The present disclosure relates to service monitoring systems and, more particularly, to implementing entity lifecycle management in service monitoring systems.
Modern data centers can have thousands of hosts that operate collectively to service requests from even larger numbers of remote clients. During operation, components of these data centers can produce significant volumes of machine-generated data. The unstructured nature of much of this data has made it challenging to perform indexing and searching operations because of the difficulty of associating semantic meanings with the unstructured data. As the number of data center hosts and clients continues to grow, processing large volumes of machine-generated data in an intelligent manner and effectively presenting the results of such processing continues to be a priority.
The present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various implementations of the disclosure.
The present disclosure is directed to entity lifecycle management in service monitoring systems. A service monitoring system can provide users with insight to the performance of monitored services, such as, services pertaining to an information technology (IT) environment. Each service can be provided by one or more entities. An entity that provides a service can be associated with various structured and unstructured machine data.
In some implementations, a service monitoring system can monitor one or more aspects of a service using one or more key performance indicators (KPIs). For example, users can wish to monitor the CPU (central processing unit) usage of a web hosting service, the memory usage of the web hosting service, and the request response time for the web hosting service. Each KPI can be defined by a search query that produces a value derived from the machine data identified in the entity definitions specified in the service definition. In some implementations, a service monitoring system can perform correlation searches to generate notable events and/or alarms based on monitoring a set of KPIs over a defined period. A correlation search can be implemented by a search query associated with a triggering condition and one or more actions corresponding to the trigger condition. The service monitoring system can provide a graphical user interface (GUI), such as a service-monitoring dashboard that can display one or more KPI widgets providing numerical or graphical representations of corresponding KPI values.
During the lifetime of a service being monitored, each of the entities providing the service can transition through the stages of its own lifecycle: an entity can be commissioned, associated with a service being monitored, disassociated from the service being monitored, decommissioned, undergo maintenance, returned to service, etc. Failure of the service monitoring system to adequately track and reflect the lifecycle of each entity can result in various undesirable effects, such as multiple false alarms triggered due to the lack of data feeds from inactive entities, user interfaces and reports becoming visually clogged due to a large number of inactive entities, etc.
Implementations of the present disclosure address the above-references and other issues by applying user-configurable policies for identifying non-responsive or orphan entities of a service monitoring system and providing users with the ability to identify, retire, and eventually delete these entities. Retired entities are excluded from interacting with any other components of the service monitoring system. A retired entity can stay in the retired state until it is deleted from the system or restored to the active state.
The entity lifecycle management is driven by one or more user-defined entity lifecycle management policies. Each policy can specify one or more entity lifecycle management action (e.g., entity retirement) criteria. In an illustrative example, an entity retirement criterion can target non-responsive entities by specifying the threshold period of time in which an entity has not been sending any data. Accordingly, an entity that has not been sending any data for a period of time exceeding the threshold period specified by the entity retirement criterion would be identified as a candidate entity for retirement. In another illustrative example, an entity retirement criterion can target orphan entities by specifying the threshold period of time in which the entity has not been associated with any service. Accordingly, an entity that has not been associated with any service for a period exceeding the threshold period of time specified by the entity retirement criterion would be identified as a candidate entity for retirement. In some implementations, in addition to entity lifecycle management action criteria, an entity lifecycle management policy can specify the entity evaluation frequency, which specifies the frequency of running the search commands produced by translating the entity lifecycle management policy.
The search commands derived from the entity lifecycle policy definitions can be executed with the desired frequency, thus identifying certain entities as retirement candidates. These entities can be presented to a user via a GUI that lists all identified candidate entities and allows the user to perform individual or bulk actions upon selected entities. In an illustrative example, the user can retire one or more selected entities, which would become effectively excluded from interacting with any other components of the service monitoring system. In another illustrative example, the user can delete one or more selected entities from the system. In yet another illustrative example, the user can put one or more selected entities into the maintenance mode. In yet another illustrative example, the user can edit the definitions of one or more selected entities.
In some implementations, the retired entities can be presented to a user via a GUI that lists all retired entities and allows the user to perform individual or bulk actions upon selected retired entities. In an illustrative example, the user can restore to the active status (un-retire) one or more selected retired entities. In another illustrative example, the user can delete one or more selected retired entities from the system. In yet another illustrative example, the user can edit the definitions of one or more selected retired entities.
In some implementations, the service monitoring system can further implement restoring, to the active status, the retired entities that have become active and/or associated with at least one service. In an illustrative example, a saved search can identify retirement candidate entities that started sending data since the retirement event. In another illustrative example, a saved search can identify retirement candidate entities that have become associated with at least one service since the retirement event. The identified entities will then be automatically transitioned into an active status.
Thus, implementations of the present disclosure provide an efficient technical solution for efficient entity lifecycle management in service monitoring systems, thus enhancing the functionality and improving the efficiency of these systems, as described in more detail herein below.
While the illustrative examples described herein are related to service monitoring systems, in various other implementations, the systems and methods of the present disclosure can be applied to other software systems, platforms, and/or or applications, including, e.g., application performance monitoring systems, data intake and query systems, event processing systems, etc. Likewise, the systems and methods described herein can be applied to cloud-based and on-premises installations.
The service 102 can be monitored using one or more KPIs 106 for the service. A KPI is a type of performance measurement. One or more KPIs can be defined for a service. In the illustrated example, three KPIs 106A-C are defined for service 102. KPI 106A can be a measurement of CPU (central processing unit) usage for the service 102. KPI 106B can be a measurement of memory usage for the service 102. KPI 106C can be a measurement of request response time for the service 102.
In one implementation, KPI 106A-C is derived based on machine data pertaining to entities 104A and 104B that provide the service 102 that is associated with the KPI 106A-C. In another implementation, KPI 106A-C is derived based on machine data pertaining to entities other than and/or in addition to entities 104A and 104B. In another implementation, input (e.g., user input) can be received that defines a custom query, which does not use entity filtering, and is treated as a KPI. Machine data pertaining to a specific entity can be machine data produced by that entity or machine data about that entity, which is produced by another entity. For example, machine data pertaining to entity 104A can be derived from different sources that can be hosted by entity 104A and/or some other entity or entities.
A source of machine data can include, for example, a software application, a module, an operating system, a script, an application programming interface, etc. For example, machine data 110B can be log data that is produced by the operating system of entity 104A. In another example, machine data 110C can be produced by a script that is executing on entity 104A. In yet another example, machine data 110A can be about an entity 104A and produced by a software application 120A that is hosted by another entity to monitor the performance of the entity 104A through an application programming interface (API).
For example, entity 104A can be a virtual machine and software application 120A can be executing outside of the virtual machine (e.g., on a hypervisor or a host operating system) to monitor the performance of the virtual machine via an API. The API can generate network packet data including performance measurements for the virtual machine, such as, memory utilization, CPU usage, etc.
Similarly, machine data pertaining to entity 104B can include, for example, machine data 110D, such as log data produced by the operating system of entity 104B, and machine data 110E, such as network packets including http responses generated by a web server hosted by entity 104B.
An association between an entity (e.g., a physical machine) and machine data pertaining to that entity (e.g., machine data produced by different sources hosted by the entity or machine data about the entity that can be produced by sources hosted by some other entity or entities) can be provided via an entity definition that identifies machine data from different sources and links the identified machine data with the actual entity to which the machine data pertains, as will be discussed in more detail below. Entities that are part of a particular service can be further grouped via a service definition that specifies entity definitions of the entities providing the service, as will be discussed in more detail below.
In the illustrated example, an entity definition for entity 104A can associate machine data 110A, 110B and 110C with entity 104A, an entity definition for entity 104B can associate machine data 110D and 110E with entity 104B, and a service definition for service 102 can group entities 104A and 104B together, thereby defining a pool of machine data that can be operated on to produce KPIs 106A, 106B and 106C for the service 102. In particular, each KPI 106A, 106B, 106C of the service 102 can be defined by a search query that produces a value 108A, 108B, 108C derived from the machine data 110A-E. As will be discussed in more detail below, according to one implementation, the machine data 110A-E is identified in entity definitions of entities 104A and 104B, and the entity definitions are specified in a service definition of service 102 for which values 108A-C are produced to indicate how the service 102 is performing at a point in time or during a period of time. For example, KPI 106A can be defined by a search query that produces value 108A indicating how the service 102 is performing with respect to CPU usage. KPI 106B can be defined by a different search query that produces value 108B indicating how the service 102 is performing with respect to memory usage. KPI 106C can be defined by yet another search query that produces value 108C indicating how the service 102 is performing with respect to request response time.
The values 108A-C for the KPIs can be produced by executing the search query of the respective KPI. In one example, the search query defining a KPI 106A-C can be executed upon receiving a request (e.g., user request). For example, a service-monitoring dashboard, which is described in greater detail below, can display KPI widgets providing a numerical or graphical representation of the value 108 for a respective KPI 106. A user can request the service-monitoring dashboard to be displayed at a point in time, and the search queries for the KPIs 106 can be executed in response to the request to produce the value 108 for the respective KPI 106. The produced values 108 can be displayed in the service-monitoring dashboard.
In another example, the search query defining a KPI 106A-C can be executed in real-time (continuous execution until interrupted). For example, a user can request the service-monitoring dashboard to be displayed, and the search queries for the KPIs 106 can be executed in response to the request to produce the value 108 for the respective KPI 106. The produced values 108 can be displayed in the service-monitoring dashboard. The search queries for the KPIs 106 can be continuously executed until interrupted and the values for the search queries can be refreshed in the service-monitoring dashboard with each execution. Examples of interruption can include changing graphical interfaces, stopping execution of a program, etc.
In another example, the search query defining a KPI 106 can be executed based on a schedule. For example, the search query for a KPI (e.g., KPI 106A) can be executed at one or more particular times (e.g., 6:00 am, 12:00 pm, 6:00 pm, etc.) and/or based on a period of time (e.g., every 5 minutes). In one example, the values (e.g., values108A) produced by a search query for a KPI (e.g., KPI 106A) by executing the search query on a schedule are stored in a data store, and are used to calculate an aggregate KPI score for a service (e.g., service 102), as described in greater detail below. An aggregate KPI score for the service 102 is indicative of an overall performance of the KPIs 106 of the service.
In one implementation, the machine data (e.g., machine data 110A-E) used by a search query defining a KPI (e.g., KPI 106A) to produce a value can be based on a time range. The time range can be a user-defined time range or a default time range. For example, in the service-monitoring dashboard example above, a user can select, via the service-monitoring dashboard, a time range to use to further specify, for example, based on time-stamps, which machine data should be used by a search query defining a KPI. For example, the time range can be defined as “Last 15 minutes,” which would represent an aggregation period for producing the value. In other words, if the query is executed periodically (e.g., every 5 minutes), the value resulting from each execution can be based on the last 15 minutes on a rolling basis, and the value resulting from each execution can be, for example, the maximum value during a corresponding 15-minute time range, the minimum value during the corresponding 15-minute time range, an average value for the corresponding 15-minute time range, etc.
In another implementation, the time range is a selected (e.g., user-selected) point in time and the definition of an individual KPI can specify the aggregation period for the respective KPI. By including the aggregation period for an individual KPI as part of the definition of the respective KPI, multiple KPIs can run on different aggregation periods, which can more accurately represent certain types of aggregations, such as, distinct counts and sums, improving the utility of defined thresholds. In this manner, the value of each KPI can be displayed at a given point in time. In one example, a user can also select “real time” as the point in time to produce the most up to date value for each KPI using its respective individually defined aggregation period.
An event processing system can process a search query that defines a KPI of a service. An event processing system can aggregate heterogeneous machine-generated data (machine data) received from various sources (e.g., servers, databases, applications, networks, etc.) and optionally provide filtering such that data is only represented where it pertains to the entities providing the service. In one example, a KPI can be defined by a user-defined custom query that does not use entity filtering. The aggregated machine data can be processed and represented as events. An event can be represented by a data structure that is associated with a certain point in time and comprises a portion of raw machine data (i.e., machine data). Events are described in greater detail below. The event processing system can be conFig.d to perform real-time indexing of the machine data and to execute real-time, scheduled, or historic searches on the source data. An exemplary event processing system is described in greater detail below.
The entity module 220 can create entity definitions. “Create” hereinafter includes “edit” throughout this document. An entity definition is a data structure that associates an entity (e.g., entity 104A in
Each of the machine data 310A-C can include an alias that references the entity 304. At least some of the aliases for the particular entity 304 can be different from each other. For example, the alias for entity 304 in machine data 310A can be an identifier (ID) number 315, the alias for entity 304 in machine data 310B can be a hostname 317, and the alias for entity 304 in machine data 310C can be an IP (internet protocol) address 319.
The entity module 220 can receive input for an identifying name 360 for the entity 304 and can include the identifying name 360 in the entity definition 350. The identifying name 360 can be defined from input (e.g., user input). For example, the entity 304 can be a web server and the entity module 220 can receive input specifying webserver01.splunk.com as the identifying name 360. The identifying name 360 can be used to normalize the different aliases of the entity 304 from the machine data 310A-C to a single identifier.
A KPI, for example, for monitoring CPU usage for a service provided by the entity 304, can be defined by a search query directed to search machine data 310A-C based a service definition, which is described in greater detail below, associating the entity definition 350 with the KPI, the entity definition 350 associating the entity 304 with the identifying name 360, and associating the identifying name 360 (e.g., webserver01.splunk.com) with the various aliases (e.g., ID number 315, hostname 317, and IP address 319).
