The present disclosure relates in general to circuits for audio devices, including without limitation personal audio devices, such as wireless telephones and media players, and more specifically, to systems and methods for reducing audio artifacts in a system for enhancing a dynamic range of an audio signal path in an audio device.
Personal audio devices, including wireless telephones, such as mobile/cellular telephones, cordless telephones, mp3 players, and other consumer audio devices, are in widespread use. Such personal audio devices may include circuitry for driving a pair of headphones or one or more speakers. Such circuitry often includes a power amplifier for driving an audio output signal to headphones or speakers.
One particular characteristic of a personal audio device, which may affect its marketability and desirability, is the dynamic range of its audio output signal. Stated simply, the dynamic range is the ratio between the largest and smallest values of the audio output signal. One way to increase dynamic range is to apply a high gain to the power amplifier. However, noise present in an audio output signal may be a generally monotonically increasing function of the gain of the power amplifier, such that any increased dynamic range as a result of a high-gain amplifier may be offset by signal noise which may effectively mask lower-intensity audio signals.
U.S. patent application Ser. No. 14/083,972, filed Nov. 19, 2013, entitled “Enhancement of Dynamic Range of Audio Signal Path,” and assigned to the applicant (Cirrus Logic, Inc.) of the present disclosure (the “'972 Application”) discloses methods and systems for enhancing the dynamic range of an audio signal path. In the '972 Application, an apparatus for providing an output signal to an audio transducer includes an analog signal path portion, a digital-to-analog converter (DAC), and a control circuit. The analog signal path portion has an audio input for receiving an analog signal, an audio output for providing the output signal, and a selectable analog gain, and may be configured to generate the output signal based on the analog signal and in conformity with the selectable analog gain. The DAC has a selectable digital gain and may be configured to convert a digital audio input signal into the analog signal in conformity with the selectable digital gain. The control circuit may be configured to select the selectable analog gain and select the selectable digital gain based on a magnitude of a signal indicative of the output signal.
In the '972 Application, when changing selection between the selectable digital gain and the selectable analog gain, audible audio artifacts (e.g., “pops” and “clicks”) may be heard by a listener of an audio device unless measures are taken to reduce or eliminate such audio artifacts.
U.S. Pat. No. 8,194,889, granted Jun. 5, 2012, entitled Hybrid Digital/Analog Loudness-Compensating Volume Control (the “'889 Patent”), discloses a loudness-compensating volume control method that imposes a desired loudness scaling on an audio signal by processing the audio signal in both the digital and analog domains by receiving a desired loudness scaling, deriving a wideband gain component and one or more other gain components from the desired loudness scaling, applying in the digital domain modifications to the audio signal based on the one or more other gain components to produce a partly-modified audio signal, and applying in the analog domain modifications to the partly-modified audio signal based on the wideband gain component. In the '889 Patent, when modifying and applying the wideband gain component, audible audio artifacts may be heard by a listener of an audio device unless measures are taken to reduce or eliminate such audio artifacts.
In accordance with the teachings of the present disclosure, one or more disadvantages and problems associated with existing approaches to reducing audio artifacts in a system for maintaining a high dynamic range of an audio signal path may be reduced or eliminated.
In accordance with embodiments of the present disclosure, an apparatus for providing an output signal to an audio transducer may include a signal path and a control circuit. The signal path may include an analog signal path portion having an audio input for receiving an analog signal, an audio output for providing an output signal, and a selectable analog gain, and configured to generate the output signal based on the analog signal and in conformity with the selectable analog gain and a digital path portion having a selectable digital gain and configured to receive a digital input signal and convert the digital input signal into the analog signal in conformity with the selectable digital gain. The control circuit may be configured to determine a spectral content of a signal indicative of the output signal and change the selectable digital gain and the selectable analog gain based on the spectral content.
In accordance with these and other embodiments of the present disclosure, a method may include, in a signal path comprising an analog signal path portion having an audio input for receiving an analog signal, an audio output for providing an output signal, and a selectable analog gain, and configured to generate the output signal based on the analog signal and in conformity with the selectable analog gain and further comprising a digital path portion having a selectable digital gain and configured to receive a digital input signal and convert the digital input signal into the analog signal in conformity with the selectable digital gain, determining a spectral content of a signal indicative of the output signal. The method may also include changing the selectable digital gain and the selectable analog gain based on the spectral content.
Technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
In accordance with embodiments of the present disclosure, an integrated circuit for use in an audio device, such as a personal audio device (e.g., mobile telephone, portable music player, tablet computer, personal digital assistant, etc.), may include a signal path having a digital path portion (e.g., an audio compressor) and an analog path portion (e.g., an audio expander). The digital path portion may be configured to receive a digital input signal (e.g., a digital audio signal), apply a selectable digital gain x to the digital input signal, and convert the digital input signal (e.g., via a digital-to-analog converter) to an analog signal in conformity with the selectable digital gain. The analog path portion may be configured to receive the analog signal and apply (e.g., by an analog amplifier) a selectable analog gain k/x to the analog signal to generate an output signal, wherein said output signal may be communicated to a loudspeaker for playback and/or to other circuitry for processing. The numerator k of the selectable analog gain may be a constant defining an overall cumulative gain of the signal path. A control circuit coupled to the signal path may be capable of modifying the selectable digital gain and the selectable analog gain, for example to maximize a dynamic range of the signal path. For example, based on analysis of the output signal or another signal within the signal path indicative of the output signal, the control circuit may select a value for the selectable digital gain and a corresponding value for the selectable analog gain. Thus, for lower magnitudes of the output signal, the control circuit may select a higher selectable digital gain and a lower selectable analog gain, and for higher magnitudes of the output signal, the control circuit may select a lower selectable digital gain and a higher selectable analog gain. Such selectable gains may allow a signal path to increase its dynamic range to lower-magnitude signals, while preventing undesirable effects such as signal clipping for higher-magnitude signals. In operation, the control circuit may also be configured to predict, based on a magnitude of a signal indicative of the output signal, a condition for changing the selectable digital gain and the selectable analog gain, and responsive to predicting the occurrence of the condition, change, at an approximate time in which a zero crossing of the signal indicative of the output signal occurs, the selectable digital gain and the selectable analog gain.
The integrated circuit described above may be used in any suitable system, device, or apparatus, including without limitation, a personal audio device.
DAC 14 may supply analog signal YIN to an amplifier stage 16 which may amplify or attenuate audio input signal YIN in conformity with a selectable analog gain k/x to provide an audio output signal VOUT, which may operate a speaker, headphone transducer, a line level signal output, and/or other suitable output. Amplifier stage 16 may be referred to herein as an analog path portion of the signal path from the input node for digital audio input signal DIG_IN to the output node for output voltage signal VOUT depicted in
As shown in
As an example of the dynamic range enhancement functionality of audio IC 9, when digital audio input signal DIG_IN is at or near zero decibels (0 dB) relative to the full-scale voltage of the digital audio input signal, gain control circuit 20 may select a first digital gain (e.g., x1) for the selectable digital gain and a first analog gain (e.g., k/x1) for the selectable analog gain. However, if the magnitude of digital audio input signal DIG_IN is below a particular predetermined threshold magnitude relative to the full-scale voltage of digital audio input signal DIG_IN (e.g., −20 dB), gain control circuit 20 may select a second digital gain (e.g., x2) greater than the first digital gain (e.g., x2>x1) for the selectable digital gain and a second analog gain (e.g., k/x2) lesser than the first analog gain (e.g., k/x2<k/xi) for the selectable analog gain. In each case, the cumulative path gain (e.g., k) of the selectable digital gain and the selectable analog gain may be substantially constant (e.g., the same within manufacturing and/or operating tolerances of audio IC 9). In some embodiments, k may be approximately equal to 1, such that the cumulative path gain is a unity gain. Such modification of digital gain and analog gain may increase the dynamic range of audio IC 9 compared to approaches in which the digital gain and analog gain are static, as it may reduce the noise injected into audio output signal VOUT, which noise may be a generally monotonically increasing function of the analog gain of amplifier stage 16. While such noise may be negligible for higher magnitude audio signals (e.g., at or near 0 dB relative to full-scale voltage), the presence of such noise may become noticeable for lower magnitude audio signals (e.g., at or near −20 dB or lower relative to full-scale voltage). By applying a smaller analog gain at amplifier stage 16 for smaller signal magnitudes, the amount of noise injected into audio output signal VOUT may be reduced, while the signal level of audio output signal VOUT may be maintained in accordance with the digital audio input signal DIG_IN through application of a digital gain to gain element 12 inversely proportional to the analog gain.
