Businesses are increasingly concerned with their online reputations. For example, both positive and negative reviews posted to a review website can impact revenue. As more review websites are created, and as more users post more content to those sites, it is becoming increasingly difficult for businesses to monitor such sites. In the case of multi-location businesses, such as enterprises, the problem is compounded.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
Reputation platform 102 is configured to collect reputation and other data from a variety of sources, including review websites 110-114, social networking websites 120-122, and other websites 132-134. In some embodiments, users of platform 102, such as Alice and Bob, can also provide offline survey data to platform 102. In the examples described herein, review site 110 is a general purpose review site that allows users to post reviews regarding all types of businesses. Examples of such review sites include Google Places, Yahoo! Local, and Citysearch. Review site 112 is a travel-oriented review site that allows users to post reviews of hotels, restaurants, and attractions. One example of a travel-oriented review site is TripAdvisor. Review site 114 is specific to a particular type of business (e.g., car dealers). Examples of social networking sites 120 and 122 include Twitter and Foursquare. Social networking sites 120-122 allow users to take actions such as “checking in” to locations. Finally, personal blog 134 and online forum 132 are examples of other types of websites “on the open Web” that can contain business reputation information.
Platform 102 is illustrated as a single logical device in
Account/Business Setup
In order to access the services provided by reputation platform 102, Bob first registers for an account with the platform. At the outset of the process, he accesses interface 202 (e.g., a web-based interface) and provides information such as a desired username and password. He also provides payment information (if applicable). If Bob has created accounts for his business on social networking sites such as sites 120 and 122, Bob can identify those accounts to platform 102 as well.
Next, Bob is prompted by platform 102 to provide the name of his business (e.g., “Bob's Juice Company”), a physical address of the juice bar (e.g., “123 N. Main St.; Cupertino, Calif. 95014), and the type of business that he owns (e.g., “restaurant” or “juice bar”). The business information entered by Bob is provided to auto find engine 204, which is configured to locate, across sites 110-114, the respective profiles on those sites pertaining to Bob's business (e.g., “www.examplereviewsite.com/CA/Cupertino/BobsJuiceCo.html”), if present. Since Bob has indicated that his business is a juice bar, reputation platform 102 will not attempt to locate it on site 114 (a car dealer review site), but will attempt to locate it within sites 110 and 112.
In the example shown in
Results obtained by auto find engine 204 are provided to verification engine 212, which confirms that information, such as the physical address and company name provided by Bob are present in the located profiles. Verification engine 212 can be configured to verify all results (including any obtained from site 110 and 114), and can also be configured to verify (or otherwise process) just those results obtained via interface 210. As one example, for a given query, the first ten results obtained from search interface 210 can be examined. The result that has the best match score and also includes the expected business name and physical address is designated as the business's profile at the queried site.
In some embodiments, verification engine 212 presents results to Bob for verification that the located profiles correspond to his business. As one example, Bob may be shown (via interface 202) a set of URLs corresponding to profiles on each of the sites 110-114 where his business has been located and asked to verify that the profiles are indeed for his business. Once confirmed by Bob, the URLs of the profiles (also referred to herein as “subscriptions”) and any other appropriate data are stored in database 214. Examples of such other data include overview information appearing on the business's profile page (such as a description of the business) and any social data (e.g., obtained from sites 120-122).
In various embodiments, users are given the option by platform 102 to enter the specific URLs corresponding to their business profiles on review sites. For example, if Bob knows the URL of the Google Places page corresponding to his business, he can provide it to platform 102 and use of auto find engine 204 is omitted (or reduced) as applicable.
At 306, results of the query (or queries) performed at 304 are verified. As one example of the processing performed at 304, verification engine 212 performs checks such as confirming that the physical address received at 302 is present in a given result. As another example, a user can be asked to confirm that results are correct, and if so, that confirmation is received as a verification at 306. Finally, at 308, verified results are stored. As one example, URLs for each of the verified profiles is stored in database 214. Although pictured as a single database in
Where a business has multiple locations, the business owner (or a representative of the business, such as Alice) can be prompted to loop through process 300 for each of the business locations. Physical addresses and/or the URLs of the corresponding profiles on sites such as sites 110-114 can also be provided to platform 102 in a batch, rather than by manually entering in information via interface 202. As one example, suppose ACME Convenience Stores has 2,000 locations throughout the United States. Instead of manually entering in the physical location of each of the stores, Alice may instead elect to upload to platform 102 a spreadsheet or other file (or set of files) that includes the applicable information.
Tags associated with each location can also be provided to platform 102 (e.g., as name-value pairs). For example, Alice can tag each of the 2,000 locations with a respective store name (Store #1234), manager name (Tom Smith), region designation (West Coast), brand (ACME-Quick vs. Super-ACME), etc. As needed, tags can be edited and deleted, and new tags can be added. For example, Alice can manually edit a given location's tags (e.g., via interface 202) and can also upload a spreadsheet of current tags for all locations that supersede whatever tags are already present for her locations in platform 102. As will be described in more detail below, the tags can be used to segment the business to create custom reports and for other purposes.
Ongoing Data Collection and Processing
Once a business (e.g., Bob's Juice Company) has an account on reputation platform 102, and once the various subscriptions (i.e., the URLs of the business's profiles on the various review sites) have been identified and stored in database 214, collecting and processing of review and other data is performed.
Reputation platform 102 includes a scheduler 402 that periodically instructs collection engine 404 to obtain data from sources such as sites 110-114. In some embodiments, data from sites 120-122, and/or 132-134 is also collected by collection engine 404. Scheduler 402 can be configured to initiate data collection based on a variety of rules. For example, it can cause data collection to occur once a day for all businesses across all applicable sites. It can also cause collection to occur with greater frequency for certain businesses (e.g., which pay for premium services) than others (e.g., which have free accounts). Further, collection can be performed across all sites (e.g., sites 110-114) with the same frequency or can be performed at different intervals (e.g., with collection performed on site 110 once per day and collection performed on site 112 once per week).