Referring to
In one example, a service 402 is provided by one or more entities 404A-N. For example, entities 404A-N can be web servers that provide the service 402 (e.g., web hosting service). In another example, a service 402 can be a database service that provides database data to other services (e.g., analytical services). The entities 404A-N, which provides the database service, can be database servers.
The service module 230 can include an entity definition 450A-450N, for a corresponding entity 404A-N that provides the service 402, in the service definition 460 for the service 402. The service module 230 can receive input (e.g., user input) identifying one or more entity definitions to include in a service definition.
The service module 230 can include dependencies 470 in the service definition 460. The dependencies 470 indicate one or more other services for which the service 402 is dependent upon. For example, another set of entities (e.g., host machines) can define a testing environment that provides a sandbox service for isolating and testing untested programming code changes. In another example, a specific set of entities (e.g., host machines) can define a revision control system that provides a revision control service to a development organization. In yet another example, a set of entities (e.g., switches, firewall systems, and routers) can define a network that provides a networking service. The sandbox service can depend on the revision control service and the networking service. The revision control service can depend on the networking service. If the service 402 is the sandbox service and the service definition 460 is for the sandbox service 402, the dependencies 470 can include the revision control service and the networking service. The service module 230 can receive input specifying the other service(s) for which the service 402 is dependent on and can include the dependencies 470 between the services in the service definition 460. In one implementation, the service associated defined by the service definition 460 can be designated as a dependency for another service, and the service definition 460 can include information indicating the other services which depend on the service described by the service definition 460.
Referring to
The KPI module 240 can receive input specifying the search processing language for the search query defining the KPI. The input can include a search string defining the search query and/or selection of a data model to define the search query. Data models are described in greater detail below. The search query can produce, for a corresponding KPI, value 408A-N derived from machine data that is identified in the entity definitions 450A-N that are identified in the service definition 460.
The KPI module 240 can receive input to define one or more thresholds for one or more KPIs. For example, the KPI module 240 can receive input defining one or more thresholds 410A for KPI 406A and input defining one or more thresholds 410N for KPI 406N. Each threshold defines an end of a range of values representing a certain state for the KPI. Multiple states can be defined for the KPI (e.g., unknown state, trivial state, informational state, normal state, warning state, error state, and critical state), and the current state of the KPI depends on which range the value, which is produced by the search query defining the KPI, falls into. The KPI module 240 can include the threshold definition(s) in the KPI definitions. The service module 230 can include the defined KPIs in the service definition for the service.
The KPI module 240 can calculate an aggregate KPI score 480 for the service for continuous monitoring of the service. The score 480 can be a calculated value 482 for the aggregate of the KPIs for the service to indicate an overall performance of the service. For example, if the service has 10 KPIs and if the values produced by the search queries for 9 of the 10 KPIs indicate that the corresponding KPI is in a normal state, then the value 482 for an aggregate KPI can indicate that the overall performance of the service is satisfactory. Some implementations of calculating a value for an aggregate KPI for the service are discussed in greater detail below.
Referring to
The user interface (UI) module 250 can generate graphical interfaces for creating and/or editing entity definitions for entities, creating and/or editing service definitions for services, defining key performance indicators (KPIs) for services, setting thresholds for the KPIs, and defining aggregate KPI scores for services. The graphical interfaces can be user interfaces and/or graphical user interfaces (GUIs).
The UI module 250 can cause the display of the graphical interfaces and can receive input via the graphical interfaces. The entity module 220, service module 230, KPI module 240, dashboard module 260, deep dive module 270, and home page module 280 can receive input via the graphical interfaces generated by the UI module 250. The entity module 220, service module 230, KPI module 240, dashboard module 260, deep dive module 270, and home page module 280 can provide data to be displayed in the graphical interfaces to the UI module 250, and the UI module 250 can cause the display of the data in the graphical interfaces.
The dashboard module 260 can create a service-monitoring dashboard. In one implementation, dashboard module 260 works in connection with UI module 250 to present a dashboard-creation graphical interface that includes a modifiable dashboard template, an interface containing drawing tools to customize a service-monitoring dashboard to define flow charts, text and connections between different elements on the service-monitoring dashboard, a KPI-selection interface and/or service selection interface, and a configuration interface for creating service-monitoring dashboard. The service-monitoring dashboard displays one or more KPI widgets. Each KPI widget can provide a numerical or graphical representation of one or more values for a corresponding KPI indicating how an aspect of a service is performing at one or more points in time. Dashboard module 260 can work in connection with UI module 250 to define the service-monitoring dashboard in response to user input, and to cause display of the service-monitoring dashboard including the one or more KPI widgets. The input can be used to customize the service-monitoring dashboard. The input can include for example, selection of one or more images for the service-monitoring dashboard (e.g., a background image for the service-monitoring dashboard, an image to represent an entity and/or service), creation and representation of adhoc search in the form of KPI widgets, selection of one or more KPIs to represent in the service-monitoring dashboard, selection of a KPI widget for each selected KPI. The input can be stored in the one or more data stores 290 that are coupled to the dashboard module 260. In other implementations, some other software or hardware module can perform the actions associated with generating and displaying the service-monitoring dashboard, although the general functionality and features of the service-monitoring dashboard should remain as described herein. Some implementations of creating the service-monitoring dashboard and causing display of the service-monitoring dashboard are discussed in greater detail below.
In one implementation, deep dive module 270 works in connection with UI module 250 to present a wizard for creation and editing of the deep dive visual interface, to generate the deep dive visual interface in response to user input, and to cause display of the deep dive visual interface including the one or more graphical visualizations. The input can be stored in the one or more data stores 290 that are coupled to the deep dive module 270. In other implementations, some other software or hardware module can perform the actions associated with generating and displaying the deep dive visual interface, although the general functionality and features of deep dive should remain as described herein. Some implementations of creating the deep dive visual interface and causing display of the deep dive visual interface are discussed in greater detail below.
The home page module 280 can create a home page graphical interface. The home page graphical interface can include one or more tiles, where each tile represents a service-related alarm, service-monitoring dashboard, a deep dive visual interface, or the value of a particular KPI. In one implementation home page module 280 works in connection with UI module 250. The UI module 250 can cause the display of the home page graphical interface. The home page module 280 can receive input (e.g., user input) to request a service-monitoring dashboard or a deep dive to be displayed. The input can include for example, selection of a tile representing a service-monitoring dashboard or a deep dive. In other implementations, some other software or hardware module can perform the actions associated with generating and displaying the home page graphical interface, although the general functionality and features of the home page graphical interface should remain as described herein. An example home page graphical interface is discussed in greater detail below.
Referring to
The one or more networks can include one or more public networks (e.g., the Internet), one or more private networks (e.g., a local area network (LAN) or one or more wide area networks (WAN)), one or more wired networks (e.g., Ethernet network), one or more wireless networks (e.g., an 802.11 network or a Wi-Fi network), one or more cellular networks (e.g., a Long Term Evolution (LTE) network), routers, hubs, switches, server computers, and/or a combination thereof.
At block 502, the computing machine creates one or more entity definitions, each for a corresponding entity. Each entity definition associates an entity with machine data that pertains to that entity. As described above, various machine data can be associated with a particular entity, but can use different aliases for identifying the same entity. The entity definition for an entity normalizes the different aliases of that entity. In one implementation, the computing machine receives input for creating the entity definition. The input can be user input. Some implementations of creating an entity definition for an entity from input received via a graphical user interface are discussed in greater detail below.
In another implementation, the computing machine imports a data file (e.g., CSV (comma-separated values) data file) that includes information identifying entities in an environment and uses the data file to automatically create entity definitions for the entities described in the data file. The data file can be stored in a data store (e.g., data store 290 in
In another implementation, the computing machine automatically (without any user input) identifies one or more aliases for an entity in machine data, and automatically creates an entity definition in response to automatically identifying the aliases of the entity in the machine data. For example, the computing machine can execute a search query from a saved search to extract data to identify an alias for an entity in machine data from one or more sources, and automatically create an entity definition for the entity based on the identified aliases. Some implementations of creating an entity definition from importing a data file and/or from a saved search are discussed in greater detail below.
At block 504, the computing machine creates a service definition for a service using the entity definitions of the one or more entities that provide the service, according to one implementation. A service definition can relate one or more entities to a service. For example, the service definition can include an entity definition for each of the entities that provide the service. In one implementation, the computing machine receives input (e.g., user input) for creating the service definition. Some implementations of creating a service definition from input received via a graphical interface are discussed in more detail below. In one implementation, the computing machine automatically creates a service definition for a service. In another example, a service can not directly be provided by one or more entities, and the service definition for the service can not directly relate one or more entities to the service. For example, a service definition for a service can not contain any entity definitions and can contain information indicating that the service is dependent on one or more other services. A service that is dependent on one or more other services is described in greater detail below. For example, a business service can not be directly provided by one or more entities and can be dependent on one or more other services. For example, an online store service can depend on an e-commerce service provided by an e-commerce system, a database service, and a network service. The online store service can be monitored via the entities of the other services (e.g., e-commerce service, database service, and network service) upon which the service depends on.
At block 506, the computing machine creates one or more key performance indicators (KPIs) corresponding to one or more aspects of the service. An aspect of a service can refer to a certain characteristic of the service that can be measured at various points in time during the operation of the service. For example, aspects of a web hosting service can include request response time, CPU usage, and memory usage. Each KPI for the service can be defined by a search query that produces a value derived from the machine data that is identified in the entity definitions included in the service definition for the service. Each value is indicative of how an aspect of the service is performing at a point in time or during a period of time. In one implementation, the computing machine receives input (e.g., user input) for creating the KPI(s) for the service. Some implementations of creating KPI(s) for a service from input received via a graphical interface will be discussed in greater detail below. In one implementation, the computing machine automatically creates one or more key performance indicators (KPIs) corresponding to one or more aspects of the service.
At block 602, the computing machine receives input of an identifying name for referencing the entity definition for an entity. The input can be user input. The user input can be received via a graphical interface. Some implementations of creating an entity definition via input received from a graphical interface are discussed in greater detail below. The identifying name can be a unique name.
At block 604, the computing machine receives input (e.g., user input) specifying one or more search fields (“fields”) representing the entity in machine data from different sources, to be used to normalize different aliases of the entity. Machine data can be represented as events. As described above, the computing machine can be coupled to an event processing system (e.g., event processing system 205 in
At block 606, the computing machine receives input (e.g., user input) specifying one or more search values (“values”) for the fields to establish associations between the entity and machine data. The values can be used to search for the events that have matching values for the above fields. The entity can be associated with the machine data that is represented by the events that have fields that store values that match the received input.
The computing machine can optionally also receive input (e.g., user input) specifying a type of entity to which the entity definition applies. The computing machine can optionally also receive input (e.g., user input) associating the entity of the entity definition with one or more services. Some implementations of receiving input for an entity type for an entity definition and associating the entity with one or more services are discussed in greater detail below.
Upon the selection of the Configure 702 menu item, a drop-down menu 704 listing configuration options can be displayed. If the user selects the entities option 706 from the drop-down menu 704, a GUI for creating an entity definition can be displayed, as discussed in more detail below. If the user selects the services option 708 from the drop-down menu 704, a GUI for creating a service definition can be displayed, as discussed in more detail below.
For example, the identifying name 904 is webserver01.splunk.com and the entity type 906 is web server. Examples of entity type can include, and are not limited to, host machine, virtual machine, type of server (e.g., web server, email server, database server, etc.) switch, firewall, router, sensor, etc. The fields 908 that are part of the entity definition can be used to normalize the various aliases for the entity. For example, the entity definition specifies three fields 920,922,924 and four values 910 (e.g., values 930,932,934,936) to associate the entity with the events that include any of the four values in any of the three fields.
For example, the event processing system (e.g., event processing system 205 in
In another implementation, the entity definition can specify one or more values 910 to use for a specific field 908. For example, the value 930 (10.11.12.13) can be used for extracting values for the ip field and determine which values match the value 930, and the value 932 (webserver01.splunk.com) and the value 936 (vm-0123) can be used for extracting values for the host 920 field and determining which values match the value 932 or value 936.
In another implementation, GUI 900 includes a list of identifying field/value pairs. A search term that is modeled after these entities can constructed, such that, when a late-binding schema is applied to events, values that match the identifiers associated with the fields defined by the schema will be extracted. For example, if identifier.fields=“X,Y” then the entity definition should include input specifying fields labeled “X” and “Y”. The entity definition should also include input mapping the fields. For example, the entity definition can include the mapping of the fields as “X”:“1”,“Y”:[“2”,“3”]. The event processing system (e.g., event processing system 205 in
GUI 900 can facilitate user input specifying any services 912 that the entity provides. The input can specify one or more services that have corresponding service definitions. For example, if there is a service definition for a service named web hosting service that is provided by the entity corresponding to the entity definition, then a user can specify the web hosting service as a service 912 in the entity definition.
The save button 916 can be selected to save the entity definition in a data store (e.g., data store 290 in
GUI 950 can include text boxes 953A-B that enables a user to specify a name—value pair for informational fields. Informational fields are described in greater detail below. GUI 950 can include a button, which when selected, display additional text boxes 953A-B for specifying a name —value pair for an informational field.