Zero-cross detection circuit 48 may include any suitable system, device, or apparatus for detecting the occurrence of a zero crossing of a digital audio input signal (or a derivative thereof) and outputting a signal ZERO_DETECT indicating that a zero crossing of such signal has occurred. A zero crossing of a signal may occur when the waveform of such signal crosses a magnitude of zero or crosses another level within a threshold of zero and indicative of a zero crossing (e.g., a low signal level of lower than −70 dB or within a small number of least significant bits of zero).
Signal tracking block 47 may comprise any suitable system, device, or apparatus for tracking a particular parameter of an audio signal, including without limitation a plurality of peaks of such audio signal and/or a signal envelope of such audio signal, and based thereon, generate an output signal TRACKING indicative of such tracked parameter.
Glitch correction circuit 44 may comprise any suitable system, device, or apparatus for correcting for a latency or group delay between the output of gain element 12 and the input of amplifier stage 16. Such glitch correction may account for a change of the selectable digital gain of gain element 12 which requires a latency to propagate to amplifier stage 16 where a corresponding selectable analog gain may be applied. Without such correction, the latency of group delay may cause audio artifacts to appear at the output of the signal path.
Gain calibration circuit 52 may comprise any suitable system, device, or apparatus for correcting for a non-ideal gain of amplifier stage 16. To illustrate, amplifier stage 16 may comprise an operational amplifier 22 and a switched resistor network 24 comprising a resistor string 28 having a plurality of taps each coupled to a corresponding switch 29. To apply a desired selectable analog gain to amplifier stage 16, switches 29 may be selectively opened and closed to create an effective resistance between a negative input of operational amplifier 22 and the output of operational amplifier 22, wherein the selectable analog gain of operational amplifier 22 is based on such effective resistance. However, due to non-idealities of amplifier stage 16 (e.g., temperature variations, process tolerances, etc.), an actual gain of amplifier stage 16 may differ from that of a desired level of gain determined by gain control state machine 50. Accordingly, gain calibration circuit 52 may determine the actual gain of amplifier stage 16 and output a signal GAIN_CAL indicative of such actual gain, and gain control state machine 50 may correct for non-idealities in selecting the selectable digital gain.
Offset calibration circuit 54 may comprise any suitable system, device, or apparatus for correcting for an offset of amplifier stage 16. To illustrate, operational amplifier 22 may include, due to non-idealities of amplifier stage 16 (e.g., temperature variations, process tolerances, etc.), a slight offset 26 from a desired ground or common mode voltage associated with amplifier stage 16, which may affect signal output VOUT. Accordingly, offset calibration circuit 54 may determine the offset 26 of amplifier stage 16 and output a signal OFFSET_CAL, which may be communicated to an offset block 32 of DAC 14 such that DAC 14 may correct for such analog offset.
Gain control state machine 50 may receive signals COMP_OUT, TRACKING, ZERO_DETECT, GLITCH, and/or GAIN_CAL and based on one or more of such signals, generate the selectable digital gain and the selectable analog gain, as described in greater detail elsewhere in this disclosure. For example, when the magnitude of digital audio input signal DIG_IN transitions from above to below a predetermined threshold magnitude (e.g., −24 dB), signal COMP_OUT may indicate such transition and in response, gain control state machine 50 may wait until the occurrence of a zero crossing (as indicated by signal ZERO_DETECT), after which it may cause DAC 14 to increase the selectable digital gain and decrease the selectable audio gain a similar amount. By changing the selectable digital gain and the selectable audio gain at a zero crossing of digital audio input signal DIN_IN (or a derivative thereof), the change and any auditory artifacts associated with the change may be masked and therefore be unnoticeable or less noticeable to a listener of an audio device including audio IC 9.
