The present disclosure relates to vents for roofs and more specifically to ridge vents having integral baffles.
In home construction, an open slot along the roof ridge where two planes of the roof meet is often covered by a device that protects the slot from weather infiltration while allowing venting of heat and moisture from the attic space to the exterior of the home. The device has become known as a ridge vent. Current ridge vents are made of metal, plastic or non-woven/entangled mesh. The mesh type ridge vents may include a hard plastic or fabric covering. Mesh type ridge vents may include voids, gaps or air pockets between longitudinally extending mesh sections. These vents are often formed by adhering mesh sections to a separate component (e.g., the aforementioned hard plastic or fabric covering), leaving gaps of no mesh.
In embodiments, a roof vent includes a continuous elongate mat composed of a mesh of randomly oriented fibers. The mat has a top surface, a bottom surface, and a first longitudinally extending side surface. A portion of the mat proximate to and forming the first longitudinally extending side surface is configured as a wind baffle. The wind baffle includes a wind deflector lip, formed from the mesh, which extends above the top surface of the mat.
In embodiments, a continuous elongate mat composed of a mesh of randomly oriented fibers, wherein the mat has a top surface, a bottom surface, a longitudinally extending center section disposed between first and second longitudinally extending side surfaces, first and second longitudinally extending edge sections disposed between the center section and including the first and second longitudinally extending side surfaces, respectively. The first and second longitudinally extending edge sections each include a non-venting fiber region proximate to and forming the first and second side surfaces, respectively, configured as a wind baffle formed from the mesh, and a venting fiber region disposed between the non-venting fiber region and the longitudinally extending center region of the mat. The longitudinally extending center section has a first air permeability, the venting fiber regions of the first and second longitudinally extending edge sections have a second air permeability less than the first air permeability, and the non-venting fiber regions of the first and second longitudinally extending edge sections have a third air permeability less than second air permeability. The vent is configured such that an air flow path for venting air from a structure to which the vent is coupled is formed from the longitudinally extending center section through the first and second longitudinally extending edge sections to the surrounding environment when an upper surface of the longitudinally extending center section is covered and the venting fiber regions of the first and second longitudinally extending edge sections are exposed.
In embodiments, a roof vent assembly includes: a roof deck with an open elongate slot; a roof vent overlying the open elongate slot, wherein the roof vent includes a rollable, continuous elongate mat composed of a mesh of randomly oriented fibers, wherein the mat has a top surface, a bottom surface, and a first longitudinally extending side surface, wherein a portion of the mat proximate to and forming the first longitudinally extending side surface is configured as a wind baffle, wherein the wind baffle includes a wind deflector lip, formed from the mesh, which extends above the top surface of the mat; and at least one cap shingle overlying the roof vent and the open elongate slot. The cap shingle partially overlies the top surface of the openwork material, such that a portion of the roof vent disposed between the wind baffle and the cap shingle is exposed to provide a ventilation opening.
The accompanying drawings illustrate preferred embodiments of the invention, as well as other information pertinent to the disclosure, in which:
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
Ridge vents can include baffles along a longitudinal edge of the ridge vent to manage the airflow around the ridge vent and increase the effectiveness of the ventilation. The baffle may be a separate component that is affixed to the ridge vent either during manufacturing or during installation. This process increases the costs and/or time for manufacture and installation.
The ridge vents described herein include integrally formed external baffles or baffle surfaces. These ridge vents restrict the ingress of materials and weather into the home while allowing for the venting of air and moisture from the home. Such ridge vents with integrally formed baffles are economical, and simple to manufacture and install, as compared to ridge vents with external baffles which require assembly to the ridge vent. The ridge vents can be installed over an open elongate slot on a roof ridge to allow the venting of air and moisture from the attic or other area of a home. This venting helps ensure that moisture does not build up inside the home.
The open elongate slot 18 is covered by a ridge vent 20 and a plurality of cap shingles 21. As shown in
The fibrous mat includes randomly oriented or convoluted fibers or filaments. The material can be constructed from polyvinyl chloride (PVC), high density polyethylene (HDPE), polypropylene, nylon, thermoplastic olefin (TPO), or thermoplastic elastomers (TPE) or any material known to one skilled in the art, or mixture of the same. The material can also include rubber, stabilizers, colorant, fire retardants, impact modifiers, fillers, binders, or ultraviolet inhibitors as well as binders for adhering the fibers in the mesh.