In addition to or instead of the scheduled collection of data, data collection can also be initiated based on the occurrence of an arbitrary triggering event. For example, collection can be triggered based on a login event by a user such as Bob (e.g., based on a permanent cookie or password being supplied). Collection can also be triggered based on an on-demand refresh request by the user (e.g., where Bob clicks on a “refresh my data” button in interface 202). Other elements depicted in
At 504, a determination is made as to which sites should be accessed. As one example, in some embodiments collection engine 404 reviews the set of subscriptions stored in database 214 for Bob's Juice Company. The set of subscriptions associated with Bob's company are the ones that will be used by collection engine 404 during the refresh operation. As previously mentioned, a refresh can be performed on behalf of multiple (or all) businesses, instead of an individual one such as Bob's Juice Company. In such a scenario, portion 504 of the process can be omitted as applicable.
At 506, information is obtained from the sites determined at 504. As shown in
Other types of helpers can extract other types of data. As one example, helper 426 is configured to extract check-in data from social site 120 using an API provided by site 120. As yet another example, when an instance of helper 428 is executed on platform 102, a search is performed across the World Wide Web for blog, forum, or other pages that discuss Bob's Juice Company. In some embodiments, additional processing is performed on any results of such a search, such as sentiment analysis.
In various embodiments, information, obtained on behalf of a given business, is retrieved from different types of sites in accordance with different schedules. For example, while review site data might be collected hourly, or on demand, social data (collected from sites 120-122) may be collected once a day. Data may be collected from sites on the open Web (e.g., editorials, blogs, forums, and/or other sites not classified as review sites or social sites) once a week.
At 508, any new results (i.e., those not already present in database 214) are stored in database 214. As needed, the results are processed (e.g., by converting reviews into a single, canonical format) prior to being included in database 214. In various embodiments, database 214 supports heterogeneous records and such processing is omitted or modified as applicable. For example, suppose reviews posted to site 110 must include a score on a scale from one to ten, while reviews posted to site 112 must include a score on a scale from one to five. Database 214 can be configured to store both types of reviews. In some embodiments, the raw score of a review is stored in database 214, as is a converted score (e.g., in which all scores are converted to a scale of one to ten). As previously mentioned, in some embodiments, database 214 is implemented using MongoDB, which supports such heterogeneous record formats.
Prior to the first time process 500 is executed with respect to Bob's Juice Company, no review data is present in database 214. Portion 506 of the process is performed for each of the data sources applicable to Bob's business (via instances of the applicable helpers), and the collected data is stored at 508. On subsequent refreshes of data pertinent to Bob's company, only new/changed information is added to database 214. In various embodiments, alerter 432 is configured to alert Bob (e.g., via an email message) whenever process 500 (or a particular portion thereof) is performed with respect to his business. In some cases, alerts are only sent when new information is observed, and/or when reputation scores associated with Bob's business (described in more detail below) change, or change by more than a threshold amount.
Reputation Scoring
Platform 102 is configured to determine a variety of reputation scores on behalf of businesses such as Bob's Juice Company. In the case of multiple-location businesses, such as ACME, individual reputation scores are determined for each of the locations, and the scores of individual businesses can be aggregated in a variety of ways. As will be described in more detail below, the scores provide users with perspective on how their businesses are perceived online. Also as will be described in more detail below, users are able to explore the factors that contribute to their businesses' reputation scores by manipulating various interface controls, and they can also learn how to improve their scores. In the case of multi-location businesses, such as ACME, users can segment the locations in a variety of ways to gain additional insight.
In region 604 of interface 600, a composite reputation score (728 points) is depicted on a scale 606. Example ways of computing a composite score are described in conjunction with
Overall Score (610): This value reflects the average review score (e.g., star rating) across all reviews on all review sites. As shown, Bob's business has an average rating of 0.50 across all sites. If Bob clicks on box 622, he will be presented with a suggestion, such as the following: “Overall score is the most influential metric. It can appear in both the review site search results and in your general search engine results. Generating a larger volume of positive reviews is the best way to improve the overall score. Typically, volume is the best approach as your average, happy customer will not write a review without being asked.” Additional, personalized advice may also be provided, such as telling Bob he should click on tab 634 and request five reviews.
Timeliness (612): This score indicates how current a business's reviews are (irrespective of whether they are positive or negative). In the example shown, reviews older than two months have less of an impact than more recent reviews. Thus, if one entity has 200 reviews with an average rating of four stars, at least some of which were recently authored, and a second entity has the same volume and star rating but none of the reviews were written in the last two months, the first entity will have a higher timeliness score and thus a higher composite reputation score. If Bob clicks on box 624, he will be presented with a suggestion, such as the following: “Managing your online reviews is not a one-time exercise, but a continual investment into your business. Encourage a steady trickle of new reviews on a regular basis to ensure that your reviews don't become stale.” Other measures of Timeliness can also be used, such as a score that indicates the relative amount of new vs. old positive reviews and new vs. old negative reviews. (I.e., to see whether positive or negative reviews dominate in time.)
Length (614): This score indicates the average length of a business's reviews. Longer reviews add weight to the review's rating. If two reviews have the same star rating (e.g., one out of five stars), but the first review is ten words and the second review is 300 words, the second review will be weighted more when computing the composite score. If Bob clicks on box 626, he will be presented with a suggestion, such as the following: “Encourage your positive reviewers to write in-depth reviews. They should detail their experiences and highlight what they like about your business. This provides credibility and the guidance makes review writing easier for them.” Other measures of Length can also be used, such as a score that indicates the relative amount of long vs. short positive reviews and long vs. short negative reviews. (I.e., to see whether positive or negative reviews dominate in length.)