As another example, when the sum of the magnitude of digital audio input signal DIG_IN transitions from below to above a predetermined threshold magnitude (e.g., −24 dB), signal COMP_OUT may indicate such transition, and in response gain control state machine 50 may cause DAC 14 to decrease the selectable digital gain and increase the selectable audio gain in a similar amount. However, when transitioning to lower digital gain mode, it may not be desirable to wait for a zero cross of the output signal, as a transition from below to above the predetermined threshold magnitude may almost immediately lead to clipping of the audio signal. Accordingly, it may be desirable to predict whether the magnitude of digital audio input signal DIG_IN is likely to cross such predetermined threshold and switch the selectable digital gain and the selectable analog gain responsive to such prediction at a zero crossing event of the digital audio input signal DIG_IN occurring before crossing of the predetermined threshold by the digital audio input signal DIG_IN. By applying such predictive techniques, examples of which are explained below and illustrated by
As depicted in the example waveform graph for digital audio input signal DIG_IN versus time shown in
In some embodiments, gain control state machine 50 may also implement a timing element (e.g., a timer or counter) in connection with a secondary threshold to determine whether digital audio input signal DIG_IN will increase above a primary threshold. To illustrate, to predict whether digital audio input signal DIG_IN will increase above a primary threshold (e.g., −21 dB relative to full-scale voltage of digital audio input signal DIG_IN) for switching between gain modes of gain element 12 and amplifier stage 16, gain control circuit 20 may monitor (e.g., with comparator block 46) whether digital audio input signal DIG_IN increases above a secondary threshold (e.g., −22 dB relative to full-scale voltage of digital audio input signal DIG_IN) lower than the primary threshold, which occurs at time t4 shown in
In these and other embodiments, gain control circuit 20 may employ signal tracking techniques to predict whether digital audio input signal DIG_IN may increase above a secondary threshold. For example, gain control circuit 20 (e.g., via signal tracking block 47) may track a peak trend of the magnitude peaks of digital audio input signal DIG_IN as shown in
Although
In addition or alternatively to the embodiments discussed above, gain control circuit 20 may employ a secondary threshold and a timing element to predict whether magnitude of digital audio input signal DIG_IN is to decrease below a predetermined primary threshold and remain below such primary threshold, as illustrated in
In the embodiments represented by
In addition or alternatively to the embodiments discussed above, gain control circuit 20 may employ one or more timing elements to disable switching between gain modes when the magnitude of digital audio input signal DIG_IN hovers near a primary threshold, as illustrated in
In addition or alternatively to the embodiments discussed above, gain control circuit 20 may be configured to predict when digital audio input signal DIG_IN has a persistent pattern of magnitude relative to a primary threshold, as illustrated in
In addition or alternatively to the embodiments discussed above, gain control circuit 20 may be configured to predict when digital audio input signal DIG_IN crosses a primary threshold by receiving digital audio input signal DIG_IN and processing such signal before the signal propagates to gain element 12 and amplifier stage 16, such that gain control circuit 20 may determine and apply the desired selectable digital gain and selectable audio gain at or before the signal propagates to such gain elements.
In these and other embodiments, gain control circuit 20 may reduce audio artifacts associated with switching between a non-unity gain mode and a unity gain mode by implementing three or more intermediate dynamic range modes. For instance, in some embodiments, gain control circuit 20 may implement eight intermediate dynamic range modes wherein the selectable digital gains of the various gain modes are −24 dB, −21 dB, −18 dB, −15 dB, −12 dB, −9 dB, −6 dB, −3 dB and 0 dB and the corresponding selectable analog gains are 24 dB, 21 dB, 18 dB, 15 dB, 12 dB, 9 dB, 6 dB, 3 dB and 0 dB. In addition, gain control circuit 20 may be configured to transition between the respective gain modes and a plurality of respective predetermined threshold magnitude levels. For example, gain control circuit 20 may transition between the −24 dB gain mode and the −21 dB gain mode in response to the magnitude of the output signal crossing −24 dB, may transition between the −21 dB mode and the −18 dB mode in response to the magnitude of the output signal crossing −21 dB, may transition between the −18 dB mode and the −15 dB mode in response to the magnitude of the output signal crossing −18 dB, and so on. In these embodiments, gain control circuit 20 may also be configured to, using some or all of the methods previously described, predict a crossing of a particular threshold level, and based on such predicting, switch between the various modes at approximate occurrence of a zero crossing of the output signal, so as to reduce audio artifacts.