GUI 950 can include a text box 954 that enables a user to associate the entity being represented by the entity definition with one or more services. In one implementation, user input of one or more strings that identify the one or more service is received via text box 954. In one implementation, when text box 954 is selected (e.g., clicked) a list of service definition is displayed which a user can select from. The list can be populated using service definitions that are stored in a service monitoring data store, as described in greater detail below.
At block 1102, the computing machine receives input of a title for referencing a service definition for a service. At block 1104, the computing machine receives input identifying one or more entities providing the service and associates the identified entities with the service definition of the service at block 1106.
At block 1108, the computing machine creates one or more key performance indicators for the service and associates the key performance indicators with the service definition of the service at block 1110.
At block 1112, the computing machine receives input identifying one or more other services which the service is dependent upon and associates the identified other services with the service definition of the service at block 1114. The computing machine can include an indication in the service definition that the service is dependent on another service for which a service definition has been created.
At block 1116, the computing machine can optionally define an aggregate KPI score to be calculated for the service to indicate an overall performance of the service. The score can be a value for an aggregate of the KPIs for the service. The aggregate KPI score can be periodically calculated for continuous monitoring of the service. For example, the aggregate KPI score for a service can be updated in real-time (continuously updated until interrupted). In one implementation, the aggregate KPI score for a service is updated periodically (e.g., every second).
GUI 1400 can include a drop-down 1410 for receiving input for creating one or more KPIs for the service. If the drop-down 1410 is selected, GUI 1900 in
GUI 1400 can include a drop-down 1412 for receiving input for specifying dependencies for the service. If the drop-down 1412 is selected, GUI 1800 in
GUI 1400 can include one or more buttons 1408 to specify whether entities are associated with the service. A selection of “No” 1416 indicates that the service is not associated with any entities and the service definition is not associated with any entity definitions. For example, a service can not be associated with any entities if an end user intends to use the service and corresponding service definition for testing purposes and/or experimental purposes. In another example, a service can not be associated with any entities if the service is dependent one or more other services, and the service is being monitored via the entities of the one or more other services upon which the service depends upon. For example, an end user can wish to use a service without entities as a way to track a business service based on the services which the business service depends upon. If “Yes” 1414 is selected, GUI 1500 in
Referring to
The service definition structure 1720 includes one or more components. Each service definition component relates to a characteristic of the service. For example, there is a service name component 1721, one or more entity filter criteria components 1723A-B, one or more entity association indicator components 1725, one or more KPI components 1727, one or more service dependencies components 1729, and one or more components for other information 1731. The characteristic of the service being represented by a particular component is the particular service definition component's type. In one implementation, the entity filter criteria components 1723A are stored in a service definition. In another implementation, the entity filter criteria components 1723B are stored in association with a service definition (e.g., separately from the service definition but linked to the service definition using, for example, identifiers of the entity filter criteria components 1723B and/or an identifier of the service definition).
The entity definitions that are associated with a service definition can change. In one implementation, as described above, users can manually and explicitly select entity definitions from a list (e.g., list 1504 in GUI 1500 in
The KPI component(s) 1727 can include information that describes one or more KPIs for monitoring the service. As described above, a KPI is a type of performance measurement. For example, various aspects (e.g., CPU usage, memory usage, response time, etc.) of the service can be monitored using respective KPIs.
The service dependencies component(s) 1729 can include information describing one or more other services for which the service is dependent upon, and/or one or more other services which depend on the service being represented by the service definition. In one implementation, a service definition specifies one or more other services which a service depends upon and does not associate any entities with the service, as described in greater detail below. In another implementation, a service definition specifies a service as a collection of one or more other services and one or more entities. Each service definition component stores information for an element. The information can include an element name and one or more element values for the element.
In one implementation, the element name—element value pair(s) within a service definition component serves as a field name-field value pair for a search query. In one implementation, the search query is directed to search a service monitoring data store storing service monitoring data pertaining to the service monitoring system. The service monitoring data can include, and is not limited to, entity definition, service definitions, and key performance indicator (KPI) specifications.
In one example, an element name—element value pair in the entity filter criteria component 1723A-B in the service definition can be used to search the entity definitions in the service monitoring data store for the entity definitions that have matching values for the elements that are named in the entity filter criteria component 1723A-B.
Each entity filter criteria component 1723A-B corresponds to a rule for applying one or more filter criteria defined by the element name-element value pair to the entity definitions. A rule for applying filter criteria can include an execution type and an execution parameter. User input can be received specifying filter criteria, execution types, and execution parameters via a graphical user interface (GUI), as described in greater detail below. The execution type specifies whether the rule for applying the filter criteria to the entity definitions should be executed dynamically or statically. For example, the execution type can be static execution or dynamic execution. A rule having a static execution type can be executed to create associations between the service definition and the entity definitions on a single occurrence based on the content of the entity definitions in a service monitoring data store at the time the static rule is executed. A rule having a dynamic execution type can be initially executed to create current associations between the service definition and the entity definitions, and can then be re-executed to possibly modify those associations based on the then-current content of the entity definitions in a service monitoring data store at the time of re-execution. For example, if the execution type is static execution, the filter criteria can be applied to the entity definitions in the service monitoring data store only once. If the execution type is dynamic execution, the filter criteria can automatically be applied to the entity definitions in the service monitoring data store repeatedly.
The execution parameter specifies when the filter criteria should be applied to the entity definitions in the service monitoring data store. For example, for a static execution type, the execution parameter can specify that the filter criteria should be applied when the service definition is created or when a corresponding filter criteria component is added to (or modified in) the service definition. In another example, for a static execution type, the execution parameter can specify that the filter criteria should be applied when a corresponding KPI is first calculated for the service.
For a dynamic execution type, the execution parameter can specify that the filter criteria should be applied each time a change to the entity definitions in the service monitoring data store is detected. The change can include, for example, adding a new entity definition to the service monitoring data store, editing an existing entity definition, deleting an entity definition, etc. In another example, the execution parameter can specify that the filter criteria should be applied each time a corresponding KPI is calculated for the service.
In one implementation, for each entity definition that has been identified as satisfying any of the filter criteria in the entity filter criteria components 1723A-B for a service, an entity association indicator component 1725 is added to the service definition 1720.
A service monitoring data store can store any number of entity definitions 1751A-B. As described above, an entity definition 1751A-B can include an entity name component 1753A-B, one or more alias components 1755A-D, one or more informational field components, one or more service association components 1759A-B, and one or more other components for other information. A service definition 1760 can include one or more entity filter criteria components 1763A-B that can be used to associate one or more entity definitions 1751A-B with the service definition.
A service definition can include a single service name component that contains all of the identifying information (e.g., name, title, key, and/or identifier) for the service. The value for the name component type in a service definition can be used as the service identifier for the service being represented by the service definition. For example, the service definition 1760 includes a single entity name 1761 component that has an element name of “name” and an element value of “TestService”. The value “TestService” becomes the service identifier for the service that is being represented by service definition 1760.
There can be one or multiple components having the same service definition component type. For example, the service definition 1760 has two entity filter criteria component types (e.g., entity filter criteria components 1763A-B). In one implementation, some combination of a single and multiple components of the same type are used to store information pertaining to a service in a service definition.
Each entity filter criteria component 1763A-B can store a single filter criterion or multiple filter criteria for identifying one or more of the entity definitions (e.g., entity definitions 1751A-B). For example, the entity filter criteria component 1763A stores a single filter criterion that includes an element name “dest” and a single element value “192.*” A value can include one or more wildcard characters as described in greater detail below. The entity filter criterion in component 1763A can be applied to the entity definitions 1753A-B to identify the entity definitions that satisfy the filter criterion “dest=192.*” Specifically, the element name-element value pair can be used for a search query. For example, a search query can search for fields named “dest” and containing a value that begins with the pattern “192.”.
An entity filter criteria component that stores multiple filter criteria can include an element name and multiple values. In one implementation, the multiple values are treated disjunctively. For example, the entity filter criteria 1763B include an element name “name” and multiple values “192.168.1.100” and “hope.mbp14.local”. The entity filter criteria in component 1763B can be applied to the entity definition records 1753A-B to identify the entity definitions that satisfy the filter criteria “name=192.168.1.100” or “name=hope.mbp14.local”. Specifically, the element name and element values can be used for a search query that uses the values disjunctively. For example, a search query can search for fields in the service monitoring data store named “name” and having either a “192.168.1.100” or a “hope.mbp14.local” value.
An element name in the filter criteria in an entity filter criteria component 1763A-B can correspond to an element name in an entity name component (e.g., entity name component 1753A-B), an element name in an alias component (e.g., alias component 1755A-D), or an element name in an informational field component (not shown) in at least one entity definition 1753A-B in a service monitoring data store. The filter criteria can be applied to the entity definitions in the service monitoring data store based on the execution type and execution parameter in the entity filter criteria component 1763A-B.
In one implementation, an entity association indicator component 1765A-B is added to the service definition 1760 for each entity definition that satisfies any of the filter criteria in the entity filter criteria component 1763A-B for the service. The entity association indicator component 1765A-B can include an element name-element value pair to associate the particular entity definition with the service definition. For example, the entity definition record 1751A satisfies the rule “dest=192.*” and the entity association indicator component 1765A is added to the service definition record 1760 to associate the entity definition record 1751A with the TestService specified in the service definition record 1760.
In one implementation, for each entity definition that has been identified as satisfying any of the filter criteria in the entity filter criteria components 1763A-B for a service, a service association component 1758A-B is added to the entity definition 1751A-B. The service association component 1758A-B can include an element name-element value pair to associate the particular service definition 1760 with the entity definition 1751A. For example, the entity definition 1751A satisfies the filter criterion “dest=192.*” associated with the service definition 1760, and the service association component 1758A is added to the entity definition 1751A to associate the TestService with the entity definition 1753A.
In one implementation, the entity definitions 1751A-B that satisfy any of the filter criteria in the service definition 1760 are associated with the service definition automatically. For example, an entity association indicator component 1765A-B can be automatically added to the service definition 1760. In one example, an entity association indicator component 1765A-B can be added to the service definition 1760 when the respective entity definition has been identified.
As described above, the entity definitions 1751A-B can include alias components 1755A-D for associating machine data (e.g., machine data 1-4) with a particular entity being represented by a respective entity definition 1751A-B. For example, entity definition 1753A includes alias component 1755A-B to associate machine data 1 and machine data 2 with the entity named “foobar”. When any of the entity definition components of an entity definition satisfy filter criteria in a service definition 1760, all of the machine data that is associated with the entity named “foobar” can be used for the service being represented by the service definition 1760. For example, the alias component 1755A in the entity definition 1751A satisfies the filter criteria in entity filter criteria 1763A. If a KPI is being determined for the service “TestService” that is represented by service definition 1760, the KPI can be determined using machine data 1 and machine data 2 that are associated with the entity represented by the entity definition 1751A, even though only machine data 1 (and not machine data 2) is associated with the entity represented by definition record 1751A via alias 1755A (the alias used to associate entity definition record 1751A with the service represented by definition record 1760 via filter criteria 1763A).
When filter criteria in the entity filter criteria components 1763A-B are applied to the entity definitions dynamically, changes that are made to the entity definitions 1753A-B in the service monitoring data store can be automatically captured by the entity filter criteria components 1763A-B and reflected, for example, in KPI determinations for the service, even after the filter criteria have been defined. The entity definitions that satisfy filter criteria for a service can be associated with the respective service definition even if a new entity is created significantly after a rule has already been defined.
For example, a new machine can be added to an IT environment and a new entity definition for the new machine can be added to the service monitoring data store. The new machine has an IP address containing “192.” and can be associated with machine data X and machine data Y. The filter criteria in the entity filter criteria component 1763 can be applied to the service monitoring data store and the new machine can be identified as satisfying the filter criteria. The association of the new machine with the service definition 1760 for TestService is made without user interaction. An entity association indicator for the new machine can be added to the service definition 1760 and/or a service association can be added to the entity definition of the new machine. A KPI for the TestService can be calculated that also takes into account machine data X and machine data Y for the new machine.
As described above, in one implementation, a service definition 1760 stores no more than one component having a name component type. The service definition 1760 can store zero or more components having an entity filter criteria component type, and can store zero or more components having an informational field component type. In one implementation, user input is received via a GUI (e.g., service definition GUI) to add one or more other service definition components to a service definition record.
Various implementations can use a variety of data representation and/or organization for the component information in a service definition record based on such factors as performance, data density, site conventions, and available application infrastructure, for example. The structure (e.g., structure 1720 in
At block 1741, the computing machine causes display of a graphical user interface (GUI) that enables a user to specify filter criteria for identifying one or more entity definitions. An example GUI that enables a user to specify filter criteria is described in greater detail below.
At block 1743, the computing machine receives user input specifying one or more filter criteria corresponding to a rule. A rule with a single filter criterion can include an element name—element value pair where there is a single value. For example, the single filter criterion can be “name=192.168.1.100”. A rule with multiple filter criteria can include an element name and multiple values. The multiple values can be treated disjunctively. For example, the multiple criteria can be “name=192.168.1.100 or hope.mbp14.local”. In one example, an element name in the filter criteria corresponds to an element name of an alias component in at least one entity definition in a data store. In another example, an element name in the filter criteria corresponds to an element name of an informational field component in at least one entity definition in the data store.