Social Factors (616): Reviews that have been marked with social indicators (e.g., they have been marked by other members of the review community as being “helpful” or “funny”) will have more bearing on the outcome of the composite score. By clicking on box 632, Bob will be presented with an appropriate suggestion for improvement.
Reviewer Authority (618): A review written by an established member of a community (e.g., who has authored numerous reviews) will have a greater impact on the outcome of the composite score than one written by a reviewer with little or no history on a particular review site. In some embodiments, the audience of the reviewer is also taken into consideration. For example, if the reviewer has a large Twitter following, his or her review will have a greater bearing on the outcome of the score. If Bob clicks on box 628, he will be presented with a suggestion, such as the following: “Established reviewers can be a major boon to your review page. Their reviews are rarely questioned and their opinions carry significant weight. If you know that one of your customers is an active reviewer on a review site, make a special effort to get him or her to review your business.”
Industry (620): Review sites that are directly related to the vertical in which the entity being reviewed resides are given more weight. For example, if the entity being reviewed is a car dealership and the review site caters specifically to reviews about car dealerships, the reviews in that specific site will have a greater impact on the outcome of the composite score than those on vertically ambiguous websites. If Bob clicks on box 630, he will be presented with a suggestion, such as the following: “The most important review sites for your business should have your best reviews. Monitor your website analytics to find the sites having the biggest impact on your business, and reinforce your presence on those sites.”
In various embodiments of interface 600, additional controls for interactions are made available. For example, a control can be provided that allows a user to see individual outlier reviews—reviews that contributed the most to/deviated the most from the overall score (and/or individual factors). As one example, a one-star review that is weighted heavily in the calculation of a score or scores can be surfaced to the user. The user could then attempt to resolve the negative feelings of the individual that wrote the one-star review by contacting the individual. As another example, a particularly important five-star review (e.g., due to being written by a person with a very high reviewer authority score) can be surfaced to the user, allowing the user to contact the reviewer and thank him or her. As yet another example, if an otherwise influential review is stale (and positive), the review can be surfaced to the user so that the user can ask the author to provide an update or otherwise refresh the review.
A variety of weights can be assigned to the above factors when generating the composite score shown in region 604. Further, the factors described above need not all be employed nor need they be employed in the manners described herein. Additional factors can also be used when generating a composite score. An example computation of a composite score is discussed in conjunction with
Example Score Generation
In some embodiments, whenever Bob accesses platform 102 (and/or based on the elapsing of a certain amount of time), the composite score shown at 604 in
(1) Base Score
First, scoring engine 702 computes a base score “B” that is a weighted average of all of the star ratings of all of the individual reviews on all of the sites deemed relevant to Bob's business:
where “Nr” is the total number of reviews, “si” is the number of “stars” for review “i” normalized to 10, “wi” is the weight for review “i,” Θ is the Heaviside step function, and “Nmin” is the minimum number of reviews needed to score (e.g., 4). The factor 100 is used to expand the score to a value from 0 to 1000.
One example of the function “wi” is as follows:
wi=DA·Ti·Pi·RA·SF·LF
In the above, “DA” is the domain authority, which reflects how important the domain is with respect to the business. As one example, a doctor-focused review site may be a better authority for reviews of doctors than a general purpose review site. One way to determine domain authority values is to use the domain's search engine results page placement using the business name as the keyword.
“RA” is the reviewer authority. One way to determine reviewer authority is to take the logarithm of 1+the number of reviews written by the reviewer. As explained above, a review written by an individual who has authored many reviews is weighted more than one written by a less prolific user.
“SF” is the social feedback factor. One way to determine the factor is to use the logarithm of 1+the number of pieces of social feedback a review has received.
“LF” is the length factor. One way to specify this value is to use 1 for short reviews, 2 for medium reviews, and 4 for long reviews.
“Ti” is the age factor. One way to specify this factor is through the following: If the age is less than two months Ti=1, if the age “a,” (in months) >2 months, then the following value is used:
Ti=max(e−ω·(a
where ω is the time-based decay rate.
“Pi” is the position factor for review “i.” The position factor indicates where a given review is positioned among other reviews of the business (e.g., it is at the top on the first page of results, or it is on the tenth page). One way to compute the position factor is as follows:
where λ is the positional decay length.
In some cases, a given site (e.g., site 110) may have an overall rating given for the business on the main profile page for that business on the site. In some embodiments, the provided overall rating is treated as an additional review with age a=a0 and position p=p0 and given an additional weight factor of 2.
(2) Normalization
Once the base score has been computed, it is normalized (to generate “Bnorm”). In some embodiments this is performed by linearly stretching out the range of scores from 8 to 10 to 5 to 10 and linearly squeezing the range of scores from 0 to 8 to 0 to 5.
Optional Correction Factors
In some embodiments, a correction factor “C” is used for the number of reviews in a given vertical and locale:
where “Nr” is the number of reviews for the business and the median number of reviews is taken for the business's vertical and locale. An example value for “a” is 0.3 and an example value for “b” is 0.7.
One alternate version of correction factor “C” is as follows:
where “Nmin” and “Nmax” are the limits put on the comparator “Nr” in the denominator of the argument of the arctan in the correction factor. An example value for “Nmin” is 4 and an example value for “Nmax” is 20.
A randomization correction “R” can also be used:
where “C” is a correction factor (e.g., one of the two discussed above), “Bnorm” is the normalized base score discussed above, and “uid” is a unique identifier assigned to the business by platform 102 and stored in database 214. The randomization correction can be used where only a small number of reviews are present for a given business.
Another example of “R” is as follows:
R=max(0,C·Bnorm−37.5·e−0.6·α)
where “a” is the age of the most recent review.
