chain volume. The Dayhoff PAM250 score (hyper text transfer protocol address prowl.rockefeller.edu/aainfo/pam250.htm) is a commonly used protein alignment scoring matrix which measures the percentage of acceptable point mutations within a defined time frame.


As an example, the following NON-anchor amino acid substitutions were made to the native HLA-A2.1 restricted peptide survivin20-28 (Table 34):









TABLE 34







Substitutions at NON-anchor positions









Peptide Name
Peptide Sequence
Substitutions













survivin20-28

20STFKNWPFL28






(SEQ ID NO: 160)





survivin20-28 - 3K
STKKNWPFL
K for F at P3



(SEQ ID NO: 185)





survivin20-28 -5H
STFKHWPFL
H for N at P5



(SEQ ID NO: 186)










Enhancing the Immunogenicity of the Peptides with Insertion Signal Sequences


The transport of antigenic peptides from the cytosol to the endoplasmic reticulum (ER) is a limiting step in processing and presentation of class I-restricted antigens. Bypassing this step by direct targeting of the antigen to the ER can result in more effective generation of CTL. This could amount to a more potent CTL induction and anti-tumor immunity against prostate cancer and breast cancer. A variety of fusion peptides composed of natural or modified STEAP peptides and endoplasmic reticulum insertion signal sequences were designed. The following signal sequences were utilized to improve the antigen presentation: a) one from early region 3 of the adenovirus type 2-ES (MRYMILGLLALAAVCSA) (SEQ ID NO:68), b) one from IFN-beta-IS (MTNKCLLQIALLLCFSTTALS) (SEQ ID NO: 69), and c) several artificial sequences, generated according to the structure and the distribution frequency of the amino acids in the natural signal sequences. An example of synthetic peptide constructs utilizing the epitope survivin20-28 is shown (Table 35):










TABLE 35







Synthetic peptide constructs



utilizing the epitope survivin20-28








DESIGNATION
PEPTIDE SEQUENCE












survivin20-28

STFKNWPFL





(SEQ ID NO: 160)





ES-survivin20-28
M R Y M I L G L L A L A A V C S



A STFKNWPFL



(SEQ ID NO: 187)





survivin20-28-ES

STFKNWPFL M R Y M I L G L L A L




A A V C S A



(SEQ ID NO: 188)





IS-survivin20-28
M T N K C L L Q I A L L L C F S



T T A L S STFKNWPFL



(SEQ ID NO: 189)





survivin20-28-IS

STFKNWPFL M T N K C L L Q I A L




L L C F S T T A L S



(SEQ ID NO: 190)





survivin20-28-IN-ES
M R STFKNWPFL A A V C S A



(SEQ ID NO: 191)





survivin20-28-IN-AF
M A STFKNWPFL A A A A A G



(SEQ ID NO: 192)





Synthetic peptide constructs:


1. Peptide antigen survivin


2. Adenoviral signal sequence ES attached to the amino-terminus of survivin20-28


3. Adenoviral signal sequence ES attached to the carboxy-terminus of survivin20-28


4. Interferon signal sequence IS attached to the amino-terminus of survivin20-28


5. Interferon signal sequence IS attached to the carboxy-terminus of survivin20-28


6. Peptide antigen survivin20-28 replacing the hydrophobic portion of ES


7. Peptide antigen survivin20-28 incorporated into an artificial signal sequence - AF






Since the hydrophobicity of the fusion peptides is higher than that of the minimal peptide, a set of control fusion peptides were designed with signal sequences situated on the carboxy-terminus of the minimal peptides. Since signal sequences do not contain specific amino acid residues other than a hydrophobic region of about eight residues, modified peptides were designed by replacing this region with the hydrophobic SURVIVIN-derived peptides.


EXAMPLE 10
Testing the Effectiveness of the Fusion Peptides with T2 Cells

To probe class I presentation of cells loaded with the fusion peptides and their counterpart minimal peptides CTL recognizing the HER2/neu-derived peptides were generated. In vitro peripheral blood mononuclear cells (PBMCs) were immunized from healthy donors with these peptides in the presence of interleukin 2 and interleukin 7 using the following technique:


PBMCs were separated by centrifugation on Ficoll-Hypaque gradients and plated in 24-well plates at 5×105 cells/ml per well in RPMI medium 1640 supplemented with 10% human AB+ serum, L-glutamine, and antibiotics. Autologous PBMC (stimulators) were pulsed with the HER2/neu synthetic peptides (10 μg/ml) for 3 h at 37° C. Cells were then irradiated at 3,000 rads, washed once, and added to the responder cells at a responder to stimulator ratio ranging between 1:1 and 1:4. The next day, 12 units/ml IL-2 (Chiron) and 30 units/ml IL-7 (R & D Systems) were added to the cultures. Lymphocytes were re-stimulated weekly with peptide-pulsed autologous adherent cells as follows: First, autologous PBMC were incubated with HER2/neu peptide (10 μg/ml) for 3 h at 37° C. Nonadherent cells were then removed by a gentle wash and the adherent cells were incubated with fresh medium containing the HER2/neu peptide (10 μg/ml) for an additional 3 h at 37° C. Second, responder cells from a previous stimulation cycle were harvested, washed, and added to the peptide-pulsed adherent cells at a concentration of 5×105 cells/ml (2 ml/well) in medium without peptide. Recombinant IL-2 and IL-7 were added to the cultures the next day.


The induction of CTL in human PBMC was monitored in a conventional 51Cr-labeling release assay. Briefly, peptide-pulsed TAP/HLA-A2.1+ human T2 cells were incubated with 10 μg of HER2/neu peptides or the MART-1 control peptide for 90 min during labeling with 51Cr. After washing, the target cells were added to serially diluted effectors in 96-well microplates. After a 6-h incubation at 37° C., supernatants were harvested and counted in a gamma counter. Results are expressed as the percentage of specific lysis and determined as follows: [(experimental cpm−spontaneous cpm)/(maximum cpm−spontaneous cpm)]×100. (Table 36).


Peptide-loaded or pulsed T2 cells were tested for their ability to present HER2/neu peptides at different periods of time after loading or pulsing. T2 cells loaded with most of the constructs composed of signal sequence at the amino-terminus of HER2/neu peptides were recognized by CTL up to eight days after loading (FIGS. 4-6, left column). In contrast, constructs with carboxy-terminal position of the signal sequence were not efficient, even when 51Cr-release assays were performed immediately after loading. This recognition was not due to surface binding of these constructs since pulsing of T2 cells with any of the constructs was not efficient (FIGS. 4-7, right column). Loading or pulsing with the minimal HER2/neu peptides resulted in a significant recognition and lysis of T2 cells for only one day after loading or pulsing, followed by a rapid decrease of recognition on day 3 and complete lack of recognition on days 5 and 8 after loading or pulsing. This finding suggests that the recognition of T2 cells resulted from simple binding of the HER2/neu peptides to surface HLA molecules, from which it rapidly dissociated. T2 cells loaded with the constructs composed of signal sequence at the amino-terminus of the peptide HER2/neu789-797 were recognized by CTL up to three days after loading (FIG. 7, left column).









TABLE 36







HER2/neu-derived HLA-A2 restricted peptides










PEPTIDES
SEQUENCE
LOCATION
REFERENCE














HER2/neu48-56
HLYQGCQVV
EXTRACELLULAR
Disb, M.(Cancer Res. 54:1071-6,1994)




(SEQ ID NO: 132)





HER2/neu369-377
KIFGSLAFL
EXTRACELLULAR
Fisk, B.(J.Exp.Med. 181:2109-17, 1995)



(SEQ ID NO: 133)





HER2/neu654-662
IISAVVGIL
TRANSMEMBRANE
Peoples,G.(P.N.A.S 92:432-6, 1995)



(SEQ ID NO: 134)





HER2/neu789-797
CLTSTVQLV
INTRACELLULAR
Disis,M.(Cancer Res. 54:1071-6,1994)



(SEQ ID NO: 135)
















TABLE 37







Synthetic peptide constructs with HER2/neu48-56








DESIGNATION
PEPTIDE SEQUENCE












HER-HER2/neu48-56

HLYQGCQVV





(SEQ ID NO: 132)





ES-HER48-56
MRYMILGLLALAAVCSA HLYQGCQVV



(SEQ ID NO: 136)





HER48-56-ES

HLYQGCQVV MRYMILGLLALAAVCSA




(SEQ ID NO: 137)





IS-HER48-56
MTNKCLLQIALLLCFSTTALS HLYQGCQVV



(SEQ ID NO: 138)





HER48-56-IS

HLYQGCQVV MTNKCLLQIALLLCFSTTALS




(SEQ ID NO: 139)





HER48-56-IN-ES
MR HILYQGCQVV AAVCSA



(SEQ ID NO: 140)





HER48-56-IN-AF
MA HLYQGCQVV AAAAAG



(SEQ ID NO: 141)