Using the methods and systems herein disclosed, changes in a gain mode of a signal path and audio artifacts associated therewith may be masked by predicting a gain mode threshold-crossing and in response to such prediction, pre-emptively switching ahead of such threshold-crossing at a zero-crossing of an audio signal. In the case of quickly-rising signals that cross a threshold for switching between gain modes, such prediction and preemptive switching at a zero-crossing may not be necessary to avoid audio artifacts, as a quickly-rising transient nature of a signal may mask audio artifacts. However, in the case of a slower-rising signal that crosses a gain mode threshold-crossing, the transient effects may not mask audio artifacts, and thus the methods and systems disclosed herein for predicting a gain mode threshold-crossing and in response to such prediction may be employed to mask such artifacts.
In addition to the foregoing functionality, gain control state machine 50 may also be configured to determine a spectral content of a signal indicative of output voltage signal VOUT (e.g., digital audio input signal DIG_IN) and may control changes to the selectable digital gain and the selectable analog gain based on the spectral content. To illustrate,
Level detection circuit 64 may include any suitable system, device, or apparatus for receiving the filtered signal generated by filter 62, determining a magnitude of such signal, and outputting a signal indicative of such magnitude. Comparator block 66 may compare the output signal of level detection circuit 62 with a predetermined threshold magnitude, and based on such comparison, output a signal STEP_SIZE indicative of whether the filtered signal is greater or lesser than such predetermined threshold magnitude. The signal STEP_SIZE may indicate a step size to be used when changing the selectable digital gain and the selectable analog gain. For example, if the filtered signal generated by filter 62 is above the predetermined threshold magnitude, a larger step size (e.g., 12 dB) may be employed, such that when gain control state machine 50 changes the selectable digital gain and the selectable analog gain, it does so in steps equal to the larger step size indicated by the signal STEP_SIZE. On the other hand, if the filtered signal generated by filter 62 is below the predetermined threshold magnitude, a smaller step size (e.g., 1 dB) may be employed, such that when gain control state machine 50 changes the selectable digital gain and the selectable analog gain, it does so in steps equal to the larger step size indicated by the signal STEP_SIZE.
Accordingly, when a condition occurs for initiating a change to the selectable digital gain and the selectable analog gain (e.g., output voltage signal VOUT increasing above a threshold magnitude, output voltage signal VOUT crossing a zero magnitude, output voltage signal VOUT increasing below a threshold magnitude and expiration of a duration of time after decreasing below the threshold magnitude, or any other condition for changing the selectable digital gain and the selectable analog gain), gain control state machine 50 may change each of the selectable digital gain and the selectable analog gain in steps in accordance with a step size based on the spectral content, as such spectral content is determined by control subcircuit 60.
In these and other embodiments, the spectral content of output voltage signal VOUT may be used to vary other parameters associated with changing the selectable digital gain and the selectable analog gain. For example, as described above, in some embodiments, gain control state machine 50 may change each of the selectable digital gain and the selectable analog gain based on a signal indicative of output voltage signal VOUT crossing a threshold magnitude (e.g., either from below to above the threshold magnitude or vice versa). In such embodiments, such threshold magnitude for changing each of the selectable digital gain and the selectable analog gain may be based on the spectral content of a signal indicative of output voltage signal VOUT (e.g., digital audio input signal DIG_IN). In other words, in such embodiments, comparator block 66 of
In yet other embodiments, the spectral content of the signal indicative of output voltage signal VOUT may be used as a basis of whether to change the selectable digital gain and the selectable analog gain.