As explained above, a variety of techniques can be used by scoring engine 702 in determining reputation scores. In some embodiments, scores for all types of businesses are computed using the same sets of rules. In other embodiments, reputation score computation varies based on industry (e.g., reputation scores for car dealers using one approach and/or one set of factors, and reputation scores for doctors using a different approach and/or different set of factors). Scoring engine 702 can be configured to use a best in class entity when determining appropriate thresholds/values for entities within a given industry. The following are yet more examples of factors that can be used in generating reputation scores.
Review Volume:
The volume of reviews across all review sites can be used as a factor. For example, if the average star rating and the number of reviews are high, a conclusion can be reached that the average star rating is more accurate than where an entity has the same average star rating and a lower number of reviews. The star rating will carry more weight in the score if the volume is above a certain threshold. In some embodiments, thresholds vary by industry. Further, review volume can use more than just a threshold. For example, an asymptotic function of number of reviews, industry, and geolocation of the business can be used as an additional scoring factor.
Multimedia:
Reviews that have multimedia associated with them (e.g., a video review, or a photograph) can be weighted differently. In some embodiments, instead of using a separate multimedia factor, the length score of the review is increased (e.g., to the maximum value) when multimedia is present.
Review Distribution:
The population of reviews on different sites can be examined, and where a review distribution strays from the mean distribution, the score can be impacted. As one example, if the review distribution is sufficiently outside the expected distribution for a given industry, this may indicate that the business is engaged in gaming behavior. The score can be discounted (e.g., by 25%) accordingly. An example of advice for improving a score based on this factor would be to point out to the user that their distribution of reviews (e.g., 200 on site 110 and only 2 on site 112) deviates from what is expected in the user's industry, and suggest that the user encourage those who posted reviews to site 110 do so on site 112 as well.
Text Analysis:
Text analysis can be used to extract features used in the score. For example, reviews containing certain key terms (e.g., “visited” or “purchased”) can be weighted differently than those that do not.
At 804, a reputation score for an entity is generated. Various techniques for generating reputation scores are discussed above. Other approaches can also be used, such as by determining an average score for each of the plurality of sites and combining those average scores (e.g., by multiplying or adding them and normalizing the result). As mentioned above, in some embodiments the entity for which the score is generated is a single business (e.g., Bob's Juice Company). The score generated at 804 can also be determined as an aggregate across multiple locations (e.g., in the case of ACME Convenience Stores) and can also be generated across multiple businesses (e.g., reputation score for the airline industry), and/or across all reviews hosted by a site (e.g., reputation score for all businesses with profiles on site 110). One way to generate a score for multiple locations (and/or multiple businesses) is to apply scoring techniques described in conjunction with
Finally, at 806 the reputation score is provided as output. As one example, a reputation score is provided as output in region 604 of interface 600. As another example, scoring engine 702 can be configured to send reputation scores to users via email (e.g., via alerter 432).
Enterprise Reputation Information
As explained above, in addition to providing reputation information for single location businesses, such as Bob's Juice Company, platform 102 can also provide reputation information for multi-location businesses (also referred to herein as “enterprises”). Examples of enterprises include franchises, chain stores, and any other type of multi-location business. The following section describes various ways that enterprise reputation information is made available by platform 102 to users, such as Alice, who represent such enterprises.
Presented in region 916 is the average reputation score across all 2,000 ACME stores. Region 918 indicates that ACME stores in Alaska have the highest average reputation score, while region 920 indicates that ACME stores in Nevada have the lowest average reputation score. A list of the six states in which ACME has the lowest average reputation scores is presented in region 922, along with the respective reputation scores of ACME in those states. The reputation scores depicted in interface 900 can be determined in a variety of ways, including by using the techniques described above.
The data that powers the map can be filtered using the dropdown boxes shown in region 904. The view depicted in region 906 will change based on the filters applied. And, the scores and other information presented in regions 916-922 will refresh to correspond to the filtered locations/time ranges. As shown, Alice is electing to view a summary of all review data (authored in the last year), across all ACME locations. Alice can refine the data presented by selecting one or more additional filters (e.g., limiting the data shown to just those locations in California, or to just those reviews obtained from site 110 that pertain to Nevada locations). The filter options presented are driven by the data, meaning that only valid values will be shown. For example, if ACME does not have any stores in Wyoming, Wyoming will not be shown in dropdown 910. As another example, once Alice selects “California” from dropdown 910, only Californian cities will be available in dropdown 930. To revert back to the default view, Alice can click on “Reset Filters” (926).
Some of the filters available to Alice (e.g., 908) make use of the tags that she previously uploaded (e.g., during account setup). Other filters (e.g., 910) are automatically provided by platform 102. In various embodiments, which filters are shown in region 904 are customizable. For example, suppose ACME organizes its stores in accordance with “Regions” and “Zones” and that Alice labeled each ACME location with its appropriate Region/Zone information during account setup. Through an administrative interface, Alice can specify that dropdowns for selecting “Region” and “Zone” should be included in region 904. As another example, Alice can opt to have store manager or other manager designations available as a dropdown filter. Optionally, Alice could also choose to hide certain dropdowns using the administrative interface.