At block 1744, the computing machine receives user input specifying an execution type and execution parameter for each rule. The execution type specifies how the filter criteria should be applied to the entity definitions. The execution type can be static execution or dynamic execution. The execution parameter specifies when the filter criteria should be applied to the entity definitions. User input can be received designating the execution type and execution parameter for a particular rule via a GUI, as described below.
Referring to
At block 1746, the computing machine stores the execution type for each rule in association with the service definition. As described above, the execution type for each rule can be stored in a respective entity filter criteria component.
At block 1747, the computing machine applies the filter criteria to identify one or more entity definitions satisfying the filter criteria. The filter criteria can be applied to the entity definitions in the service monitoring data store based on the execution type and the execution parameter that has been specified for a rule to which the filter criteria pertains. For example, if the execution type is static execution, the computing machine can apply the filter criteria a single time. For a static execution type, the computing machine can apply the filter criteria a single time when user input, which accepts the filter criteria that are specified via the GUI, is received. In another example, the computing machine can apply the filter criteria a single time the first KPI is being calculated for the service.
If the execution type is dynamic execution, the computing machine can apply the filter criteria multiple times. For example, for a dynamic execution type, the computing machine can apply the filter criteria each time a change to the entity definitions in the service monitoring data store is detected. The computing machine can monitor the entity definitions in the service monitoring data store to detect any change that is made to the entity definitions. The change can include, for example, adding a new entity definition to the service monitoring data store, editing an existing entity definition, deleting an entity definition, etc. In another example, the computing machine can apply the filter criteria each time a KPI is calculated for the service.
At block 1749, the computing machine associates the identified entity definitions with the service definition. The computing machine stores an association indicator in a stored service definition or a stored entity definition.
A static filter criterion can be executed once (or on demand). Static execution of the filter criteria for a particular rule can produce one or more entity associations with the service definition. For example, a rule can have the static filter criterion “name=192.168.1.100”. The filter criterion “name=192.168.1.100” can be applied to the entity definitions in the service monitoring data store once, and a search query is performed to identify the entity definition records that satisfy “name=192.168.1.100”. The result can be a single entity definition, and the single entity definition is associated with the service definition. The association will not the static filter criterion “name=192.168.1.100” is applied another time (e.g., on demand).
Dynamic filter criterion can be run multiple times automatically, i.e., manual vs. automatic. Dynamic execution of the filter criteria for a particular rule can produce a dynamic entity association with the service definition. The filter criteria for the rule can be executed at multiple times, and the entity associations can be different from execution to execution. For example, a rule can have the dynamic filter criterion “name=192.*”. When the filter criterion “name=192.*” is applied to the entity definitions in the service monitoring data store at time X, a search query is performed to identify the entity definitions that satisfy “name=192.*”. The result can be one hundred entity definitions, and the one hundred entity definitions are associated with the service definition. One week later, a new data center can be added to the IT environment, and the filter criterion “name=192.*” can be again applied to the entity definitions in the service monitoring data store at time Y. A search query is performed to identify the entity definitions that satisfy “name=192.*”. The result can be four hundred entity definitions, and the four hundred entity definitions are associated with the service definition. The filter criterion “name=192.168.1.100” can be applied multiple times and the entity definitions that satisfy the filter criterion can differ from time to time.
GUI 1770 can include a service definition status bar 1771 that displays the various stages for creating a service definition using the GUIs of the service monitoring system. The stages can include, for example, and are not limited to, a service information stage, a key performance indicator (KPI) stage, and a service dependencies stage. The status bar 1771 can be updated to display an indicator (e.g., shaded circle) corresponding to a current stage.
GUI 1770 can include a save button 1789 and a save-and-next button 1773. For each stage, if the save button 1789 is activated, the settings that have been specified via the GUI 1770 for a particular stage (e.g., service information stage) can be stored in a data store, without having to progress to a next stage. For example, if user input for the service name, description, and entity filter criteria has been received, and the save button 1789 is selected, the specified service name, description, and entity filter criteria can be stored in a service definition record (e.g., service definition record 1760 in
GUI 1770 can facilitate user input specifying a name 1775 and optionally a description 1777 for the service definition for a service. For example, user input of the name “TestService” and the description “Service that contains entities” is received.
GUI 1770 can include one or more buttons (e.g., “Yes” button 1779, “No” button 1781) that can be selected to specify whether entities are associated with the service. A selection of the “No” button 1781 indicates that the service being defined will not be associated with any entities, and the resulting service definition has no associations with any entity definitions. For example, a service can not be associated with any entities if an end user intends to use the service and corresponding service definition for testing purposes and/or experimental purposes. In another example, a service can not be associated with any entities if the service is dependent on one or more other services, and the service is being monitored via the entities of the one or more other services upon which the service depends upon. For example, an end user can wish to use a service without entities as a way to track a business service based on the services which the business service depends upon.
If the “Yes” button 1779 is selected, an entity portion 1783 enabling a user to specify filter criteria for identifying one or more entity definitions to associate with the service definition is displayed. The filter criteria can correspond to a rule. The entity portion 1783 can include a button 1785, which when selected, displays a button and text box to receive user input specifying an element name and one or more corresponding element values for filter criteria corresponding to a rule, as described below.
Referring to
In one implementation, the list 17105 is populated using the element names that are in the alias components that are in the entity definition records that are stored in the service monitoring data store. In one implementation, the list 17105 is populated using the element names from the informational field components in the entity definitions. In one implementation, the list 17105 is populated using field names that are specified by a late-binding schema that is applied to events. In one implementation, the list 17105 is populated using any combination of alias component element names, informational field component element names, and/or field names.
User input can be received that specifies one or more values for the specified element name. For example, a user can provide a string for specifying one or more values via text box 17109. In another example, a user can select text box 17109, and a list of values that correspond to the specified element name can be displayed as described below.
One or more values from the list 17207 can be specified for the filter criteria of a rule. For example, the filter criteria for rule 17203 can include the value “192.168.1.100” 17209 and the value “hope.mbp14.local” 17211. In one implementation, when multiple values are part of the filter criteria for a rule, the rule treats the values disjunctively. For example, when the rule 17203 is to be executed, the rule triggers a search query to be performed to search for entity definition records that have either an element name “name” and a corresponding “192.168.1.100” value, or have an element name “name” and a corresponding “hope.mbp14.local” value.
A service definition can include multiple sets of filter criteria corresponding to different rules. In one implementation, the different rules are treated disjunctively, as described below.
Rule 17303 has multiple filter criteria that include an element name “name” 17301 and multiple element values (e.g., the value “192.168.100” 17309 and the value “hope.mbp14.local” 17391). In one implementation, the multiple filter criteria are processed disjunctively. For example, rule 17303 can be processed to search for entity definitions that satisfy “name=192.168.1.100” or “name=hope.mbp14.local”. Rule 17305 has a single filter criterion that includes element name “dest” 17307 and a single element value “192.*” 17313 for a single filter criterion of “dest=192.*”.
In one example, an element value for filter criteria of a rule can be expressed as an exact string (e.g., “192.168.1.100” and “hope.mbp14.local”) and the rule can be executed to perform a search query for an exact string match. In another example, an element value for filter criteria of a rule can be expressed as a combination of characters and one or more wildcard characters. For example, the value “192.*” for rule 17305 contains an asterisk as a wildcard character. A wildcard character in a value can denote that when the rule is executed, a wildcard search query is to be performed to identify entity definitions using pattern matching. In another example, an element value for a filter criteria rule can be expressed as a regular expression (regex) as another possible option to identify entity definitions using pattern matching.
In one implementation, when multiple sets of filter criteria for different rules are specified for a service definition, the multiple rules are processed disjunctively. The entity definitions that satisfy any of the rules are the entity definitions that are to be associated with the service definition. For example, any entity definitions that satisfy “name=192.168.1.100 or hope.mbp14.local” or “dest=192.*” are the entity definitions that are to be associated with the service definition.
GUI 17300 can display, for each rule being specified, a button 17327A-B for selecting the execution parameter for the particular rule. GUI 17300 can display, for each rule being specified, a button 17325A-B for selecting the execution type (e.g., static execution type, dynamic execution type) for the particular rule. For example, rule 17303 has a static execution type, and rule 17305 has a dynamic execution type.
A user can wish to select a static execution type for a rule, for example, if the user anticipates that one or more entity definitions can not satisfy a rule that has a wildcard-based filter criterion. For example, a service can already have the rule with filter criterion “dest=192.*”, but the user can wish to also associate a particular entity, which does not have “192” in its address, with the service. A static rule that searches for the particular entity by entity name, such as rule with filter criterion “name=hope.mbp14.local” can be added to the service definition.
In another example, a user can wish to select a static execution type for a rule, for example, if the user anticipates that only certain entities will ever be associated with the service. The user can not want any changes to be made inadvertently to the entities that are associated with the service by the dynamic execution of a rule.
GUI 17300 can display preview information for the entity definitions that satisfy the filter criteria for the rule(s). The preview information can include a number of the entity definitions that satisfy the filter criteria and/or the execution type of the rule that pertains to the particular entity definition. For example, preview information 17319 includes the type “static” and the number “2”. In one implementation, when the execution type is not displayed, the preview information represents a dynamic execution type. For example, preview information 17315 and preview information 17318 pertain to rules that have a dynamic execution type.
The preview information can represent execution of a particular rule. For example, preview information 17315 is for rule 17305. A combination of the preview information can represent execution of all of the rules for the service. For example, the combination of preview information 17318 and preview information 17319 is a summary of the execution of rule 17303 and rule 17305.
GUI 17300 can include one or more buttons 17317, 17321, which when selected, can re-apply the corresponding rule(s) to update the corresponding preview information. For example, the filter criteria for rule 17305 can be edited to “dest=192.168.*” and button 17317 can be selected to apply the edited filter criteria for rule 17305 to the entity definitions in the service monitoring data store. The corresponding preview information 17315 and the preview information 17318 in the summary can or can not change depending on the search results.
In one implementation, the preview information includes a link, which when selected, can display a list of the entity definitions that are being represented by the preview information. For example, preview information 17315 for rule 17307 indicates that there are 4 entity definitions that satisfy the rule “dest=192.*”. The preview information 17315 can include a link, which when activated can display a list of the 4 entity definition, as described in greater detail below. Referring to
At block 1902, the computing machine receives input (e.g., user input) of a name for a KPI to monitor a service or an aspect of the service. For example, a user can wish to monitor the service's response time for requests, and the name of the KPI can be “Request Response Time.” In another example, a user can wish to monitor the load of CPU(s) for the service, and the name of the KPI can be “CPU Usage.”
At block 1904, the computing machine creates a search query to produce a value indicative of how the service or the aspect of the service is performing. For example, the value can indicate how the aspect (e.g., CPU usage, memory usage, request response time) is performing at point in time or during a period of time. Some implementations for creating a search query are discussed in greater detail below. In one implementation, the computing machine receives input (e.g., user input), via a graphical interface, of search processing language defining the search query. Some implementations for creating a search query from input of search processing language are discussed in greater detail below. In one implementation, the computing machine receives input (e.g., user input) for defining the search query using a data model. Some implementations for creating a search query using a data model are discussed in greater detail below.
At block 1906, the computing machine sets one or more thresholds for the KPI. Each threshold defines an end of a range of values. Each range of values represents a state for the KPI. The KPI can be in one of the states (e.g., normal state, warning state, critical state) depending on which range the value falls into. Some implementations for setting one or more thresholds for the KPI are discussed in greater detail below.
At block 2002, the computing machine receives input (e.g., user input) specifying a field to use to derive a value indicative of the performance of a service or an aspect of the service to be monitored. As described above, machine data can be represented as events. Each of the events is raw data. A late-binding schema can be applied to each of the events to extract values for fields defined by the schema. The received input can include the name of the field from which to extract a value when executing the search query. For example, the received user input can be the field name “spent” that can be used to produce a value indicating the time spent to respond to a request.
At block 2004, the computing machine optionally receives input specifying a statistical function to calculate a statistic using the value in the field. In one implementation, a statistic is calculated using the value(s) from the field, and the calculated statistic is indicative of how the service or the aspect of the service is performing. As discussed above, the machine data used by a search query for a KPI to produce a value can be based on a time range. For example, the time range can be defined as “Last 15 minutes,” which would represent an aggregation period for producing the value. In other works, if the query is executed periodically (e.g., every 5 minutes), the value resulting from each execution can be based on the last 15 minutes on a rolling basis, and the value resulting from each execution can be based on the statistical function. Examples of statistical functions include, and are not limited to, average, count, count of distinct values, maximum, mean, minimum, sum, etc. For example, the value can be from the field “spent” the time range can be “Last 15 minutes,” and the input can specify a statistical function of average to define the search query that should produce the average of the values of field “spent” for the corresponding 15 minute time range as a statistic. In another example, the value can be a count of events satisfying the search criteria that include a constraint for the field (e.g., if the field is “response time,” and the KPI is focused on measuring the number of slow responses (e.g., “response time” below x) issued by the service).
At block 2006, the computing machine defines the search query based on the specified field and the statistical function. The computing machine can also optionally receive input of an alias to use for a result of the search query. The alias can be used to have the result of the search query to be compared to one or more thresholds assigned to the KPI.