Sythetic peptide constructs,


1. Peptide antigen HER2/neu48·56

2. Adenoviral signal sequence ES attached to the antnino-terminus of HER2/neu48·56

3. Adenoviral signal sequence ES attached to the carboxy-terminus of HER2/neu48·56

4. Interferon signal sequence IS attached to the amino-terminus of HER2/neu48·56

5. Interferon signal sequence IS attached to the carboxy-terminus of HER2/neu48.56

6. Peptide antigen HER2/neu48-56 replacing the hydrophobic portion of ES


7. Peptide antigen HER2/neu48-56 incorporated into an artificial signal sequence—AF










TABLE 38







Synthetic peptide constructs



with HER2/neu369-377








DESIGNATION
PEPTIDE SEQUENCE












HER-HER2/neu369-377

KIFGSLAFL





(SEQ ID NO: 133)





ES-HER2369-377
MRYMILGLLALAAVCSA KIFGSLAFL



(SEQ ID NO: 142)





HER2369-377-ES

KIFGSLAFL MRYMILGLLALAAVCSA




(SEQ ID NO: 143)





IS-HER2369-377
MTNKCLLQIALLLCFSTTALS KIFGSLAFL



(SEQ ID NO: 144)





HER2369-377-IS

KIFGSLAFL MTNKCLLQIALLLCFSTTALS




(SEQ ID NO: 145)





HER2369-377-IN-ES
M R KIFGSLAFL A A V C S A



(SEQ ID NO: 146)





HER2369-377-IN-AF
M A KLFGSLAFL A A A A A G



(SEQ ID NO: 147)

















TABLE 39







Synthetic peptide constructs



with HER2/neu654-622








DESIGNATION
PEPTIDE SEQUENCE












HER-HER2/neu654-622

IISAVVGIL





(SEQ ID NO: 134)





ES-HER654-622
MRYMILGLLALAAVCSA IISAVVGIL



(SEQ ID NO: 148)





HER654-622-ES

IISAVVGIL MRYMILGLLALAAVCSA




(SEQ ID NO: 149)





IS-HER654-622
MTNKCLLQIALLLCFSTTALS IISAVVGIL



(SEQ ID NO: 150)





HER654-622-IS

IISAVVGIL MTNKCLLQIALLLCFSTTALS




(SEQ ID NO: 151)





HER654-622-IN-ES
M R IISAVVGIL A A V C S A



(SEQ ID NO: 152)





HER654-622-IN-AF
M A IISAVVGLL A A A A A G



(SEQ ID NO: 153)

















TABLE 40







Synthetic peptide constructs



with HER2/neu789-797








DESIGNATION
PEPTIDE SEQUENCE





HER-HER2/neu789-797

CLTSTVQLV




(SEQ ID NO: 135)





ES-HER789-797
MRYMILGLLALAAVCSA CLTSTVQLV



(SEQ ID NO: 154)





HER789-797-ES

CLTSTVQLV MRYMILGLLALAAVCSA




(SEQ ID NO: 155)





IS-HER789-797
MTNKCLLQIALLLCFSTTALS CLTSTVQLV



(SEQ ID NO: 156)





HER789-797-IS

CLTSTVQLV MTNKCLLQIALLLCFSTTA




(SEQ ID NO: 157)





HER789-797-IN-ES
M R CLTSTVQLV A A V C S A



(SEQ ID NO: 158)





HER789-797-IN-AF
M A CLTSTVQLV A A A A A G



(SEQ ID NO: 159)
















TABLE 41








51Cr-release assay using T2 cells pulsed with HER2/neu-derived



peptides as targets for CTL









E:T ratio














50:1
25:1
12:1
6:1
3.1
1.5:1

















T2
1
2
1
0
1
0


T2 pulsed with
88
53
41
33
19
8


HER2/neu48-56


T2 pulsed with
94
66
57
42
23
12


HER2/neu369-377


T2 pulsed with
91
71
59
38
26
13


HER2/neu654-662


T2 pulsed with
83
62
52
31
22
9


HER2/neu789-797









EXAMPLE 11
Signal Sequences Containing HER2/neu Peptides

Since signal sequences do not contain specific amino acid residues other than a hydrophobic region of about eight residues, it was tested whether replacing this region with the hydrophobic HER2/neu peptides would result in a more efficient presentation of these epitopes (FIGS. 8-11). It was found that one of the two constructs of this type (HER-IN-AF) was the most efficient in facilitating the HER2/neu peptide presentation. Eight days after loading with the construct HER369-377-IN-AF, T2 cells were still lysed with more than 60% specific 51Cr-release (FIG. 9). The constructs HER48-56-IN-AF and HER654-662-IN-AF were also effective (FIGS. 8 and 10). The second construct of this type (HER-IN-ES), although not as effective as HER-IN-AF, was able to facilitate the recognition of T2 cells (FIGS. 8-10). Pulsing of T2 cells with these constructs did not resulted in efficient presentation. Again, as in the first group of experiments, loading or pulsing with the minimal HER2/neu peptides resulted in recognition of T2 cells for only a short period of time.