Suppose Alice would like to learn more about the reputation of ACME's California stores. She hovers (or clicks) her mouse on region 924 of the map and interface 900 updates into interface 1000 as illustrated in
Alice can view more detailed information pertaining to reviews and ratings by clicking tab 932. Interface 1100 makes available, in region 1102, the individual reviews collected by platform 102 with respect to the filter selections made in region 1104. Alice can further refine which reviews are shown in region 1102 by interacting with checkboxes 1112. Summary score information is provided in region 1106, and the number of reviews implicated by the filter selections is presented in region 1108. Alice can select one of three different graphs to be shown in region 1110. As shown in
If Alice clicks on tab 934, she will be presented with interface 1400 of
If Alice clicks on tab 936, she will be presented with interface 1700, depicted in
Requesting Reviews
If Alice clicks on tab 938, she will be presented with the interface shown in
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
This application claims priority to U.S. Provisional Patent Application No. 61/606,918 entitled BUSINESS REPUTATION SYSTEM filed Mar. 5, 2012 and U.S. Provisional Patent Application No. 61/666,580 entitled ENTERPRISE REPUTATION EVALUATION filed Jun. 29, 2012, both of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5819258 | Vaithyanathan et al. | Oct 1998 | A |
5857179 | Vaithyanathan et al. | Jan 1999 | A |
5873081 | Harel | Feb 1999 | A |
5956693 | Geerlings | Sep 1999 | A |
5987457 | Ballard | Nov 1999 | A |
6006218 | Breese et al. | Dec 1999 | A |
6178419 | Legh-Smith et al. | Jan 2001 | B1 |
6182066 | Marques | Jan 2001 | B1 |
6324650 | Ogilvie | Nov 2001 | B1 |
6484068 | Yamamoto et al. | Nov 2002 | B1 |
6510432 | Doyle | Jan 2003 | B1 |
6513031 | Fries et al. | Jan 2003 | B1 |
6532459 | Berson | Mar 2003 | B1 |
6611825 | Billheimer et al. | Aug 2003 | B1 |
6633851 | Engler | Oct 2003 | B1 |
6678690 | Kobayashi et al. | Jan 2004 | B2 |
6754874 | Richman | Jun 2004 | B1 |
6766316 | Caudill et al. | Jul 2004 | B2 |
6775677 | Ando et al. | Aug 2004 | B1 |
6854007 | Hammond | Feb 2005 | B1 |
6968333 | Abbott et al. | Nov 2005 | B2 |
6985896 | Perttunen | Jan 2006 | B1 |
7028026 | Yang et al. | Apr 2006 | B1 |
7072947 | Knox | Jul 2006 | B1 |
7076533 | Knox | Jul 2006 | B1 |
7076558 | Dunn | Jul 2006 | B1 |
7117207 | Kerschberg et al. | Oct 2006 | B1 |
7130777 | Garg et al. | Oct 2006 | B2 |
7130808 | Ranka | Oct 2006 | B1 |
7289971 | O'Neil et al. | Oct 2007 | B1 |
7519562 | Vander May et al. | Apr 2009 | B1 |
7552068 | Brinkerhoff | Jun 2009 | B1 |
7600017 | Holtzman et al. | Oct 2009 | B2 |
7631032 | Refuah et al. | Dec 2009 | B1 |
7634810 | Goodman et al. | Dec 2009 | B2 |
7640434 | Lee et al. | Dec 2009 | B2 |
7653646 | Horn et al. | Jan 2010 | B2 |
7664669 | Adams et al. | Feb 2010 | B1 |
7778890 | Bezos et al. | Aug 2010 | B1 |
7779360 | Jones et al. | Aug 2010 | B1 |
7792816 | Funes et al. | Sep 2010 | B2 |
7809602 | Nickerson et al. | Oct 2010 | B2 |
7813986 | Gardner et al. | Oct 2010 | B2 |
7870025 | English | Jan 2011 | B2 |
7917754 | Harrison | Mar 2011 | B1 |
7930302 | Bandaru et al. | Apr 2011 | B2 |
7962461 | Ruhl et al. | Jun 2011 | B2 |
7970872 | Liu et al. | Jun 2011 | B2 |
8086485 | Ranka | Dec 2011 | B1 |
8135669 | Olstad et al. | Mar 2012 | B2 |
8170958 | Gremett et al. | May 2012 | B1 |
8185531 | Nakano | May 2012 | B2 |
8255248 | Del Favero et al. | Aug 2012 | B1 |
8315895 | Kilat | Nov 2012 | B1 |
8352405 | Fang et al. | Jan 2013 | B2 |
8356025 | Cai et al. | Jan 2013 | B2 |
8417713 | Blair-Goldensohn et al. | Apr 2013 | B1 |
8438469 | Scott et al. | May 2013 | B1 |
8452667 | Shimoff | May 2013 | B1 |
8498990 | Heber | Jul 2013 | B2 |
8504486 | Pinto | Aug 2013 | B1 |
8676597 | Buehler | Mar 2014 | B2 |
8725781 | Dayal et al. | May 2014 | B2 |
8880420 | Scotto | Nov 2014 | B2 |
8996425 | Johnson | Mar 2015 | B1 |
20020016910 | Wright et al. | Feb 2002 | A1 |
20020099598 | Eicher et al. | Jul 2002 | A1 |
20020111847 | Smith | Aug 2002 | A1 |
20020169835 | Paul | Nov 2002 | A1 |
20020174230 | Gudorf et al. | Nov 2002 | A1 |
20020178381 | Lee et al. | Nov 2002 | A1 |
20030014402 | Sealand et al. | Jan 2003 | A1 |
20030014633 | Gruber | Jan 2003 | A1 |
20030069874 | Hertzog et al. | Apr 2003 | A1 |
20030093260 | Dagtas et al. | May 2003 | A1 |