In one implementation, the search query is defined from input (e.g., user input), received via a graphical interface, of search processing language defining the search query. GUI 2200 can include a button 2206 for facilitating user input of search processing language defining the search query. If button 2206 is selected, a GUI for facilitating user input of search processing language defining the search query can be displayed, as discussed in greater detail below.
Referring to
The input can optionally specify a statistical function (e.g., avg 2311) that should be used to calculate a statistic based on the value corresponding to a late-binding schema being applied to an event. The late-binding schema will extract a portion of event data corresponding to the field (e.g., spent 2313). For example, the value associated with the field “spent” can be extracted from an event by applying a late-binding schema to the event. The input can specify that the average of the values corresponding to the field “spent” should be produced by the search query. The input can optionally specify an alias (e.g., rsp_time 2315) to use (e.g., as a virtual field name) for a result of the search query (e.g., avg(spent) 2314). The alias 2315 can be used to have the result of the search query to be compared with one or more thresholds assigned to the KPI.
GUI 2300 can display a link 2304 to facilitate user input to request that the search criteria be tested by running the search query for the KPI. In one implementation, when input is received requesting to test the search criteria for the search query, a search GUI is displayed.
In some implementations, GUI 2300 can facilitate user input for creating one or more thresholds for the KPI. The KPI can be in one of multiple states (e.g., normal, warning, critical). Each state can be represented by a range of values. During a certain time, the KPI can be in one of the states depending on which range the value, which is produced at that time by the search query for the KPI, falls into. GUI 2300 can include a button 2307 for creating the threshold for the KPI. Each threshold for a KPI defines an end of a range of values, which represents one of the states. Some implementations for creating one or more thresholds for the KPI are discussed in greater detail below.
GUI 2300 can include a button 2309 for editing which entity definitions to use for the KPI. Some implementations for editing which entity definitions to use for the KPI are discussed in greater detail below.
In some implementations, GUI 2300 can include a button 2320 to receive input assigning a weight to the KPI to indicate an importance of the KPI for the service relative to other KPIs defined for the service. The weight can be used for calculating an aggregate KPI score for the service to indicate an overall performance for the service, as discussed in greater detail below. GUI 2300 can include a button 2323 to receive input to define how often the KPI should be measured (e.g., how often the search query defining the KPI should be executed) for calculating an aggregate KPI score for the service to indicate an overall performance for the service, as discussed in greater detail below. The importance (e.g., weight) of the KPI and the frequency of monitoring (e.g., a schedule for executing the search query) of the KPI can be used to determine an aggregate KPI score for the service. The score can be a value of an aggregate of the KPIs of the service. Some implementations for using the importance and frequency of monitoring for each KPI to determine an aggregate KPI score for the service are discussed in greater detail below.
GUI 2300 can display an input box 2305 for a field to which the threshold(s) can be applied. In particular, a threshold can be applied to the value produced by the search query defining the KPI. Applying a threshold to the value produced by the search query is described in greater detail below.
If button 2402 is selected, GUI 2500 in
Referring to
Referring to
GUI 2400 can include a button 2412 for editing which entity definitions to use for the KPI. Some implementations for editing which entity definitions to use for the KPI are discussed in greater detail below.
GUI 2400 can include a button 2418 for saving a definition of a KPI and an association of the defined KPI with a service. The KPI definition and association with a service can be stored in a data store.
The value for the KPI can be produced by executing the search query of the KPI. In one example, the search query defining the KPI can be executed upon receiving a request (e.g., user request). For example, a service-monitoring dashboard, which is described in greater detail below, can display a KPI widget providing a numerical or graphical representation of the value for the KPI. A user can request the service-monitoring dashboard to be displayed, and the computing machine can cause the search query for the KPI to execute in response to the request to produce the value for the KPI. The produced value can be displayed in the service-monitoring dashboard
In another example, the search query defining the KPI can be executed based on a schedule. For example, the search query for a KPI can be executed at one or more particular times (e.g., 6:00 am, 12:00 pm, 6:00 pm, etc.) and/or based on a period of time (e.g., every 5 minutes). In one example, the values produced by a search query for a KPI by executing the search query on a schedule are stored in a data store, and are used to calculate an aggregate KPI score for a service, as described in greater detail below. An aggregate KPI score for the service is indicative of an overall performance of the KPIs of the service.
Referring to
The machine data used by a search query defining a KPI to produce a value can be based on a time range. The time range can be a user-defined time range or a default time range. For example, in the service-monitoring dashboard example above, a user can select, via the service-monitoring dashboard, a time range to use (e.g., Last 15 minutes) to further specify, for example, based on time-stamps, which machine data should be used by a search query defining a KPI. In another example, the time range can be to use the machine data since the last time the value was produced by the search query. For example, if the KPI is assigned a frequency of monitoring of 5 minutes, then the search query can execute every 5 minutes, and for each execution use the machine data for the last 5 minutes relative to the execution time. In another implementation, the time range is a selected (e.g., user-selected) point in time and the definition of an individual KPI can specify the aggregation period for the respective KPI. By including the aggregation period for an individual KPI as part of the definition of the respective KPI, multiple KPIs can run on different aggregation periods, which can more accurately represent certain types of aggregations, such as, distinct counts and sums, improving the utility of defined thresholds. In this manner, the value of each KPI can be displayed at a given point in time. In one example, a user can also select “real time” as the point in time to produce the most up to date value for each KPI using its respective individually defined aggregation period.
GUI 2400 can include a button 2414 to receive input assigning a weight to the KPI to indicate an importance of the KPI for the service relative to other KPIs defined for the service. The importance (e.g., weight) of the KPI can be used to determine an aggregate KPI score for the service, which is indicative of an overall performance of the KPIs of the service. Some implementations for using the importance and frequency of monitoring for each KPI to determine an aggregate KPI score for the service are discussed in greater detail below.
Referring to
GUI 2700 can facilitate user input for selecting one or more entity definitions from the member list 2704 and dragging the selected entity definition(s) to an exclusion list 2712 to indicate that the entities identified in each selected entity definition should not be considered for the current KPI. This exclusion means that the search criteria of the search query defining the KPI is changed to no longer search for machine data pertaining to the entities identified in the entity definitions from the exclusion list 2712. For example, entity definition 2705 (e.g., webserver07.splunk.com) can be selected and dragged to the exclusion list 2712. When the search query for the KPI produces a value, the value will be derived from machine data, which does not include machine data pertaining to webserver07.splunk.com.
At block 2802, the computing machine identifies a service definition for a service. In one implementation, the computing machine receives input (e.g., user input) selecting a service definition. The computing machine accesses the service definition for a service from memory.
At block 2804, the computing machine identifies a KPI for the service. In one implementation, the computing machine receives input (e.g., user input) selecting a KPI of the service. The computing machine accesses data representing the KPI from memory.
At block 2806, the computing machine causes display of one or more graphical interfaces enabling a user to set a threshold for the KPI. The KPI can be in one of multiple states. Example states can include, and are not limited to, unknown, trivial state, informational state, normal state, warning state, error state, and critical state. Each state can be represented by a range of values. At a certain time, the KPI can be in one of the states depending on which range the value, which is produced by the search query for the KPI, falls into. Each threshold defines an end of a range of values, which represents one of the states. Some examples of graphical interfaces for enabling a user to set a threshold for the KPI are discussed in greater detail below.
At block 2808, the computing machine receives, through the graphical interfaces, an indication of how to set the threshold for the KPI. The computing machine can receive input (e.g., user input), via the graphical interfaces, specifying the field or alias that should be used for the threshold(s) for the KPI. The computing machine can also receive input (e.g., user input), via the graphical interfaces, of the parameters for each state. The parameters for each state can include, for example, and not limited to, a threshold that defines an end of a range of values for the state, a unique name, and one or more visual indicators to represent the state.
In one implementation, the computing machine receives input (e.g., user input), via the graphical interfaces, to set a threshold and to apply the threshold to the KPI as determined using the machine data from the aggregate of the entities associated with the KPI.
In another implementation, the computing machine receives input (e.g., user input), via the graphical interfaces, to set a threshold and to apply the threshold to a KPI as the KPI is determine using machine data on a per entity basis for the entities associated with the KPI. For example, the computing machine can receive a selection (e.g., user selection) to apply thresholds on a per entity basis, and the computing machine can apply the thresholds to the value of the KPI as the value is calculated per entity.
For example, the computing machine can receive input (e.g., user input), via the graphical interfaces, to set a threshold of being equal or greater than 80% for the KPI for Avg CPU Load, and the KPI is associated with three entities (e.g., Entity-1, Entity-2, and Entity-3). When the KPI is determined using data for Entity-1, the value for the KPI for Avg CPU Load can be at 50%. When the KPI is determined using data for Entity-2, the value for the KPI for Avg CPU Load can be at 50%. When the KPI is determined using data for Entity-3, the value for the KPI for Avg CPU Load can be at 80%. If the threshold is applied to the values of the aggregate of the entities (two at 50% and one at 80%), the aggregate value of the entities is 60%, and the KPI would not exceed the 80% threshold. If the threshold is applied using an entity basis for the thresholds (applied to the individual KPI values as calculated pertaining to each entity), the computing machine can determine that the KPI pertaining to one of the entities (e.g., Entity-3) satisfies the threshold by being equal to 80%.
At block 2810, the computing machine determines whether to set another threshold for the KPI. The computing machine can receive input, via the graphical interface, indicating there is another threshold to set for the KPI. If there is another threshold to set for the KPI, the computing machine returns to block 2808 to set the other threshold.
If there is not another threshold to set for the KPI (block 2810), the computing machine determines whether to set a threshold for another KPI for the service at block 2812. The computing machine can receive input, via the graphical interface, indicating there is a threshold to set for another KPI for the service. In one implementation, there are a maximum number of thresholds that can be set for a KPI. In one implementation, a same number of states are to be set for the KPIs of a service. In one implementation, a same number of states are to be set for the KPIs of all services. The service monitoring system can be coupled to a data store that stores configuration data that specifies whether there is a maximum number of thresholds for a KPI and the value for the maximum number, whether a same number of states is to be set for the KPIs of a service and the value for the number of states, and whether a same number of states is to be set for the KPIs of all of the service and the value for the number of states. If there is a threshold to set for another KPI, the computing machine returns to block 2804 to identity the other KPI.
At block 2814, the computing machine stores the one or more threshold settings for the one or more KPIs for the service. The computing machine associates the parameters for a state defined by a corresponding threshold in a data store that is coupled to the computing machine.
As will be discussed in more detail below, implementations of the present disclosure provide a service-monitoring dashboard that includes KPI widgets (“widgets”) to visually represent KPIs of the service. A widget can be a Noel gauge, a spark line, a single value, or a trend indicator. A Noel gauge is indicator of measurement as described in greater detail below. A widget of a KPI can present one or more values indicating how a respective service or an aspect of a service is performing at one or more points in time. The widget can also illustrate (e.g., using visual indicators such as color, shading, shape, pattern, trend compared to a different time range, etc.) the KPI's current state defined by one or more thresholds of the KPI.
GUI 2950 in
The search of 2902 is represented by search processing language for defining a search query that produces a value derived from machine data pertaining to the entities that provide the service and which are identified in the service definition. The value can indicate a current state of the KPI (e.g., normal, warning, critical). An entity identifier of 2906 specifies one or more fields (e.g., dest, ip address) that can be used to identify one or more entities whose machine data should be used in the search of 2902. The threshold field GUI element 2904 enables specification of one or more fields from the entities' machine data that should be used to derive a value produced by the search of 2902. One or more thresholds can be applied to the value associated with the specified field(s) of 2904. In particular, the value can be produced by a search query using the search of 2902 and can be, for example, the value of threshold field 2904 associated with an event satisfying search criteria of the search query when the search query is executed, a statistic calculated based on values for the specified threshold field of 2904 associated with the one or more events satisfying the search criteria of the search query when the search query is executed, or a count of events satisfying the search criteria of the search query that include a constraint for the threshold field of 2904, etc. In the example illustrated in GUI 2960, the designated threshold field of 2904 is “cpu_load_percent,” which can represent the percentage of the maximum processor load currently being utilized on a particular machine. In other examples, the threshold(s) can be applied a field specified in 2904 which can represent other metrics such as total memory usage, remaining storage capacity, server response time, or network traffic, for example.
In one implementation, the search query includes a machine data selection component and a determination component. The machine data selection component is used to arrive at a set of machine data from which to calculate a KPI. The determination component is used to derive a representative value for an aggregate of the set of machine data. In one implementation, the machine data selection component is applied once to the machine data to gather the totality of the machine data for the KPI, and returns the machine data sorted by entity, to allow for repeated application of the determination component to the machine data pertaining to each entity on an individual basis. In one implementation, portions of the machine data selection component and the determination component can be intermixed within search language of the search query (the search language depicted in 2902, as an example of search language of a search query).
KPI monitoring parameters 2965 refer to parameters that indicate how to monitor the state of the KPI defined by the search of 2902. In one embodiment, KPI monitoring parameters 2965 include the importance indicator of 2962, the calculation frequency indicator of 2964, and the calculation period indicator of element 2966.