In interferon gamma-release assays, 105 HER2/neu-specific CTL were co-incubated with 105 peptide-loaded T2 cells for 20 hours at 37° C. The concentrations of human interferon gamma in co-cultured supernatants were then determined by ELISA. The results of the ELISA experiments are shown in table 37 A-D. These findings are in parallel with the 51Cr-release experiments, and confirm that the most efficient constructs in facilitating the HER2/neu peptide presentation are the constructs of the type HER-IN-AF. As in the 51Cr-release experiments, the constructs with the peptides HER369-377 and HER654-662 were the most efficient, while the constructs with the peptide HER789-797 were the least efficient, especially on days 5 and 8 after peptide loading.









TABLE 42







Release of IFNγ bv CTL after incubation with non-loaded or peptide-loaded T2 cells









CTL elicited

Stimulators in ELISA assays: T2 cells loaded with:a















with:

HER
ES-HER
HER-ES
IS-HER
HER-IS
HER-IN-ES
HER-IN-AF










A. Day 1 after peptide loading















HER2/neu48-56
210b
2280
2894
418
3268
288
3368 2227
3488 3288


HER2/neu369-377
186
3120
3368
172
2120
212
2929 246
3321 296


HER2/neu654-662
121
2827
2667
144
2590
111


HER2/neu789-797
234
2924
1824
 58
1717
 69







B. Day 3 after peptide loading















HER2/neu48-56
129b
488
1876
218
1264
148
1349 2029
1229


HER2/neu369-377
143
127
2377
142
1818
112
2773 312
2401


HER2/neu654-662
111
429
2518
124
1990
 99 315

2981 327


HER2/neu789-797
215
317
526
 78
78







C. Day 5 after peptide loading















HER2/neu48-56
181b
134
953
 99
943
155
 988
1010 1663


HER2/neu369-377
111
211
1073
121
1323
117
1773 1699
1892


HER2/neu654-662
 97
121
1245
137
1557
121
 121
 178


HER2/neu789-797
136
116
168
 69
125
 87







D. Day 8 after peptide loading















HER2/neu48-56
116-
177
589
101
614
121
 228
 718 690


HER2/neu369-377
 93
89
592
118
545
103
 878 671
 881


HER2/neu654-662
115
167
581
 83 98
615
 76 104
 107
 117











HER2/neu789-797
 88
91
110
59






aCTL were coincubated with stimulator cells (non-loaded or peptide-loaded T2 cells) for 20 h. The concentration of IFNγ in coculture supernatants was then determined by ELISA.




bIFNγ (pg/ml) - mean numbers of IFNγ release in triplicate wells with 105 CTL/well.







EXAMPLE 12
Testing the Effectiveness of the Fusion Peptides with Breast Cancer Cells

It was tested whether the most effective signal sequence constructs, already selected in the experiments with the TAP-deficient T2 cells, can also improve HER2/neu antigen presentation in human breast cancer cells.


In this series of studies the HLA-A2+ human breast cancer cell line MCF-7 expressing high levels of HER2/neu and the cell line MDA-MB-231 expressing only basal levels of HER2/neu were used. HER2/neu369-377-specific CTL and HER2/neu654-662-specific CTL failed to recognize the breast cancer cell line MDA-MB-231, although the same effectors specifically recognized T2 cells pulsed with HER2/neu369-377, HER2/neu654-662 and the cell line MCF7 expressing HER2/neu (Table 38). Thus, it was concluded that MDA-MB-231 cells do not express HER2/neu369-377 and HER2/neu654-662, and that this cell line was appropriate for our peptide-loading experiments.



51Cr-release assays were used to test to see if the low HER2/neu-expressing breast cancer cells MDA-MB-231 can be recognized more efficiently by the HER2/neu-specific CTL after loading with the fusion peptides. Determination was also made by ELISA to see if the peptide-loaded breast cancer cells can induce release of interferon gamma by the HER2/neu-specific CTL.