20030135725 | Schirmer et al. | Jul 2003 | A1 |
20030147536 | Andivahis et al. | Aug 2003 | A1 |
20030164849 | Barrie et al. | Sep 2003 | A1 |
20030208388 | Farkas et al. | Nov 2003 | A1 |
20030229668 | Malik | Dec 2003 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040019846 | Castellani et al. | Jan 2004 | A1 |
20040032420 | Allen et al. | Feb 2004 | A1 |
20040063111 | Shiba et al. | Apr 2004 | A1 |
20040078363 | Kawatani | Apr 2004 | A1 |
20040082839 | Haugen | Apr 2004 | A1 |
20040088308 | Bailey et al. | May 2004 | A1 |
20040093414 | Orton | May 2004 | A1 |
20040122926 | Moore et al. | Jun 2004 | A1 |
20040153466 | Ziff et al. | Aug 2004 | A1 |
20040169678 | Oliver | Sep 2004 | A1 |
20040215479 | Dorsey | Oct 2004 | A1 |
20040267717 | Slackman | Dec 2004 | A1 |
20050005168 | Dick | Jan 2005 | A1 |
20050050009 | Gardner et al. | Mar 2005 | A1 |
20050071632 | Pauker et al. | Mar 2005 | A1 |
20050114313 | Campbell et al. | May 2005 | A1 |
20050160062 | Howard et al. | Jun 2005 | A1 |
20050177457 | Sheltz et al. | Aug 2005 | A1 |
20050177559 | Nemoto | Aug 2005 | A1 |
20050203795 | Witzenburg | Sep 2005 | A1 |
20050216443 | Morton et al. | Sep 2005 | A1 |
20050234877 | Yu | Oct 2005 | A1 |
20050251536 | Harik | Nov 2005 | A1 |
20050256866 | Lu et al. | Nov 2005 | A1 |
20060004716 | Hurst-Hiller et al. | Jan 2006 | A1 |
20060015942 | Judge et al. | Jan 2006 | A1 |
20060026593 | Canning et al. | Feb 2006 | A1 |
20060042483 | Work et al. | Mar 2006 | A1 |
20060047725 | Bramson | Mar 2006 | A1 |
20060064502 | Nagarajayya | Mar 2006 | A1 |
20060074920 | Wefers et al. | Apr 2006 | A1 |
20060116896 | Fowler et al. | Jun 2006 | A1 |
20060123348 | Ross et al. | Jun 2006 | A1 |
20060143066 | Calabria | Jun 2006 | A1 |
20060152504 | Levy | Jun 2006 | A1 |
20060149708 | Lavine | Jul 2006 | A1 |
20060161524 | Roy et al. | Jul 2006 | A1 |
20060173828 | Rosenberg | Aug 2006 | A1 |
20060174343 | Duthie et al. | Aug 2006 | A1 |
20060190475 | Shi | Aug 2006 | A1 |
20060200459 | Ohnemus | Sep 2006 | A1 |
20060212931 | Shull et al. | Sep 2006 | A1 |
20060242554 | Gerace et al. | Oct 2006 | A1 |
20060253423 | Mclane et al. | Nov 2006 | A1 |
20060253458 | Dixon et al. | Nov 2006 | A1 |
20060253537 | Thomas | Nov 2006 | A1 |
20060253578 | Dixon et al. | Nov 2006 | A1 |
20060253580 | Dixon et al. | Nov 2006 | A1 |
20060253582 | Dixon et al. | Nov 2006 | A1 |
20060253583 | Dixon et al. | Nov 2006 | A1 |
20060253584 | Dixon et al. | Nov 2006 | A1 |
20060271524 | Tanne et al. | Nov 2006 | A1 |
20060287980 | Liu et al. | Dec 2006 | A1 |
20060294085 | Rose et al. | Dec 2006 | A1 |
20060294086 | Rose et al. | Dec 2006 | A1 |
20070016435 | Bevington | Jan 2007 | A1 |
20070027707 | Murray et al. | Feb 2007 | A1 |
20070073660 | Quinlan | Mar 2007 | A1 |
20070078670 | Dave et al. | Apr 2007 | A1 |
20070078699 | Scott et al. | Apr 2007 | A1 |
20070078845 | Scott | Apr 2007 | A1 |
20070101419 | Dawson | May 2007 | A1 |
20070112760 | Chea et al. | May 2007 | A1 |
20070112761 | Xu et al. | May 2007 | A1 |
20070121596 | Kurapati et al. | May 2007 | A1 |
20070121843 | Atazky et al. | May 2007 | A1 |
20070124297 | Toebes | May 2007 | A1 |
20070130126 | Lucovsky et al. | Jun 2007 | A1 |
20070136430 | Qureshi et al. | Jun 2007 | A1 |
20070150562 | Stull et al. | Jun 2007 | A1 |
20070192423 | Karlson | Aug 2007 | A1 |
20070214000 | Shahrabi | Sep 2007 | A1 |
20070288468 | Sundaresan et al. | Dec 2007 | A1 |
20070294124 | Crotts | Dec 2007 | A1 |
20070294281 | Ward et al. | Dec 2007 | A1 |
20080015928 | Chandra | Jan 2008 | A1 |
20080021890 | Adelman et al. | Jan 2008 | A1 |
20080033781 | Peretti | Feb 2008 | A1 |
20080065472 | Patrick et al. | Mar 2008 | A1 |
20080071602 | Ojakaar et al. | Mar 2008 | A1 |
20080077517 | Sappington | Mar 2008 | A1 |
20080077577 | Byrne et al. | Mar 2008 | A1 |
20080082687 | Cradick et al. | Apr 2008 | A1 |
20080091485 | Crysel | Apr 2008 | A1 |
20080104030 | Choi et al. | May 2008 | A1 |
20080104059 | Segel | May 2008 | A1 |
20080109245 | Gupta | May 2008 | A1 |
20080109491 | Gupta | May 2008 | A1 |
20080120411 | Eberle | May 2008 | A1 |
20080133488 | Bandaru et al. | Jun 2008 | A1 |
20080165972 | Worthington | Jul 2008 | A1 |
20080183561 | Zohar | Jul 2008 | A1 |
20080189190 | Ferber | Aug 2008 | A1 |
20080215571 | Huang et al. | Sep 2008 | A1 |
20080215589 | Elhaik et al. | Sep 2008 | A1 |
20080270116 | Godbole et al. | Oct 2008 | A1 |