Although the foregoing description may contemplate that a threshold magnitude for switching a gain mode in response to a signal of increasing magnitude may be the same threshold magnitude for switching a gain mode in response to a signal of decreasing magnitude, it is understood that in some embodiments, a threshold magnitude for switching a gain mode in response to a signal of increasing magnitude may be a different threshold magnitude for switching a gain mode in response to a signal of decreasing magnitude.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4446440 | Bell | May 1984 | A |
4493091 | Gundry | Jan 1985 | A |
4890107 | Pearce | Dec 1989 | A |
4972436 | Halim et al. | Nov 1990 | A |
4999628 | Kakubo et al. | Mar 1991 | A |
4999830 | Agazzi | Mar 1991 | A |
5148167 | Ribner | Sep 1992 | A |
5198814 | Ogawara et al. | Mar 1993 | A |
5321758 | Charpentier et al. | Jun 1994 | A |
5323159 | Imamura et al. | Jun 1994 | A |
5550923 | Hotvet et al. | Aug 1996 | A |
5600317 | Knoth et al. | Feb 1997 | A |
5714956 | Jahne et al. | Feb 1998 | A |
5719641 | Mizoguchi | Feb 1998 | A |
5808575 | Himeno et al. | Sep 1998 | A |
5810477 | Abraham et al. | Sep 1998 | A |
6088461 | Lin | Jul 2000 | A |
6201490 | Kawano et al. | Mar 2001 | B1 |
6271780 | Gong et al. | Aug 2001 | B1 |
6333707 | Oberhammer et al. | Dec 2001 | B1 |
6353404 | Kuroiwa | Mar 2002 | B1 |
6542612 | Needham | Apr 2003 | B1 |
6683494 | Stanley | Jan 2004 | B2 |
6745355 | Tamura | Jun 2004 | B1 |
6768443 | Willis | Jul 2004 | B2 |
6822595 | Robinson | Nov 2004 | B1 |
6853242 | Melanson et al. | Feb 2005 | B2 |
6888888 | Tu et al. | May 2005 | B1 |
6897794 | Kuyel et al. | May 2005 | B2 |
7020892 | Levesque et al. | Mar 2006 | B2 |
7023268 | Taylor et al. | Apr 2006 | B1 |
7061312 | Andersen et al. | Jun 2006 | B2 |
7167112 | Andersen et al. | Jan 2007 | B2 |
7216249 | Fujiwara et al. | May 2007 | B2 |
7279964 | Bolz et al. | Oct 2007 | B2 |
7302354 | Zhuge | Nov 2007 | B2 |
7312734 | McNeill et al. | Dec 2007 | B2 |
7315204 | Seven | Jan 2008 | B2 |
7365664 | Caduff et al. | Apr 2008 | B2 |
7403010 | Hertz | Jul 2008 | B1 |
7440891 | Shozakai et al. | Oct 2008 | B1 |
7522677 | Liang | Apr 2009 | B2 |
7583215 | Yamamoto et al. | Sep 2009 | B2 |
7671768 | De Ceuninck | Mar 2010 | B2 |
7679538 | Tsang | Mar 2010 | B2 |
7893856 | Ek et al. | Feb 2011 | B2 |
8060663 | Murray et al. | Nov 2011 | B2 |
8130126 | Breitschaedel et al. | Mar 2012 | B2 |
8289425 | Kanbe | Oct 2012 | B2 |
8330631 | Kumar et al. | Dec 2012 | B2 |
8362936 | Ledzius et al. | Jan 2013 | B2 |
8483753 | Behzad et al. | Jul 2013 | B2 |
8508397 | Hisch | Aug 2013 | B2 |
8717211 | Miao et al. | May 2014 | B2 |
8786477 | Albinet | Jul 2014 | B1 |
8836551 | Nozaki | Sep 2014 | B2 |
8873182 | Liao et al. | Oct 2014 | B2 |
8878708 | Sanders et al. | Nov 2014 | B1 |
8952837 | Kim et al. | Feb 2015 | B2 |
9071267 | Schneider et al. | Jun 2015 | B1 |
9071268 | Schneider et al. | Jun 2015 | B1 |
9118401 | Nieto et al. | Aug 2015 | B1 |
9148164 | Schneider et al. | Sep 2015 | B1 |
9171552 | Yang | Oct 2015 | B1 |
9210506 | Nawfal et al. | Dec 2015 | B1 |
9306588 | Das et al. | Apr 2016 | B2 |
9337795 | Das et al. | May 2016 | B2 |
9391576 | Satoskar et al. | Jul 2016 | B1 |
9525940 | Schneider et al. | Dec 2016 | B1 |
9543975 | Melanson et al. | Jan 2017 | B1 |
9596537 | He et al. | Mar 2017 | B2 |