In embodiments, the length of material is a contiguous sheet or mat 22 having a non-uniform density across the width of the sheet or mat 22. The density of a longitudinally extending center section 32 proximate the roof slot 18 has a lower density than a longitudinally extending edge section 34 proximate the longitudinally extending edge 26. This difference in density may be a result of using fewer fibers per volume unit in the longitudinally extending center section 32 than in the longitudinally extending edge section 34, while maintaining the same loft (i.e., thickness). Alternatively, the number of fibers may be substantially uniform throughout the sheet or mat 22 with the difference in density resulting from a difference in fiber arrangements. This differential in density allows air to pass through the relatively less dense longitudinally extending center section 32 while the relatively dense longitudinally extending edge section 34 prevents the inflow of materials (e.g., windblown materials or insects) through the ridge vent while still allowing for air to vent.
As shown in
Alternatively, the ridge vent 20 may be constructed of a plurality of independently fabricated sections having different densities. The independent sections may be connected to one another either directly or indirectly. For example, the independent sections may be directly adhered, by bonding or other method, along their longitudinal edges. Alternatively, the individual sections may each be applied to a backing paper (or other support medium), the backing paper being configured to maintain the spatial relationship between the independent sections.
In some embodiments, as shown in
The sheet or matt 22 can also include a fastener line 38 configured for receiving the fastener for attaching the ridge vent 20 to the roof deck 14. The sheet or mat 22 can include two fastener lines 38, on opposing sides of the ridge vent 20 to allow the ridge vent 20 to be attached to the roof deck 14 on either side of the open elongate slot 18. In one embodiment, nails are inserted through the cap shingles 21, the fastener line 38 of the ridge vent, and into the roof deck 14 to secure the cap shingles 21 and ridge vent 20 to the roof deck 14. The fastener line 38 can be a portion of the ridge vent 20 where the hollow regions 36 are spaced apart such that the fastener can pass through a continuous portion of the top surface 28 of the ridge vent 20.
The baffle 24 forms a relatively air, water and infiltrate impenetrable outer surface along the entire length of the longitudinally extending edge sections 34. In embodiments, the baffle 24 includes a wind deflector lip 24a that extends above the upper surface of the matt and outward of the longitudinal side face of the longitudinally extending edge section 34. By relatively impenetrable, it is meant that the baffle surface does not have to be absolutely impenetrable, but should be sufficiently impermeable as to redirect wind incident on the baffle surface upwards and around the wind deflector lip portion 24a to create a localized low pressure area over the upper surface of venting portion of the longitudinally extending edge section 34. The baffle 24 prevents wind from passing through the ridge vent 20 (specifically through the longitudinal edge section 34) and into the home. The baffle 24 may alter the airflow around the longitudinally extending edge 26 of the ridge vent 20. As a result, a negative pressure area may be created above the longitudinally extending edge sections 34. This negative pressure area may enhance the venting of air and moisture from the home and out through the ridge vent 20. The wind deflector lip portion 24a extends above the top surface 28 of the sheet or mat 22 to direct the airflow around the baffle 24. Additionally, the wind deflector lip portion 24a of the baffle 24 may extend at an angle away from the sheet or mat 22. This configuration of upper portion 24a helps to control the airflow around the roof vent.
In embodiments, some portion of the longitudinally extending edge section 34 forms the impermeable baffle region (i.e., a non-venting portion or non-venting fiber region) while the remaining portion is air permeable so as to allow air to escape through the sheet or mat 22 (i.e., a venting portion or venting fiber region). In embodiments, the baffle portion can be formed from a relatively small portion of the longitudinally extending edge section horizontal thickness or depth, as long as it functional for its intended purpose. The baffle portion 24 of the mat can have a density which is greater than the remaining portions of the longitudinally extending edge sections 34 from which it is formed, which in turn has a density that is greater than the density of the longitudinally extending center section 32. In such embodiments, the baffle 24 can be constructed of a densely packed mesh such that the baffle 24 is relatively impermeable to airflow. Thus, the exhaust air from the home is forced to exit through the uncovered portions of the longitudinally extending edge sections 34, while wind, rain and infiltrates are largely prevented from passing through the baffle to enter the structure. Such baffles may be constructed by compressing a portion of the longitudinally extending edge section into a relatively more dense region, when compared to both the longitudinally extending edge section 34 and/or longitudinally extending center section 32.