20080281807 | Bartlang et al. | Nov 2008 | A1 |
20080288276 | Harris | Nov 2008 | A1 |
20080288277 | Fasciano | Nov 2008 | A1 |
20080306899 | Gregory et al. | Dec 2008 | A1 |
20080312988 | Trapp | Dec 2008 | A1 |
20090012828 | Brower et al. | Jan 2009 | A1 |
20090070325 | Gabriel et al. | Mar 2009 | A1 |
20090089180 | Cho | Apr 2009 | A1 |
20090100005 | Guo et al. | Apr 2009 | A1 |
20090106236 | Koefoot et al. | Apr 2009 | A1 |
20090119258 | Petty | May 2009 | A1 |
20090119268 | Bandaru et al. | May 2009 | A1 |
20090157667 | Brougher et al. | Jun 2009 | A1 |
20090177691 | Manfredi et al. | Jul 2009 | A1 |
20090177988 | Martins | Jul 2009 | A1 |
20090193011 | Blair-Goldensohn et al. | Jul 2009 | A1 |
20090193328 | Reis et al. | Jul 2009 | A1 |
20090265251 | Dunlap et al. | Oct 2009 | A1 |
20090265307 | Reisman | Oct 2009 | A1 |
20090265332 | Mushtaq et al. | Nov 2009 | A1 |
20090281870 | Sun et al. | Nov 2009 | A1 |
20090282019 | Galitsky et al. | Nov 2009 | A1 |
20090307762 | Cudd, Jr. | Dec 2009 | A1 |
20090319342 | Shilman et al. | Dec 2009 | A1 |
20090327271 | Amitay | Dec 2009 | A1 |
20100064246 | Gluck | Mar 2010 | A1 |
20100076968 | Boyns et al. | Mar 2010 | A1 |
20100100950 | Roberts | Apr 2010 | A1 |
20100106557 | Buss | Apr 2010 | A1 |
20100121849 | Goeldi | May 2010 | A1 |
20100153181 | Altunbasak | Jun 2010 | A1 |
20100169317 | Wang et al. | Jul 2010 | A1 |
20100198839 | Basu et al. | Aug 2010 | A1 |
20100211308 | Zheng et al. | Aug 2010 | A1 |
20100250515 | Ozonat et al. | Sep 2010 | A1 |
20100257184 | Uy | Oct 2010 | A1 |
20100262454 | Sommer et al. | Oct 2010 | A1 |
20100262601 | Dumon et al. | Oct 2010 | A1 |
20100313252 | Trouw | Oct 2010 | A1 |
20100325107 | Kenton et al. | Dec 2010 | A1 |
20110016118 | Edala et al. | Jan 2011 | A1 |
20110022537 | Nickerson | Jan 2011 | A1 |
20110047035 | Gidwani et al. | Feb 2011 | A1 |
20110078049 | Rehman et al. | Mar 2011 | A1 |
20110078439 | Mao et al. | Mar 2011 | A1 |
20110099036 | Sarkissian et al. | Apr 2011 | A1 |
20110112901 | Fried et al. | May 2011 | A1 |
20110137705 | Srinivasan | Jun 2011 | A1 |
20110153551 | Gabriel et al. | Jun 2011 | A1 |
20110173056 | D'Alessio et al. | Jul 2011 | A1 |
20110184806 | Chen et al. | Jul 2011 | A1 |
20110209072 | Bennett | Aug 2011 | A1 |
20110251977 | Cialowicz et al. | Oct 2011 | A1 |
20110270705 | Parker | Nov 2011 | A1 |
20110296179 | Templin et al. | Dec 2011 | A1 |
20110307307 | Benmbarek | Dec 2011 | A1 |
20120023332 | Gorodyansky | Jan 2012 | A1 |
20120059848 | Krishnamoorthy | Mar 2012 | A1 |
20120066233 | Fonseka et al. | Mar 2012 | A1 |
20120130917 | Forsblom | May 2012 | A1 |
20120191546 | Phelan | Jul 2012 | A1 |
20120197816 | Short et al. | Aug 2012 | A1 |
20120197903 | Lu et al. | Aug 2012 | A1 |
20120197950 | Dayal et al. | Aug 2012 | A1 |
20120221479 | Schneck et al. | Aug 2012 | A1 |
20120226627 | Yang | Sep 2012 | A1 |
20120245924 | Brun | Sep 2012 | A1 |
20120260201 | Ganesh et al. | Oct 2012 | A1 |
20120260209 | Stibel et al. | Oct 2012 | A1 |
20120278064 | Leary et al. | Nov 2012 | A1 |
20120290606 | Kumare et al. | Nov 2012 | A1 |
20120303419 | Yokoi et al. | Nov 2012 | A1 |
20120304027 | Stenfort | Nov 2012 | A1 |
20120323842 | Izhikevich et al. | Dec 2012 | A1 |
20130007014 | Fertik et al. | Jan 2013 | A1 |
20130054502 | Fano et al. | Feb 2013 | A1 |
20130085803 | Mauro et al. | Apr 2013 | A1 |
20130085804 | Leff | Apr 2013 | A1 |
20130124653 | Vick et al. | May 2013 | A1 |
20130166347 | Scotto | Jun 2013 | A1 |
20130218640 | Kidder et al. | Aug 2013 | A1 |
20030172014 | Quackenbush et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
WO2001046868 | Feb 2004 | WO |
Entry |
---|
Perez, Sarah, “Venulabs is Launching VenueRank, A ‘Klout for Storefronts’”, <<http://techcrunch.com/2011/11/02/venuelabs-is-launching-venuerank-a-klout-for-storefronts/>>, Nov. 2, 2011, pp. 3. |
Logi DevNet, “Using Google Map Regions” <<http://devnet.logixml.com/rdPage.aspx?rdReport=Article&dnDocID=1055>>, May 1, 2009, pp. 10. |
Venuelabs Press Release, “Introducing VenueRank”, <http://venuelabs.com/introducing-venuerank/>, Nov. 2, 2011, pp. 1-2; Perez, Sarah “Venulabs is Launching VenueRank, A “Klout for Storefronts””, <http://techcrunch.com/2011/11/02/venuelabs-is-launching-venuerank-a-klout-for-storefronts/>, Nov. 2, 2011, pp. 3-6; Venuelabs, Valuevine Launches Executive.(Continued from Line U): Dashboard for Multi-Location Businesses“, <http://venuelabs.com/valuevine-launches-location-analytics-product/>, Feb. 15, 2011, pp. 7-8; Falls, Jason, ”Venuelabs Unveils Klout-like Business Scores, <<http://www.socialmediaexplorer.com/digital-marketing/venuelabs-unveils-klout-like-business-scores>>, Nov. 14, 2011, pp. 9-14. |