The lysis of the tumor cells by the HER2/neu-specific CTL was monitored in a conventional 51Cr-labeling release assay. Briefly, peptide-loaded tumor cells were added to serially diluted effectors in 96-well microplates. After a 6-h incubation at 37° C., supernatants were harvested and counted in a gamma counter. Results are expressed as the percentage of specific lysis and determined as follows: [(experimental cpm−spontaneous cpm)/(maximum cpm−spontaneous cpm)]×100.


Peptide-loaded breast cancer cells MDA-MB-231 were tested for their ability to present HER2/neu peptides at different periods of time after loading or pulsing. Tumor cells loaded with the constructs composed of signal sequence at the amino-terminus of the peptides were recognized by CTL up to eight days after loading (FIGS. 12-13, left column). In contrast, constructs with carboxy-terminal position of the signal sequence were not efficient, even when 51Cr-release assays were performed immediately after loading. This recognition was not due to surface binding of these constructs since pulsing of the tumor cells with any of the constructs was not efficient (FIGS. 12-13, right column). Loading or pulsing with the minimal HER2/neu peptides resulted in a significant recognition and lysis of the tumor cells for only one day after loading or pulsing, followed by a rapid decrease of recognition on day 3 and complete lack of recognition on days 5 and 8 after loading or pulsing. This finding suggests that the recognition of the tumor cells resulted from simple binding of the HER2/neu peptides to surface HLA molecules, from which it rapidly dissociated.


An experiment was also performed to test whether replacing the hydrophobic region of the signal sequences with the HER2/neu peptides would result in a more efficient presentation of these epitopes (FIGS. 14-15). The construct HER-IN-AF was found to be the most efficient in facilitating the HER2/neu peptide presentation. Eight days after loading with the construct HER369-377-IN-AF, the tumor cells were still lysed (FIG. 14). The construct HER654-662-IN-AF was also effective (FIG. 15). The second construct of this type (HER-IN-ES), although not as effective as HER-IN-AF, was able to facilitate the recognition of the tumor cells (FIGS. 14-15). Pulsing of the tumor cells with these constructs did not resulted in efficient presentation. Loading or pulsing with the minimal HER2/neu peptides resulted in recognition of the tumor cells for only a short period of time.


In interferon gamma release assays, 105 HER2/neu-specific CTL were co-incubated with 105 peptide-loaded tumor cells for 20 hours at 37° C. The concentration of human interferon gamma in co-cultured supernatants was then determined by ELISA. The results of the ELISA experiments are shown in Table 39 A-D. These findings are in parallel with the 51Cr-release experiments, and confirm that the most efficient constructs in facilitating the HER2/neu peptide presentation are the constructs of the type HER-IN-AF.









TABLE 43







Lack of recognition of breast cancer cell line MDA-MB-231 by CTL


reactive against HER2/neu369-377 and HER2/neu654-622









Percent 51Cr Released Froma:












Effectors
E:T
T2
T2-pulsedb
MCF7
MDA-MB-231















CTL369-377
40:1
2 1
94 73
68
2



20:1


33
1


CTL654.662
40:1
1 2
71
58
2 31



20:1

57
0






aCytotoxicity was evaluated in a 6-hour 51Cr-release assay.




bT2 cells were pulsed with HER2/neu369-377, or HER2/neu654-622 at 1 μg/ml for 2 hours at 37° C., labeled with 51Cr and used as targets.














TABLE 44







Release of IFNγ by CTL after incubation with non-loaded


or peptide-loaded breast cancer cells MDA-MB-231









CTL elicited

Stimulators in ELISA assays: T2 cells loaded with:a















with:

HER
ES-HER
HER-ES
IS-HER
HER-IS
HER-IN-ES
HER-IN-AF










A. Day 1 after peptide loading















HER2/neu369-377
177b
2820
3688
182
2126
224
2627
3381


HER2/neu654-622
153
2826
2767
188
2678
144
2727
3321







B. Day 3 after peptide loading















HER2/neu369-377
138b
141
2417
187
1777
131
2187
2347


HER2/neu654-622
121
438
2622
138
1974
102
2666
2994







C. Day 5 after peptide loading















HER2/neu369-377
122b
274
1278
137
1444
128
1778
1897


HER2/neu654-622
102
131
1445
135
1604
132
1708
1933







D. Day 8 after peptide loading















HER2/neu369-377
102b
99
577
122
587
113
687
889


HER2/neu654-622
125
147
578
93
628
86
667
899






aCTL were coincubated with stimulator cells (non-loaded or peptide-loaded MDA-MB-231 cells) for 20 h. The concentration of IFNg in coculture supernatants was then determined by ELISA.




bIFNg (pg/ml) - mean numbers of IFNg release in triplicate wells with 105 CTL/well.