GUI element 2964 can include a drop-down menu with various interval options for the calculation frequency indicator. The interval options indicate how often the KPI search should run to calculate the KPI value. These options can include, for example, every minute, every 15 minutes, every hour, every 5 hours, every day, every week, etc. Each time the chosen interval is reached, the KPI is recalculated and the KPI value is populated into a summary index, allowing the system to maintain a record indicating the state of the KPI over time.
GUI element 2966 can include individual GUI elements for multiple calculation parameters, such as drop-down menus for various statistic options 2966a, periods of time options 2966b, and bucketing options 2966c. The statistic options drop-down 2966a indicates a selected one (i.e., “Average”) of the available methods in the drop-down (not shown) that can be applied to the value(s) associated with the threshold field of 2904. The expanded drop-down can display available methods such as average, maximum, minimum, median, etc. The periods of time options drop-down 2966b indicates a selected one (i.e., “Last Hour”) of the available options (not shown). The selected period of time option is used to identify events, by executing the search query, associated with a specific time range (i.e., the period of time) and each available option represents the period over which the KPI value is calculated, such as the last minute, last 15 minutes, last hour, last 4 hours, last day, last week, etc. Each time the KPI is recalculated (e.g., at the interval specified using 2964), the values are determined according to the statistic option specified using 2966a, over the period of time specified using 2966b. The bucketing options of drop-down 2966c each indicate a period of time from which the calculated values should be grouped together for purposes of determining the state of the KPI. The bucketing options can include by minute, by 15 minutes, by hour, by four hours, by day, by week, etc. For example, when looking at data over the last hour and when a bucketing option of 15 minutes is selected, the calculated values can be grouped every 15 minutes, and if the calculated values (e.g., the maximum or average) for the 15 minute bucket cross a threshold into a particular state, the state of the KPI for the whole hour can be set to that particular state.
Importance indicator of 2962 can include a drop-down menu with various weighting options. As discussed in more detail with respect to
Referring to
Referring to
Each state of the KPI can have a name, and can be represented by a range of values, and a visual indicator. The range of values is defined by one or more thresholds that can provide the minimum end and/or the maximum end of the range of values for the state. The characteristics of the state (e.g., the name, the range of values, and a visual indicator) can be edited via input fields of the respective GUI element.
In the example shown in
For each state, GUI 3100 can include a GUI element that displays a name (e.g., a unique name for that KPI) 3109, a threshold 3110, and a visual indicator 3112 (e.g., an icon having a distinct color for each state). The unique name 3109, a threshold 3110, and a visual indicator 3112 can be displayed based on user input received via the input fields of the respective GUI element. For example, the name “Normal” can be specified for state 3106, the name “Warning” can be specified for state 3104, the name “Critical” can be specified for state 3102.
The visual indicator 3112 can be, for example, an icon having a distinct visual characteristic such as a color, a pattern, a shade, a shape, or any combination of color, pattern, shade and shape, as well as any other visual characteristics. For each state, the GUI element can display a drop-down menu 3114, which when selected, displays a list of available visual characteristics. A user selection of a specific visual characteristic (e.g., a distinct color) can be received for each state.
For each state, input of a threshold value representing the minimum end of the range of values for the corresponding state of the KPI can be received via the threshold portion 3110 of the GUI element. The maximum end of the range of values for the corresponding state can be either a preset value or can be defined by (or based on) the threshold associated with the succeeding state of the KPI, where the threshold associated with the succeeding state is higher than the threshold associated with the state before it.
For example, for Normal state 3106, the threshold value 0 can be received to represent the minimum end of the range of KPI values for that state. The maximum end of the range of KPI values for the Normal state 3106 can be defined based on the threshold associated with the succeeding state (e.g., Warning state 3104) of the KPI. For example, the threshold value 50 can be received for the Warning state 3104 of the KPI. Accordingly, the maximum end of the range of KPI values for the Normal state 3106 can be set to a number immediately preceding the threshold value of 50 (e.g., it can be set to 49 if the values used to indicate the KPI state are integers).
The maximum end of the range of KPI values for the Warning state 3104 is defined based on the threshold associated with the succeeding state (e.g., Critical state 3102) of the KPI. For example, the threshold value 75 can be received for the Critical state 3102 of the KPI, which can cause the maximum end of the range of values for the Warning state 3104 to be set to 74. The maximum end of the range of values for the highest state (e.g., Critical state 3102) can be a preset value or an indefinite value.
When input is received for a threshold value for a corresponding state of the KPI and/or a visual characteristic for an icon of the corresponding state of the KPI, GUI 3100 reflects this input by dynamically modifying a visual appearance of a vertical UI element (e.g., column 3118) that includes sections that represent the defined states for the KPI. Specifically, the sizes (e.g., heights) of the sections can be adjusted to visually illustrate ranges of KPI values for the states of the KPI, and the threshold values can be visually represented as marks on the column 3118. In addition, the appearance of each section is modified based on the visual characteristic (e.g., color, pattern) selected by the user for each state via a drop-down menu 3114. In some implementations, once the visual characteristic is selected for a specific state, it is also illustrated by modified appearance (e.g., modified color or pattern) of icon 3112 positioned next to a threshold value associated with that state.
For example, if the color green is selected for the Normal state 3106, a respective section of column 3118 can be displayed with the color green to represent the Normal state 3106. In another example, if the value 50 is received as input for the minimum end of a range of values for the Warning state 3104, a mark 3117 is placed on column 3118 to represent the value 50 in proportion to other marks and the overall height of the column 3118. As discussed above, the size (e.g., height) of each section of the UI element (e.g., column) 3118 is defined by the minimum end and the maximum end of the range of KPI values of the corresponding state.
In one implementation, GUI 3100 displays one or more pre-defined states for the KPI. Each predefined state is associated with at least one of a pre-defined unique name, a pre-defined value representing a minimum end of a range of values, or a predefined visual indicator. Each pre-defined state can be represented in GUI 3100 with corresponding GUI elements as described above.
GUI 3100 can facilitate user input to specify a maximum value 3116 and a minimum value 3120 for the combination of the KPI states to define a scale for a widget that represents the KPI. Some implementations of widgets for representing KPIs are discussed in greater detail below. GUI 3100 can display a button 3122 for receiving input indicating whether to apply the threshold(s) to the aggregate KPI of the service or to the particular KPI or both. The application of threshold(s) to the aggregate KPI of the service or to a particular KPI is discussed in more detail below.
In GUI 3160 of
In GUI 3159 of
A per-entity threshold type represents thresholds applied separately to KPI contributions of individual KPI entities of the service. With a per-entity threshold type, a current KPI state can be determined by applying the determination component to an aggregate of machine data pertaining to an individual KPI entity to determine a KPI contribution of the individual KPI entity, comparing at least one per-entity threshold with a KPI contribution separately for each individual KPI entity, and selecting the KPI state based on a threshold comparison with a KPI contribution of a single entity. In other words, a contribution of an individual KPI entity can define the current state of the KPI of the service. For example, if the KPI of the service is below a critical threshold corresponding to the start of a critical state but a contribution of one of the KPI entities is above the critical threshold, the state of the KPI can be determined as critical.
A combined threshold type represents discrete thresholds applied separately to the KPI values for the service and to the KPI contributions of individual entities in the service. With a combined threshold type, a current KPI state can be determined twice—first by comparing at least one aggregate threshold with the KPI of the service, and second by comparing at least one per-entity threshold with a KPI contribution separately for each individual KPI entity.
In the example of
In GUI 3170 of
In GUI 3180 of
In one implementation, a visual indicator, also referred to herein as a “lane inspector,” can be present in any of the GUIs 3150-3180. The lane inspector includes, for example, a line or other indicator that spans vertically across the bands at a given point in time along the horizontal time axis. The lane inspector can be user manipulable such that it can be moved along the time axis to different points. In one implementation, the lane inspector includes a display of the point in time at which it is currently located. In one implementation, the lane inspector further includes a display of a KPI value reflected in each of the line charts at the current point in time illustrated by the lane inspector. Additional details of the lane inspector are described below, but are equally applicable to this implementation.
At block 3191, the computing machine causes display of a GUI that presents information specifying a service definition for a service and a specification for determining a KPI for the service. In one implementation, the service definition identifies a service provided by a plurality of entities each having corresponding machine data. The specification for determining the KPI refers to the KPI definitional information (e.g., which entities, which records/fields from machine data, what time frame, etc.) that is being defined and is stored as part of the service definition or in association with the service definition. In one implementation, the KPI is defined by a search query that produces a value derived from the machine data pertaining to one or more KPI entities selected from among the plurality of entities. The KPI entities can include a set of entities of the service (i.e., service entities) whose relevant machine data is used in the calculation of the KPI. Thus, the KPI entities can include either whole set or a subset of the service entities. The value produced by the search query can be indicative of a performance assessment for the service at a point in time or during a period of time. In one implementation, the search query includes a machine data selection component that is used to arrive at a set of data from which to calculate a KPI and a determination component to derive a representative value for an aggregate of machine data. The determination component is applied to the identified set of data to produce a value on a per-entity basis (a KPI contribution of an individual entity). In one alternative, the machine data selection component is applied once to the machine data to gather the totality of the machine data for the KPI, and returns the machine data sorted by entity, to allow for repeated application of the determination component to the machine data pertaining to each entity on an individual basis.
At block 3192, the computing machine receives user input specifying one or more entity thresholds for each of the KPI entities. The entity thresholds each represent an end of a range of values corresponding to a particular KPI state from among a set of KPI states, as described above.
At block 3193, the computing machine stores the entity thresholds in association with the specification for determining the KPI for the service. In one implementation, the entity thresholds are added to the service definition.
At block 3194, the computing machine makes the stored entity thresholds available for determining a state of the KPI. In one implementation, determining the state of the KPI includes determining a contribution of an individual KPI entity by applying the determination component to an aggregate of machine data corresponding to the individual KPI entity, and then applying at least one entity threshold to a KPI contribution of the individual KPI entity. Further, the computing machine selects a KPI state based at least in part on the determined contribution of the individual KPI entity in view of the applied entity threshold. In one implementation, the entity thresholds are made available by exposing them through an API. In one implementation, the entity thresholds are made available by storing information for referencing them in an index of definitional components. In one implementation, the entity thresholds are made available as an integral part of storing them in a particular logical or physical location, such as logically storing them as part of a KPI definitional information collection associated with a particular service definition. In such an implementation, a single action or process, then, can accomplish both the storing of the entity thresholds, and the making available of the entity thresholds.
At block 3201, the computing machine identifies a service to evaluate. The service is provided by one or more entities. The computing system can receive user input, via one or more graphical interfaces, selecting a service to evaluate. The service can be represented by a service definition that associates the service with the entities as discussed in more detail above.
At block 3203, the computing machine identifies key performance indicators (KPIs) for the service. The service definition representing the service can specify KPIs available for the service, and the computing machine can determine the KPIs for the service from the service definition of the service. Each KPI can pertain to a different aspect of the service. Each KPI can be defined by a search query that derives a value for that KPI from machine data pertaining to entities providing the service. As discussed above, the entities providing the service are identified in the service definition of the service. According to a search query, a KPI value can be derived from machine data of all or some entities providing the service.
In some implementations, not all of the KPIs for a service are used to calculate the aggregate KPI score for the service. For example, a KPI can solely be used for troubleshooting and/or experimental purposes and can not necessarily contribute to providing the service or impacting the performance of the service. The troubleshooting/experimental KPI can be excluded from the calculation of the aggregate KPI score for the service.
In one implementation, the computing machine uses a frequency of monitoring that is assigned to a KPI to determine whether to include a KPI in the calculation of the aggregate KPI score. The frequency of monitoring is a schedule for executing the search query that defines a respective KPI. As discussed above, the individual KPIs can represent saved searches. These saved searches can be scheduled for execution based on the frequency of monitoring of the respective KPIs. In one example, the frequency of monitoring specifies a time period (e.g., 1 second, 2 minutes, 10 minutes, 30 minutes, etc.) for executing the search query that defines a respective KPI, which then produces a value for the respective KPI with each execution of the search query. In another example, the frequency of monitoring specifies particular times (e.g., 6:00 am, 12:00 pm, 6:00 pm, etc.) for executing the search query. The values produced for the KPIs of the service, based on the frequency of monitoring for the KPIs, can be considered when calculating a score for an aggregate KPI of the service, as discussed in greater detail below.
Alternatively, the frequency of monitoring can specify that the KPI is not to be measured (that the search query for a KPI is not to be executed). For example, a troubleshooting KPI can be assigned a frequency of monitoring of zero.
In one implementation, if a frequency of monitoring is unassigned for a KPI, the KPI is automatically excluded in the calculation for the aggregate KPI score. In one implementation, if a frequency of monitoring is unassigned for a KPI, the KPI is automatically included in the calculation for the aggregate KPI score.
The frequency of monitoring can be assigned to a KPI automatically (without any user input) based on default settings or based on specific characteristics of the KPI such as a service aspect associated with the KPI, a statistical function used to derive a KPI value (e.g., maximum versus average), etc. For example, different aspects of the service can be associated with different frequencies of monitoring, and KPIs can inherit frequencies of monitoring of corresponding aspects of the service.