VenueRank: Venuelabs Press Release, “Introducing Venuerank”, http://venuelabs.com/introducing-venuerank/, published Nov. 2, 2011; Perez, Sarah, “Venuelabs is Launching VenueRank, A “Klout for Storefronts””, http://techcrunch.com/2011/11/02/venuelabs-is-launching-venuerank-a-klout-for-storefronts/, published Nov. 2, 2011; Falls, Jason, “Venuelabs Unveils Klout-like Business Scores”, http://www.socialmediaexplorer.com/digital-marketing/venuelabs-unveils-klout-like-business-scores/, published Nov. 14, 2011. |
ValueVine: Peck, Jason, “Valuevine Connect: Location-Based Analytics”, http://socialmediatoday.com/jasonpeck/270429/valuevine-connect-location-based-analytics, published Feb. 15, 2011; Falls, Jason, “ValueVine Brings Location-Based, Review Site Analytics to Franchise Tool”, www.socialmediaexplorer.com/social-media-marketing/valuevine-connect-launches/, published Feb. 15, 2011; Venuelabs, “Valuevines Launches Executive Dashboard for Multi-Location Businesses”, http://venuelabs.com/valuevine-launches-location-analytics-product/, published Feb. 15, 2011. |
Korfiatis, N. et al., “The Impact of Readability on the Usefulness of Online Product Reviews: A Case Study on an Online Bookstore”, Emerging Technologies and Information Systems for the Knowledge Society Lecture Notes in Computer Science, vol. 5288, 2008, pp. 423-432. |
Peck, Jason, “Valuevine Connect: Location-Based Analytics”, retrieved from http ://socialmediatoday .com/jasonpeck/270429/valuevine-connect-location-based-analytics, dated Feb. 15, 2011, pp. 4. |
PR Web, “Valuevine Launches Agency Partner Program Providing Agencies with Location-based Social Media Analytics Platform”, published May 24, 2011, retrieved from http://www.prweb.com/releases/2011/5/prweb8438250.htm on Sep. 8, 2016. |
Salz, Peggy Anne, “BooRah Takes Wraps Off New Service & Model; Is the Money in Mobile Search Syndication?”, Jun. 10, 2008, <<http://www.mobilegroove.com/boorah-takes-wraps-off-new-service-is-the-money-in-mobile-search-syndication-940>>, p. 5. |
Lake, Laura, “Google Maps—Is Your Business Listed Accurately?”, Sep. 1, 2009, <<http://marketing.about.com/b/2009/09/01/google-maps-are-you-listed-accurately.htm>>, p. 3. |
Chris Piepho, “Getting Your Business Reviewed”, Jul. 1, 2010, blog on smallbusinessshift.com. |
Mike Blumenthal, Selected Blogs on Reputation management, from http://blumenthals.com, Mar. 2010. |
Kermit Pattison, “Managing an Online Reputation”, NYTimes.com, Jul. 30, 2009. |
Tull et al., “Marketing Management”, Macmillan Publishing Company, New York, 1990, Chapter 15. |
Lini S. Kabada, “Good-Rep Merchants Seek to Restore Your Online Image”, Privacy Journal, 37.5 (Mar. 2011), 1-2, 7. |
Liu et al., “Personalized Web Search by Mapping User Queries to Categories,” CIKM, '02, McLean, Virginia, Nov. 4-6, 2002, pp. 558-565. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2012/044668, dated Dec. 21, 2012, 11pages. |
Pretschner et al., “Ontology Based Personalized Search,” Proc. 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago, Illinois, Nov. 1999, pp. 391-398. |
Sugiyama et al., “Adaptive Web Search Based on User Profile Constructed Without Any Effort from Users,” ACM, New York, NY, May 17-22, 2004, pp. 675-684. |
Boatwright et al. “Reviewing the Reviewers: The Impact of Individual Film Critics on Box Office Performance”, Springer Science, Business Media, LLC 2007. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2012/043392, dated Jan. 25, 2013, 10 pages. |
Daranyi et al., Svensk Biblioteksforskning; Automated Text Categorization of Bibliographic Records; Boras Academic Digital Archieve (BADA); artice peer reviewed [on-line], Hogskolan I Boras, vol. 16, Issue 2, pp. 1-14 as paginated or 16-29 as unpaginated of 47 pages, 2007 [retrieved on Nov. 6, 2012]. |
Korfiatis et al., “The Impact of Readability on the Usefulness of Online Product Reviews: A Case Study on an Online Bookstore”, Emerging Technologies and Information Systems for the Knowledge Society Lecture Notes in Computer Science vol. 5288, 2008, pp. 423-432. |
Number | Date | Country | |
---|---|---|---|
61606918 | Mar 2012 | US | |
61666580 | Jun 2012 | US |