9635310 | Chang et al. | Apr 2017 | B2 |
20010009565 | Singvall | Jul 2001 | A1 |
20040078200 | Alves | Apr 2004 | A1 |
20040184621 | Andersen et al. | Sep 2004 | A1 |
20050258989 | Li et al. | Nov 2005 | A1 |
20050276359 | Xiong | Dec 2005 | A1 |
20060056491 | Lim et al. | Mar 2006 | A1 |
20060064037 | Shalon | Mar 2006 | A1 |
20060098827 | Paddock et al. | May 2006 | A1 |
20060284675 | Krochmal et al. | Dec 2006 | A1 |
20070026837 | Bagchi | Feb 2007 | A1 |
20070057720 | Hand et al. | Mar 2007 | A1 |
20070092089 | Seefeldt et al. | Apr 2007 | A1 |
20070103355 | Yamada | May 2007 | A1 |
20070120721 | Caduff et al. | May 2007 | A1 |
20070123184 | Nesimoglu et al. | May 2007 | A1 |
20080030577 | Cleary et al. | Feb 2008 | A1 |
20080114239 | Randall et al. | May 2008 | A1 |
20080143436 | Xu | Jun 2008 | A1 |
20080159444 | Terada | Jul 2008 | A1 |
20080198048 | Klein et al. | Aug 2008 | A1 |
20080292107 | Bizjak | Nov 2008 | A1 |
20090021643 | Hsueh et al. | Jan 2009 | A1 |
20090058531 | Hwang et al. | Mar 2009 | A1 |
20090084586 | Nielsen | Apr 2009 | A1 |
20090220110 | Bazarjani et al. | Sep 2009 | A1 |
20100183163 | Matsui et al. | Jul 2010 | A1 |
20110013733 | Martens et al. | Jan 2011 | A1 |
20110025540 | Katsis | Feb 2011 | A1 |
20110029109 | Thomsen et al. | Feb 2011 | A1 |
20110063148 | Kolze et al. | Mar 2011 | A1 |
20110096370 | Okamoto | Apr 2011 | A1 |
20110136455 | Sundstrom et al. | Jun 2011 | A1 |
20110150240 | Akiyama et al. | Jun 2011 | A1 |
20110170709 | Guthrie et al. | Jul 2011 | A1 |
20110188671 | Anderson et al. | Aug 2011 | A1 |
20110228952 | Lin | Sep 2011 | A1 |
20110242614 | Okada | Oct 2011 | A1 |
20110268301 | Nielsen et al. | Nov 2011 | A1 |
20110285463 | Walker et al. | Nov 2011 | A1 |
20120001786 | Hisch | Jan 2012 | A1 |
20120047535 | Bennett et al. | Feb 2012 | A1 |
20120133411 | Miao et al. | May 2012 | A1 |
20120177201 | Ayling et al. | Jul 2012 | A1 |
20120177226 | Silverstein et al. | Jul 2012 | A1 |
20120188111 | Ledzius et al. | Jul 2012 | A1 |
20120207315 | Kimura et al. | Aug 2012 | A1 |
20120242521 | Kinyua | Sep 2012 | A1 |
20120250893 | Carroll et al. | Oct 2012 | A1 |
20120263090 | Porat et al. | Oct 2012 | A1 |
20120280726 | Colombo et al. | Nov 2012 | A1 |
20130095870 | Phillips et al. | Apr 2013 | A1 |
20130106635 | Doi | May 2013 | A1 |
20130129117 | Thomsen et al. | May 2013 | A1 |
20130188808 | Pereira et al. | Jul 2013 | A1 |
20130241753 | Nozaki | Sep 2013 | A1 |
20130241755 | Chen et al. | Sep 2013 | A1 |
20140044280 | Jiang | Feb 2014 | A1 |
20140105256 | Hanevich et al. | Apr 2014 | A1 |
20140105273 | Chen et al. | Apr 2014 | A1 |
20140135077 | Leviant et al. | May 2014 | A1 |
20140184332 | Shi et al. | Jul 2014 | A1 |
20140269118 | Taylor et al. | Sep 2014 | A1 |
20140368364 | Hsu | Dec 2014 | A1 |
20150009079 | Bojer | Jan 2015 | A1 |
20150170663 | Disch et al. | Jun 2015 | A1 |
20150214974 | Currivan | Jul 2015 | A1 |
20150214975 | Gomez et al. | Jul 2015 | A1 |
20150249466 | Elyada | Sep 2015 | A1 |
20150295584 | Das et al. | Oct 2015 | A1 |
20150381130 | Das et al. | Dec 2015 | A1 |
20160072465 | Das et al. | Mar 2016 | A1 |
20160080862 | He et al. | Mar 2016 | A1 |
20160080865 | He et al. | Mar 2016 | A1 |
20160173112 | Das et al. | Jun 2016 | A1 |
20160286310 | Das et al. | Sep 2016 | A1 |
20160365081 | Satoskar | Dec 2016 | A1 |
20170047895 | Zanbaghi | Feb 2017 | A1 |