It should be appreciated that this baffle region 24 and the lip portion 24a can be made more impermeable than the remainder of the longitudinally extending edge section 34 by several techniques, including localized higher fiber density at the baffle region 24 (with respect to the remainder of the edge section 34), heat treatment along the outer surface of the edge section 34 to fully or partially melt fibers into an impermeable surface or shell, localized compression of the mat in the baffle region, the addition or co-injection of filler additives, such as nylon or TPO (thermoplastic polyolefin), or combinations thereof. In embodiments, an air impermeable membrane may be adhered along the outer surface of the edge section 34 in lieu of or to augment the baffle region that is formed directly from the fibrous mat.
The ridge vent 20 can also include a filter material along the bottom surface 30 of the ridge vent 20 to further prevent debris from entering the open elongate slot 18. The filter can comprise a fabric of non-woven nylon polyester or high loft material, a needle-punched non-woven material, a metal mesh screen, or any other material known to one skilled in the art that prevents debris flow while allowing for the flow of air.
In embodiments, a roof ridge vent assembly includes a roof ridge assembly 10 with an open elongate slot 18, a ridge vent 20 according to the embodiments described herein, and at least one cap shingle 21. The cap shingle 21 overlies the ridge vent 20 and open elongate slot 18. The cap shingles 21 can be configured to overlie the longitudinally extending center section 32 but leave at least a portion of the longitudinally extending edge sections 34 exposed. This allows air to escape through the longitudinally extending edge sections, as shown in
In other embodiments, a roof vent can be configured as a vent to be positioned on other sections of a home or other structure. For example, as shown in
In other embodiments, as shown in
In other embodiments, a method of manufacturing a ridge vent having integrated baffles is provided. The method includes the steps of forming a continuous length of material having a top surface, a bottom surface, and a longitudinally extending center section disposed between a pair of longitudinally extending edges of the material. Additives, such as ultraviolet inhibitors, can be added to the material. The method further includes forming an integrated baffle along the longitudinally extending edges. The baffle may be formed by stamping, ironing, melting, forming, molding or otherwise shaping the material. The method may also include the forming of weep holes within the baffles. After forming, the ridge vent can be rolled for easier storage and shipment.
In other embodiments, as shown in
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly to include other variants and embodiments of the invention that may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/370,267 filed Aug. 3, 2016, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4000688 | Malott | Jan 1977 | A |
4325290 | Wolfert | Apr 1982 | A |
4643080 | Trostle et al. | Feb 1987 | A |
4754589 | Leth | Jul 1988 | A |
4942699 | Spinelli | Jul 1990 | A |
5002816 | Hofmann | Mar 1991 | A |
5122095 | Wolfert | Jun 1992 | A |
5561953 | Rotter | Oct 1996 | A |
5673521 | Coulton et al. | Oct 1997 | A |
5772502 | Smith | Jun 1998 | A |
5832677 | Kurttila | Nov 1998 | A |
5946868 | Morris | Sep 1999 | A |
5947817 | Morris et al. | Sep 1999 | A |
5972477 | Kim | Oct 1999 | A |
6149517 | Hansen | Nov 2000 | A |
6343985 | Smith | Feb 2002 | B1 |
6447392 | Henderson | Sep 2002 | B1 |
6881144 | Hansen et al. | Apr 2005 | B2 |
6991535 | Ciepliski et al. | Jan 2006 | B2 |
7182688 | Coulton | Feb 2007 | B2 |
7594363 | Polumbus | Sep 2009 | B2 |
7766735 | Ciepliski et al. | Aug 2010 | B2 |
7892077 | Sattler | Feb 2011 | B2 |
8828162 | Peyras-Carratte | Sep 2014 | B2 |
9200453 | Kerwood-Winslow et al. | Dec 2015 | B2 |
9303340 | Rones | Apr 2016 | B2 |
20020100232 | Robinson | Aug 2002 | A1 |
20050136831 | Coulton | Jun 2005 | A1 |
20060096189 | Pavlansky | May 2006 | A1 |
20080220714 | Caruso | Sep 2008 | A1 |
20110189940 | Kerwood-Winslow | Aug 2011 | A1 |
20130165038 | Railkar | Jun 2013 | A1 |
20140179220 | Railkar et al. | Jun 2014 | A1 |
Entry |
---|
RidgeVent20, Product Features and Specifications, Air Vent Inc., 2013, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20180038112 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62370267 | Aug 2016 | US |