EXAMPLE 13
Identification of the Mechanisms Involved in the Enhancement of Antigen Presentation by the Fusion Peptides

The goal of this set of experiments was to prove that the effective presentation of the loaded peptide constructs is a result of their efficient loading into the cytosol and not simple binding to the surface HLA molecules. The role of TAP in class I presentation in human cancer cells was also tested, along with a test of the efficiency of different signal peptides in cancer cells with different levels of TAP expression.


EXAMPLE 14
Probing the Mechanisms of Peptide Loading

To distinguish between loading of the peptides into the cytosol and simple binding of these peptides to the surface MHC molecules several approaches were used. First, β2-microglobulin was removed from the surface of peptide-loaded tumor cells by acid stripping. It was found that acid-stripping solution with pH=3.5 was most efficient in decreasing the specific recognition of peptide-loaded cells. Second, pronase was used for complete enzymatic digestion of HLA molecules on the cell surface after loading in order to be able to detect the appearance of new internally formed HLA-peptide complexes on the cell surface, but not pulsing of the cells. Third, Brefeldin A (BFA), a metabolite of the fungus Eupenicillium brefeldianum, was used which specifically blocks protein transport from the ER to Golgi apparatus.


It was found that Brefeldin A specifically blocks the recognition of the peptide-loaded tumor cells by the HER2/neu-specific CTL. In contrast, the acid stripping and the treatment with pronase was not able to block antigen recognition for more than 24 hours (Table 40). These experiments confirmed that the antigenic peptides were introduced into the cytosol of the cells, resulting in a prolonged and more efficient antigen presentation.









TABLE 45







Mechanisms of peptide loading: Recognition of breast cancer


cells MDA-MB-231 by CTL reactive against HER2/neu369·377


and HER2/neu654-622









Percent 51Cr Released From



MDA-MB-231 cells treated witha:












Effectors
E:T
acid
pronase
brefeldin
non-treated





CTL369-377
40:1
62 41
59
18 7
62 39



20:1

33


CTL654-662
40:1
61 28
61 37
13 6
58 30



20:1






aCytotoxicity was evaluated in a 6-hour 51Cr-release assay 3 days after peptide loading







EXAMPLE 15
Inducing a Functional Blockade of TAP by ICP47

Another aspect in these studies was to determine the mechanisms of enhancement of the antigen presentation by the fusion peptides in human tumor cell lines. Therefore, a new test system was developed utilizing the Herpes Simplex virus (HSV) protein ICP47. ICP47 is a cytoplasmic protein, which interferes with antigen presentation by physically associating with TAP within the cell and inhibiting peptide transport across the ER-membrane. By transfecting the ICP47 gene into several cancer cell lines a novel system for screening different fusion peptides for TAP-independent translocation of peptide antigens through the ER-membrane was generated.


The breast cancer cell line MCF7 was transfected with ICP47, and observed permanent block of the function of TAP, and therefore lack of recognition of these cells by the CTL, which normally recognize and kill them. To select the sequences most effective in translocation of antigenic peptides across the ER-membrane of the breast cancer cells, the ICP47-transfected cells were loaded with several fusion peptides with different signal sequences. The expression of these antigens was detected by 51Cr-release assays. It was found that only the most efficient peptide constructs—HER369-377-IN-AF and HER654-662-IN-AP—were able to restore the antigen presentation in the ICP47-transfected breast cancer cells (Table 41). This confirms that the signal sequence approach is very effective in improving antigen presentation, even in tumor cells with deficiency of antigen processing/presentation.









TABLE 46







Mechanisms of peptide loading: Recognition of ICP47-transfected cells MCF7


by CTL reactive against HER2/neu369.377 and HER2/neu654-622









Percent 51Cr Released From MCF7 cells loaded witha:














Effectors
E:T
MCF7
MCF7-ICP47
ES-HER
IS-HER
HER-IN-ES
HER-IN-AF





CTL369-377
40:1
62
3
1 2
2 3
4
58



20:1
29
3


3
24


CTL654-662
40:1
74 31
4 2
3
5
2
66



20:1


2
3
2
22






aCytotoxicity was evaluated in a 6-hour 51Cr-release assay 3 days after peptide loading