Values for KPIs can be derived from machine data that is produced by different sources. The sources can produce the machine data at various frequencies (e.g., every minute, every 10 minutes, every 30 minutes, etc.) and/or the machine data can be collected at various frequencies (e.g., every minute, every 10 minutes, every 30 minutes, etc.). In another example, the frequency of monitoring can be assigned to a KPI automatically (without any user input) based on the accessibility of machine data associated with the KPI (associated through entities providing the service). For example, an entity can be associated with machine data that is generated at a medium frequency (e.g., every 10 minutes), and the KPI for which a value is being produced using this particular machine data can be automatically assigned a medium frequency for its frequency of monitoring.
Alternatively, frequency of monitoring can be assigned to KPIs based on user input.
The assigned frequency of monitoring of KPIs can be included in the service definition specifying the KPIs, or in a separate data structure together with other settings of a KPI.
Referring to
At block 3207, the computing machine calculates a value for an aggregate KPI score for the service using the value(s) from each of the KPIs of the service. The value for the aggregate KPI score indicates an overall performance of the service. For example, a Web Hosting service can have 10 KPIs and one of the 10 KPIs can have a frequency of monitoring set to Do Not Monitor. The other nine KPIs can be assigned various frequencies of monitoring. The computing machine can access the values produced for the nine KPIs in the data store to calculate the value for the aggregate KPI score for the service, as discussed in greater detail below. Based on the values obtained from the data store, if the values produced by the search queries for 8 of the 9 KPIs indicate that the corresponding KPI is in a normal state, then the value for an aggregate KPI score can indicate that the overall performance of the service is normal.
An aggregate KPI score can be calculated by adding the values of all KPIs of the same service together. Alternatively, an importance of each individual KPI relative to other KPIs of the service is considered when calculating the aggregate KPI score for the service. For example, a KPI can be considered more important than other KPIs of the service if it has a higher importance weight than the other KPIs of the service.
In some implementations, importance weights can be assigned to KPIs automatically (without any user input) based on characteristics of individual KPIs. For example, different aspects of the service can be associated with different weights, and KPIs can inherit weights of corresponding aspects of the service. In another example, a KPI deriving its value from machine data pertaining to a single entity can be automatically assigned a lower weight than a KPI deriving its value from machine data pertaining to multiple entities, etc.
Alternatively, importance weights can be assigned to KPIs based on user input. Referring again to
In one implementation, a KPI is assigned an overriding weight. The overriding weight is a weight that overrides the importance weights of the other KPIs of the service. Input (e.g., user input) can be received for assigning an overriding weight to a KPI. The overriding weight indicates that the status (state) of KPI should be used a minimum overall state of the service. For example, if the state of the KPI, which has the overriding weight, is warning, and one or more other KPIs of the service have a normal state, then the service can only be considered in either a warning or critical state, and the normal state(s) for the other KPIs can be disregarded.
In another example, a user can provide input that ranks the KPIs of a service from least important to most important, and the ranking of a KPI specifies the user selected weight for the respective KPI. For example, a user can assign a weight of 1 to the Memory Usage KPI, assign a weight of 2 to the CPU Usage KPI, and assign a weight of 3 to the Request Response Time KPI. The assigned weight of each KPI can be included in the service definition specifying the KPIs, or in a separate data structure together with other settings of a KPI.
Alternatively or in addition, a KPI can be considered more important than other KPIs of the service if it is measured more frequently than the other KPIs of the service. In other words, search queries of different KPIs of the service can be executed with different frequency (as specified by a respective frequency of monitoring) and queries of more important KPIs can be executed more frequently than queries of less important KPIs.
As will be discussed in more detail below, the calculation of a score for an aggregate KPI can be based on ratings assigned to different states of an individual KPI. Referring again to
In addition, GUI 3350 provides for configuring a rating for each state of the KPI. The ratings indicate which KPIs should be given more or less consideration in view of their current states. When calculating an aggregate KPI, a score of each individual KPI reflects the rating of that KPI's current state, as will be discussed in more detail below. Ratings for different KPI states can be assigned automatically (e.g., based on a range of KPI values for a state) or specified by a user. GUI 3350 can include a field 3380 that displays an automatically generated rating or a rating entered or selected by a user. Field 3380 can be located next to (or in the same row as) a horizontal GUI element representing a corresponding state. Alternatively, field 3380 can be part of the horizontal GUI element. In one example, a user can provide input assigning a rating of 1 to the Normal State, a rating of 2 to the Warning State, and a rating of 3 to the Critical State.
In one implementation, GUI 3350 displays a button 3372 for receiving input indicating whether to apply the threshold(s) to the aggregate KPI of the service or to the particular KPI or both. If a threshold is conFig.d to be applied to a certain individual KPI, then a specified action (e.g., generate alert, add to report) will be triggered when a value of that KPI reaches (or exceeds) the individual KPI threshold. If a threshold is conFig.d to be applied to the aggregate KPI of the service, then a specified action (e.g., create notable event, generate alert, add to incident report) will be triggered when a value (e.g., a score) of the aggregate KPI reaches (or exceeds) the aggregate KPI threshold. In some implementations, a threshold can be applied to both or either the individual or aggregate KPI, and different actions or the same action can be triggered depending on the KPI to which the threshold is applied. The actions to be triggered can be pre-defined or specified by the user via a user interface (e.g., a GUI or a command line interface) while the user is defining thresholds or after the thresholds have been defined. The action to be triggered in view of thresholds can be included in the service definition identifying the respective KPI(s) or can be stored in a data structure dedicated to store various KPI settings of a relevant KPI.
At block 3402, the computing machine identifies a service to be evaluated. The service is provided by one or more entities. The computing system can receive user input, via one or more graphical interfaces, selecting a service to evaluate.
At block 3404, the computing machine identifies key performance indicators (KPIs) for the service. The computing machine can determine the KPIs for the service from the service definition of the service. Each KPI indicates how a specific aspect of the service is performing at a point in time.
As discussed above, in some implementations, a KPI pertaining to a specific aspect of the service (also referred to herein as an aspect KPI) can be defined by a search query that derives a value for that KPI from machine data pertaining to entities providing the service. Alternatively, an aspect KPI can be a sub-service aggregate KPI. Such a KPI is sub-service in the sense that it characterizes something less than the service as a whole. Such a KPI is an aspect KPI in the almost definitional sense that something less than the service as a whole is an aspect of the service. Such a KPI is an aggregate KPI in the sense that the search which defines it produces its value using a selection of accumulated KPI values in the data store (or of contemporaneously produced KPI values, or a combination), rather than producing its value using a selection of event data directly. The selection of accumulated KPI values for such a sub-service aggregate KPI includes values for as few as two different KPI's defined for a service, which stands in varying degrees of contrast to a selection including values for all, or substantially all, of the active KPI's defined for service as is the case with a service-level KPI. (A KPI is an active KPI when its definitional search query is enabled to execute on a scheduled basis in the service monitoring system. See the related discussion in regards to
At block 3406, the computing machine optionally identifies a weighting (e.g., user selected weighting or automatically assigned weighting) for each of the KPIs of the service. As discussed above, the weighting of each KPI can be determined from the service definition of the service or a KPI definition storing various setting of the KPI.
At block 3408, the computing machine derives one or more values for each KPI for the service by executing a search query associated with the KPI. As discussed above, each KPI is defined by a search query that derives the value for a corresponding KPI from the machine data that is associated with the one or more entities that provide the service.
As discussed above, the machine data associated with the one or more entities that provide the same service is identified using a user-created service definition that identifies the one or more entities that provide the service. The user-created service definition also identifies, for each entity, identifying information for locating the machine data pertaining to that entity. In another example, the user-created service definition also identifies, for each entity, identifying information for a user-created entity definition that indicates how to locate the machine data pertaining to that entity. The machine data can include for example, and is not limited to, unstructured data, log data, and wire data. The machine data associated with an entity can be produced by that entity. In addition or alternatively, the machine data associated with an entity can include data about the entity, which can be collected through an API for software that monitors that entity.
The computing machine can cause the search query for each KPI to execute to produce a corresponding value for a respective KPI. The search query defining a KPI can derive the value for that KPI in part by applying a late-binding schema to machine data or, more specifically, to events containing raw portions of the machine data. The search query can derive the value for the KPI by using a late-binding schema to extract an initial value and then performing a calculation on (e.g., applying a statistical function to) the initial value.
The values of each of the KPIs can differ at different points in time. As discussed above, the search query for a KPI can be executed based on a frequency of monitoring assigned to the particular KPI. When the frequency of monitoring for a KPI is set to a time period, for example, Medium Frequency (e.g., 10 minutes), a value for the KPI is derived each time the search query defining the KPI is executed every 10 minutes. The derived value(s) for each KPI can be stored in a data store. When a KPI is assigned a zero frequency (no frequency), no value is produced (the search query for the KPI is not executed) for the respective KPI.
The derived value(s) of a KPI is indicative of how an aspect of the service is performing. In one example, the search query can derive the value for the KPI by applying a late-binding schema to machine data pertaining to events to extract values for a specific fields defined by the schema. In another example, the search query can derive the value for that KPI by applying a late-binding schema to machine data pertaining to events to extract an initial value for a specific field defined by the schema and then performing a calculation on (e.g., applying a statistical function to) the initial value to produce the calculation result as the KPI value. In yet another example, the search query can derive the value for the KPI by applying a late-binding schema to machine data pertaining to events to extract an initial value for specific fields defined by the late-binding schema to find events that have certain values corresponding to the specific fields, and counting the number of found events to produce the resulting number as the KPI value.
At block 3410, the computing machine optionally maps the value produced by a search query for each KPI to a state. As discussed above, each KPI can have one or more states defined by one or more thresholds. In particular, each threshold can define an end of a range of values. Each range of values represents a state for the KPI. At a certain point in time or a period of time, the KPI can be in one of the states (e.g., normal state, warning state, critical state) depending on which range the value, which is produced by the search query of the KPI, falls into. For example, the value produced by the Memory Usage KPI can be in the range representing a Warning State. The value produced by the CPU Usage KPI can be in the range representing a Warning State. The value produced by the Request Response Time KPI can be in the range representing a Critical State.
At block 3412, the computing machine optionally maps the state for each KPI to a rating assigned to that particular state for a respective KPI (e.g., automatically or based on user input). For example, for a particular KPI, a user can provide input assigning a rating of 1 to the Normal State, a rating of 2 to the Warning State, and a rating of 3 to the Critical State. In some implementations, the same ratings are assigned to the same states across the KPIs for a service. For example, the Memory Usage KPI, CPU Usage KPI, and Request Response Time KPI for a Web Hosting service can each have Normal State with a rating of 1, a Warning State with a rating of 2, and a Critical State with a rating of 3. The computing machine can map the current state for each KPI, as defined by the KPI value produced by the search query, to the appropriate rating. For example, the Memory Usage KPI in the Warning State can be mapped to 2. The CPU Usage KPI in the Warning State can be mapped to 2. The Request Response Time KPI in the Critical State can be mapped to 3. In some implementations, different ratings are assigned to the same states across the KPIs for a service. For example, the Memory Usage KPI can each have Critical State with a rating of 3, and the Request Response Time KPI can have Critical State with a rating of 5.
At block 3414, the computing machine calculates an impact score for each KPI. In some implementations, the impact score of each KPI can be based on the importance weight of a corresponding KPI (e.g., weight×KPI value). In other implementations, the impact score of each KPI can be based on the rating associated with a current state of a corresponding KPI (e.g., rating×KPI value). In yet other implementations, the impact score of each KPI can be based on both the importance weight of a corresponding KPI and the rating associated with a current state of the corresponding KPI. For example, the computing machine can apply the weight of the KPI to the rating for the state of the KPI. The impact of a particular KPI at a particular point in time on the aggregate KPI can be the product of the rating of the state of the KPI and the importance (weight) assigned to the KPI. In one implementation, the impact score of a KPI can be calculated as follows:
Impact Score of KPI=(weight)×(rating of state)
For example, when the weight assigned to the Memory Usage KPI is 1 and the Memory Usage KPI is in a Warning State, the impact score of the Memory Usage KPI=1×2. When the weight assigned to the CPU Usage KPI is 2 and the CPU Usage KPI is in a Warning State, the impact score of the CPU Usage KPI=2×2. When the weight assigned to the Request Response Time KPI is 3 and the Request Response Time KPI is in a Critical State, the impact score of the Request Response Time KPI=3×3.
In another implementation, the impact score of a KPI can be calculated as follows:
Impact Score of KPI=(weight)×(rating of state)×(value)
In yet some implementations, the impact score of a KPI can be calculated as follows:
Impact Score of KPI=(weight)×(value)
At block 3416, the computing machine calculates an aggregate KPI score (“score”) for the service based on the impact scores of individual KPIs of the service. The score for the aggregate KPI indicates an overall performance of the service. The score of the aggregate KPI can be calculated periodically (as conFig.d by a user or based on a default time interval) and can change over time based on the performance of different aspects of the service at different points in time. For example, the aggregate KPI score can be calculated in real time (continuously calculated until interrupted). The aggregate KPI score can be calculated can be calculated periodically (e.g., every second).
In some implementations, the score for the aggregate KPI can be determined as the sum of the individual impact scores for the KPIs of the service. In one example, the aggregate KPI score for the Web Hosting service can be as follows:
Aggregate KPIWeb Hosting=(weight×rating of state)Memory Usage KPI+(weight×rating of state)CPU Usage KPI+(weight×rating of state)Request Response Time KPI=(1×2)+(2×2)+(3×3)=15.