20170150257 | Das et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
0966105 | Dec 1999 | EP |
1575164 | Sep 2005 | EP |
1753130 | Feb 2007 | EP |
1798852 | Jun 2009 | EP |
2207264 | Jul 2010 | EP |
1599401 | Sep 1981 | GB |
2119189 | Nov 1983 | GB |
2307121 | Jun 1997 | GB |
2507096 | Apr 2014 | GB |
2527637 | Dec 2015 | GB |
2527677 | Oct 2016 | GB |
2539517 | Dec 2016 | GB |
2008294803 | Dec 2008 | JP |
WO0054403 | Sep 2000 | WO |
0237686 | May 2002 | WO |
200867260 | Jun 2008 | WO |
2014113471 | Jul 2014 | WO |
2015160655 | Oct 2015 | WO |
2016040165 | Mar 2016 | WO |
2016040171 | Mar 2016 | WO |
2016040177 | Mar 2016 | WO |
2016160336 | Oct 2016 | WO |
2016202636 | Dec 2016 | WO |
Entry |
---|
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; AES 32nd International conference, Hillerod, Denmark, Sep. 21-23, 2007; pp. 1-12. |
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; Slides from a presentation given at the 32nd AES conference “DSP for Loudspeakers” in Hillerod, Denmark in Sep. 2007; http://www.four-audio.com/data/AES32/AES32FourAudio.pdf; 23 pages. |
GB Patent Application No. 1419651.3, Improved Analogue-to-Digital Convertor, filed Nov. 4, 2014, 65 pages. |
Combined Search and Examination Report, GB Application No. GB1506258.1, dated Oct. 21, 2015, 6 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/025329, dated Aug. 11, 2015, 9 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048633, dated Dec. 10, 2015, 11 pages. |
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048591, dated Dec. 10, 2015, 11 pages. |
Combined Search and Examination Report, GB Application No. GB1510578.6, Aug. 3, 2015, 3 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2015/056357, dated Jan. 29, 2015, 13 pages. |
Combined Search and Examination Report, GB Application No. GB1514512.1, dated Feb. 11, 2016, 7 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2015/048609, dated Mar. 23, 2016, 23 pages. |
International Search Report and Written Opinion, International Application No. PCT/US2016/022578, mailed Jun. 22, 2016, 12 pages. |
Combined Search and Examination Report, GB Application No. GB1600528.2, dated Jul. 7, 2016, 8 pages. |
Combined Search and Examination Report, GB Application No. GB1603628.7, dated Aug. 24, 2016, 6 pages. |
International Search Report and Written Opinion, International Application No. PCT/EP2016/062862, dated Aug. 26, 2016, 14 pages. |
Combined Search and Examination Report, GB Application No. GB1602288.1, dated Aug. 9, 2016, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/065134, dated Mar. 15, 2017. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2017/014240, dated Apr. 24, 2017. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/040096, dated Mar. 24, 2017. |
Groeneweg, B.P., et al., A Class-AB/D Audio Power Amplifier for Mobile Applications Integrated Into a 2.5G/3G Baseband Processo1016r, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, No. 5, May 2010, pp. 1003-1016. |
Chen, K., et al., A High-PSRR Reconfigurable Class-AB/D Audio. Amplifier Driving a Hands-Free/Receiver. 2-in-1 Loudspeaker, IEEE Journal of Solid-State Circuits, vol. 47, No. 11, Nov. 2012, pp. 2586-2603. |
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620428.1, dated Jul. 21, 2017. |
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1700371.6, dated Aug. 1, 2017. |