EXAMPLE 16
Loading of Dendritic Cells with the Fusion Peptides

Human dendritic cells (DC) derived from healthy donors were utilized. The nonamer HER2/neu peptides were introduced alone, fused to, or included within, synthetic signal sequences into the cytosol of DC with a technology called “osmotic lysis of pinocytic vesicles.” With a standard 51Cr-release assay, the ability of HER2/neu-specific tumor infiltrating lymphocytes (TIL) to recognize peptide-loaded DC at various intervals after loading was tested. Significant lysis of DC loaded with a peptide construct composed of a signal sequence fused to the amino-terminus was observed, but not the carboxy-terminus of HER2/neu peptide (FIG. 16). Of all constructs tested, DC loaded with the HER2/neu peptide included within an artificial signal sequence were recognized most efficiently, for at least 6 days after loading (FIG. 17). DC loaded with the minimal peptide were only marginally recognized. In all of our experiments, non-loaded DC were not recognized by the HER2/neu specific CTL. These studies suggest that with signal sequences combined with minimal antigenic peptides, it may be possible to enhance antigen-presentation and stimulation of cytotoxic T lymphocytes. This approach may facilitate the development of synthetic peptide vaccines for human cancer.


EXAMPLE 17
Nanoparticle-Based Synthetic Vaccines for Cancer and Infectious Diseases

A major obstacle affecting the activity of peptides that function intracellularly is the cytoplasmic delivery. Biomolecules usually enter cells via fluid-phase or receptor-mediated endocytosis, and are initially localized in the endosomal compartment. A high percentage of these biomolecules are subsequently sent to lysosomes, resulting in high levels of protein degradation and thus limiting antigen delivery. Accordingly the design and synthesis of specialized carriers that can enhance the intracellular delivery of biotherapeutics, in particular to overcome the important barrier of lysosomal trafficking, is important for vaccine development.


A new strategy will be implemented for the design and synthesis of polymeric nanoparticles that enhance the cytoplasmic delivery of the peptide vaccines into the antigen-presenting cells by disrupting the endosomal membrane at the acidic pH of the endosome. These acid-sensitive nanoparticles will be designed to disrupt endosomes and deliver protein antigens into the cytoplasm of antigen-presenting cells (APC) for class I antigen presentation. The nanoparticles will be chemically stable at pH 7.4, but will degrade into linear polymer chains and small molecules under mildly acidic conditions.


It is hypothesized that tumor/pathogen antigen-derived peptide vaccines encapsulated in acid-sensitive nanoparticles will induce potent and specific CTL responses against cancer and infectious diseases. This approach may provide a potential avenue for vaccine development using the cancer-associated antigens and pathogen-associated antigens described herein.


The development of nanoparticle-based vaccines is innovative and holds great promise. Like the biological systems, these nanoparticles combine targeting elements that direct cellular uptake, together with the sensing of pH changes within the endosome to activate membrane destabilization and cytosolic delivery. The intrinsic modular design of these nanoparticle-based vaccines makes it possible to customize the targeting and membrane destabilizing activities for a wide range of biotherapeutics and vaccine applications. These vaccines might be used directly to immunize patients with cancer or infectious diseases. In addition, they may be used to generate and expand in vitro CTL for adoptive transfer therapies.


EXAMPLE 18
Survivin-Based Synthetic Vaccines for Immunotherapy of Brain Tumors

Gliomas are among the most common tumors of the central nervous system (CNS). Even with conventional treatments, including surgery, radiation, and chemotherapy, the median survival time for patients with gliomas, is only one year. As these tumors are incurable, the aim of the current conventional treatments is to improve the neurological deficits and to increase survival while maintaining the best possible quality of life. It is has recently been discovered that with Gliomas, there is a significant trafficking of activated T cells through the CNS, and that T cells primed by tumor cells in the periphery can recirculate and reach the brain to mediate their anti-tumor effects.


A newly described inhibitor of apoptosis, survivin, has been found to induce in vitro survivin-specific effector T lymphocytes in healthy donors, as well as in patients with cancer. Most importantly, spontaneous T cell reactivity against survivin in patients with leukemia, melanoma and breast cancer has been observed. The over-expression of survivin in most gliomas and many other human tumors suggests a general role of apoptosis inhibition during tumor progression. Survivin may be an ideal target for the immunotherapy of gliomas because of its strong expression in most gliomas, little or no expression in adult tissues, and its essential role for the survival of the tumor cells.


The development strategy will be to (i) identify and obtain class I-restricted immunogenic survivin-derived peptides, (ii) generate in vitro survivin-specific CTL lines and clones from healthy volunteers and from patients with glioma, (iii) test the ability of the survivin-specific CTL to kill glioma tumor cells in vitro in a class I-restricted and survivin-dependent fashion, and (iv) enhance the stability and immunogenicity of the survivin-derived synthetic vaccines. Several survivin peptides have already been observed to expand precursor CTL in PBMC of healthy individuals and induce MHC class I-restricted, peptide-specific CTL responses. Therefore, it is hypothesized that survivin-derived peptides may be used for vaccination of HLA-A2.1 positive cancer patients.


The identification of immunogenic peptides derived from survivin, a widely expressed tumor antigen, is innovative and holds great promise. Identification of immunogenic survivin peptides will allow for the development of synthetic vaccines for patients with glioma. Furthermore, immunogenic survivin peptides will be used to generate and expand in vitro CTL for adoptive transfer therapies, or for dendritic cell-based immunotherapy.


Although the invention has been described with reference to the above example, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

Claims
  • 1. An isolated class I restricted peptide, wherein the peptide is: a) a non-HLA-A2 peptide derived from PRAME (SEQ ID NO: 1);b) derived from OFA/iLP (SEQ ID NO: 70);c) derived from STEAP (SEQ ID NO: 95); ord) derived from SURVIVIN (SEQ ID NO: 193).
  • 2. The peptide of claim 1, wherein the peptide is selected from any one of SEQ ID NOs: 2 to 5.
  • 3. The peptide of claim 1, wherein the peptide is modified by using any of the approaches described in this invention.
  • 4. The peptide of claim 3, wherein the peptide is selected from any one of SEQ ID NOs: 6 to 67.
  • 5. The peptide of claim 1, wherein the peptide is selected from any one of SEQ ID NOs: 71 to 76.
  • 6. The peptide of claim 3, wherein the peptide is selected from any one of SEQ ID NOs: 77 to 94.
  • 7. The peptide of claim 1, wherein the peptide is selected from any one of SEQ ID NOs: 96 to 115.
  • 8. The peptide of claim 3, wherein the peptide is selected from any one of SEQ ID NOs: 116 to 131.
  • 9. The peptide of any one of claims 1-8, wherein a signal sequence is operably linked to the peptide.
  • 10. A method of treating or preventing cancer in a subject comprising administering to the subject a class I restricted peptide of claim 1.
  • 11. The method of claim 10, wherein the cancer is any type of cancer expressing the antigens PRAME, OFA/iLP, STEAP, or SURVIVIN.
  • 12. The method of claim 11, wherein the cancer is lung cancer.
  • 13. The method of claim 11, wherein the cancer is breast cancer.
  • 14. The method of claim 11, wherein the cancer is prostate cancer.
  • 15. The method of claim 11, wherein the cancer is a brain tumor.
  • 16. A vaccine comprising a fusion peptide, wherein the fusion peptide comprises a signal sequence and an antigen-derived peptide, wherein the antigen-derived peptide is derived from an antigen expressed on the surface of a cancer cell or a virus-infected cell.
  • 17. The vaccine of claim 16, wherein the antigen-derived peptide is selected from any one of SEQ ID NOs: 132-159.
  • 18. The vaccine of claim 16, wherein the antigen-derived peptide consists of the peptide according to claims 1-8.
  • 19. The vaccine of claim 16, wherein the cell is a cancer cell and is a cancerous prostate cell, cancerous breast cell or cancerous lung cell.
  • 20. A method of treating or preventing cancer in a subject comprising administration of a vaccine of any of claims 16-19.
  • 21. The method of claim 20, wherein the cancer is prostate cancer, breast cancer or lung cancer.
  • 22. A method of treating or preventing a viral disease in a subject comprising administration of a vaccine of any of claims 16-19.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Ser. No. 60/586,847, filed Jul. 8, 2004, U.S. Ser. No. 60/586,900, filed Jul. 8, 2004, U.S. Ser. No. 60/586,997, filed Jul. 8, 2004, and U.S. Ser. No. 60/586,914, filed Jul. 8, 2004, the entire content of which is incorporated herein by reference.

GOVERNMENTAL INTERESTS

This invention was made in part with government support under Grant Nos. DAMD17-02-1-0028 (2003-180) and DAMD17-00-1-0184 (2003-262) awarded by the U.S. Army Medical Research and Material Command. The government has certain rights in this invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US05/24216 7/8/2005 WO 00 1/3/2008
Provisional Applications (4)
Number Date Country
60586847 Jul 2004 US
60586900 Jul 2004 US
60586997 Jul 2004 US
60586914 Jul 2004 US