In another example, the aggregate KPI score for the Web Hosting service can be as follows:
Aggregate KPIWeb Hosting=(weight×rating of state×value)Memory Usage KPI+(weight×rating of state×value)CPU Usage KPI+(weight×rating of state×value)Request Response Time KPI=(1×2×60)+(2×2×55)+(3×3×80)=1060.
In yet some other implementations, the impact score of an aggregate KPI can be calculated as a weighted average as follows:
Aggregate KPIWeb Hosting=[(weight×rating of state)Memory Usage KPI+(weight×rating of state)CPU Usage KPI+(weight×rating of state)Request Response Time KPI)]/(weightMemory Usage KPI+weightCPU Usage KPI+weightRequest Response Time KPI)
A KPI can have multiple values produced for the particular KPI for different points in time, for example, as specified by a frequency of monitoring for the particular KPI. The multiple values for a KPI can be that in a data store. In one implementation, the latest value that is produced for the KPI is used for calculating the aggregate KPI score for the service, and the individual impact scores used in the calculation of the aggregate KPI score can be the most recent impact scores of the individual KPIs based on the most recent values for the particular KPI stored in a data store. Alternatively, a statistical function (e.g., average, maximum, minimum, etc.) is performed on the set of the values that is produced for the KPI is used for calculating the aggregate KPI score for the service. The set of values can include the values over a time period between the last calculation of the aggregate KPI score and the present calculation of the aggregate KPI score. The individual impact scores used in the calculation of the aggregate KPI score can be average impact scores, maximum impact score, minimum impact scores, etc. over a time period between the last calculation of the aggregate KPI score and the present calculation of the aggregate KPI score.
The individual impact scores for the KPIs can be calculated over a time range (since the last time the KPI was calculated for the aggregate KPI score). For example, for a Web Hosting service, the Request Response Time KPI can have a high frequency (e.g., every 2 minutes), the CPU Usage KPI can have a medium frequency (e.g., every 10 minutes), and the Memory Usage KPI can have a low frequency (e.g., every 30 minutes). That is, the value for the Memory Usage KPI can be produced every 30 minutes using machine data received by the system over the last 30 minutes, the value for the CPU Usage KPI can be produced every 10 minutes using machine data received by the system over the last 10 minutes, and the value for the Request Response Time KPI can be produced every 2 minutes using machine data received by the system over the last 2 minutes. Depending on the point in time for when the aggregate KPI score is being calculated, the value (e.g., and thus state) of the Memory Usage KPI can not have been refreshed (the value is stale) because the Memory Usage KPI has a low frequency (e.g., every 30 minutes). Whereas, the value (e.g., and thus state) of the Request Response Time KPI used to calculate the aggregate KPI score is more likely to be refreshed (reflect a more current state) because the Request Response Time KPI has a high frequency (e.g., every 2 minutes). Accordingly, some KPIs can have more impact on how the score of the aggregate KPI changes overtime than other KPIs, depending on the frequency of monitoring of each KPI.
In one implementation, the computing machine causes the display of the calculated aggregate KPI score in one or more graphical interfaces and the aggregate KPI score is updated in the one or more graphical interfaces each time the aggregate KPI score is calculated. In one implementation, the configuration for displaying the calculated aggregate KPI in one or more graphical interfaces is received as input (e.g., user input), stored in a data store coupled to the computing machine, and accessed by the computing machine.
At block 3418, the computing machine compares the score for the aggregate KPI to one or more thresholds. As discussed above with respect to
Referring to
At block 34501, the computing machine performs a correlation search associated with a service provided by one or more entities that each have corresponding machine data. The service can include one or more key performance indicators (KPIs) that each indicate a state of a particular aspect of the service or a state of the service as a whole at a point in time or during a period of time. Each KPI can be derived from the machine data pertaining to the corresponding entities. Depending on the implementation, the KPIs can include an aggregate KPI and/or one or more aspect KPIs. A value of an aggregate KPI indicates how the service as a whole is performing at a point in time or during a period of time. A value of each aspect KPI indicates how the service in part (i.e., with respect to a certain aspect of the service) is performing at a point in time or during a period of time. As discussed above, the correlation search associated with the service can include search criteria pertaining to the one or more KPIs (i.e., an aggregate KPI and/or one or more aspect KPIs), and a triggering condition to be applied to data produced by a search query using the search criteria.
At block 34503, the computing machine stores a notable event in response to the data produced by the search query satisfying the triggering condition. A notable event can represent a system occurrence that is likely to indicate a security threat or operational problem. Notable events can be detected in a number of ways: (1) an analyst can notice a correlation in the data and can manually identify a corresponding group of one or more events as “notable;” or (2) an analyst can define a “correlation search” specifying criteria for a notable event, and every time one or more events satisfy the criteria, the system can indicate that the one or more events are notable. An analyst can alternatively select a pre-defined correlation search provided by the application. Note that correlation searches can be run continuously or at regular intervals (e.g., every hour) to search for notable events. Upon detection, notable events can be stored in a dedicated “notable events index,” which can be subsequently accessed to generate various visualizations containing security-related information. As discussed above, the creation of a notable event can be the resulting action taken in response to the KPI correlation search producing data that satisfies the defined triggering condition. In addition, a notable event can also be created as a result of a correlation search (also referred to as a trigger-based search), that does not rely on a KPI, or the state of the KPI or of the corresponding service, but rather operates on any values produced in the system being monitored, and has a triggering condition and one or more actions that correspond to the triggering condition.
At block 34505, the computing machine causes display of a graphical user interface presenting information pertaining to a stored notable event. The presented information can include an identifier of the correlation search that triggered the storing of the notable event and an identifier of the service associated with the correlation search. In other implementations, the graphical user interface can present additional information pertaining to the stored notable event, and can receive user input to modify or take action with respect to the notable event, as will be described further below.
At block 3501, the computing machine causes display of a dashboard-creation graphical interface that includes a modifiable dashboard template, and a KPI-selection interface. A modifiable dashboard template is part of a graphical interface to receive input for editing/creating a custom service-monitoring dashboard. A modifiable dashboard template is described in greater detail below. The display of the dashboard-creation graphical interface can be caused, for example, by a user selecting to create a service-monitoring dashboard from a GUI.
The dashboard creation graphical interface can be a wizard or any other type of tool for creating a service-monitoring dashboard that presents a visual overview of how one or more services and/or one or more aspects of the services are performing. The services can be part of an IT environment and can include, for example, a web hosting service, an email service, a database service, a revision control service, a sandbox service, a networking service, etc. A service can be provided by one or more entities such as host machines, virtual machines, switches, firewalls, routers, sensors, etc. Each entity can be associated with machine data that can have different formats and/or use different aliases for the entity. As discussed above, each service can be associated with one or more KPIs indicating how aspects of the service are performing. The KPI-selection interface of the dashboard creation GUI allows a user to select KPIs for monitoring the performance of one or more services, and the modifiable dashboard template of the dashboard creation GUI allows the user to specify how these KPIs should be presented on a service-monitoring dashboard that will be created based on the dashboard template. The dashboard template can also define the overall look of the service-monitoring dashboard. The dashboard template for the particular service-monitoring dashboard can be saved, and subsequently, the service-monitoring dashboard can be generated for display based on the customized dashboard template and KPI values derived from machine data, as will be discussed in more details below.
GUI 3650 can include a button 3654 that a user can activate to proceed to the creation of a service-monitoring dashboard, which can lead to GUI 3600 of
Returning to
Referring again to
At block 3507, the computing machine receives, through the KPI-selection interface, a selection of a particular KPI for a service. As discussed above, each KPI indicates how an aspect of the service is performing at one or more points in time. A KPI is defined by a search query that derives one or more values for the KPI from the machine data associated with the one or more entities that provide the service whose performance is reflected by the KPI.
In one example, prior to receiving the selection of the particular KPI, the computing machine causes display of a context panel graphical interface in the dashboard-creation graphical interface that contains service identifiers for the services (e.g., all of the services) within an environment (e.g., IT environment). The computing machine can receive input, for example, of a user selecting one or more of the service identifiers, and dragging and placing one or more of the service identifiers on the dashboard template. In another example, the computing machine causes display of a search box to receive input for filtering the service identifiers for the services.
In another example, prior to receiving the selection of the particular KPI, the computing machine causes display of a drop-down menu of selectable services in the KPI selection interface, and receives a selection of one of the services from the drop-down menu. In some implementations, selectable services can be displayed as identifiers corresponding to individual services, where each identifier can be, for example, the name of a particular service or the name of a service definition representing the particular service. As discussed in more detail above, a service definition can associate the service with one or more entities (and thereby with heterogeneous machine data pertaining to the entities) providing the service, and can specify one or more KPIs created for the service to monitor the performance of different aspects of the service.
In response to the user selection of a particular service, the computing machine can cause display of a list of KPIs associated with the selected service in the KPI selection interface, and can receive the user selection of the particular KPI from this list.
Referring again to
Returning to
At block 3511, the computing machine receives a selection of one or more style settings for a KPI identifier (a KPI widget) to be displayed in the service-monitoring dashboard. For example, after the user selects the KPI, the user can provide input for creating and/or editing a title for the KPI. In one implementation, the computing machine causes the title that is already assigned to the selected KPI, for example via GUI 2200 in
Referring to
In one implementation, GUI 3900 includes an icon 3914 in the customization toolbar, which can be selected by a user, for defining one or more search queries. The search queries can produce results pertaining to one or more entities. For example, icon 3914 can be selected and an identifier 3918 for a search widget can be displayed in the dashboard template 3903. The identifier 3918 for the search widget can be the search widget itself, as illustrated in
The identifier 3918 can be displayed in a default location in the dashboard template 3903 and a user can optionally select a new location for the identifier 3918. The location of the identifier 3918 in the dashboard template specifies the location of the search widget in the service-monitoring dashboard when the service-monitoring dashboard is displayed to a user. GUI 3900 can display a search definition box (e.g., box 3915) that corresponds to the search query. A user can provide input for the criteria for the search query via the search definition box (e.g., box 3915). For example, the search query can produce a stats count for a particular entity. The input pertaining to the search query is stored as part of the dashboard template. The search query can be executed when the service-monitoring dashboard is displayed to a user and the search widget can display the results from executing the search query.
Referring to
At block 3515, the computing machine stores the resulting dashboard template in a data store. The dashboard template can be saved in response to a user request. For example, a request to save the dashboard template can be received upon selection of a save button (e.g., save button 3612 in GUI 3600 of
Referring to
Each service-monitoring dashboard in the list 4612 can include a title 4611. In one implementation, the title 4611 is a link, which when selected, can display the particular service-monitoring dashboard in a GUI in view mode, as described in greater detail below.
Each service-monitoring dashboard in the list 4612 can include a button 4613, which when selected, can present a list of actions, which can be taken on a particular service-monitoring dashboard, from which a user can select from The actions can include, and are not limited to, editing a service-monitoring dashboard, editing a title and/or description for a service-monitoring dashboard, editing permissions for a service-monitoring dashboard, cloning a service-monitoring dashboard, and deleting a service-monitoring dashboard. When an action is selected, one or more additional GUIs can be displayed for facilitating user input pertaining to the action, as described in greater detail below. For example, button 4613 can be selected, and an editing action can be selected to display a GUI (e.g., GUI 4620 in
GUI 4610 can display application information 4615 for each service-monitoring dashboard in the list 4612. The application information 4615 can indicate an application that is used for creating and/or editing the particular service-monitoring dashboard. GUI 4610 can display owner information 4614 for each service-monitoring dashboard in the list 4612. The owner information 4614 can indicate a role that is assigned to the owner of the particular service-monitoring dashboard.
GUI 4610 can display permission information 4616 for each service-monitoring dashboard in the list 4612. The permission information can indicate a permission level (e.g., application level, private level). An application level permission level allows any user that is authorized to access to the service-monitoring dashboard creation and/or editing GUIs permission to access and edit the particular service-monitoring dashboard. A private level permission level allows a single user (e.g., owner, creator) permission to access and edit the particular service-monitoring dashboard. In one implementation, a permission level include permissions by role. In one implementation, one or more specific users can be specified for one or more particular levels.
GUI 4610 can include a button 4617, which when selected can display GUI 4618 in
The current configuration for the “Web Arch” service-monitoring dashboard that is stored in a data store can be used to populate the modifiable dashboard template 4630. One or more widgets that have been selected for one or more KPIs can be displayed in the modifiable dashboard template 4630.
A KPI that is being represented by a widget in the modifiable dashboard template 4630 can be a service-related KPI or an adhoc KPI. A service-related KPI is a KPI that is related to one or more services and/or one or more entities. A service-related KPI can be defined using service monitoring GUIs, as described in above. An ad-hoc KPI is a key performance indicator that is not related to any service or entity. For example, service-related KPI named “Web performance” is represented by Noel gauge widget 4634. The Web performance can be a KPI that is related to “Splunk Service” 4635.
The configuration interface 4631 can display data that pertains to a KPI (e.g., service-related KPI, adhoc KPI) that is selected in the modifiable dashboard template 4630. For example, an adhoc KPI can be defined via GUI 4620. For example, an adhoc search button 4621 can be activated and a location (e.g., location 4629) can be selected in the modifiable dashboard template 4630. A widget 4628 for the adhoc KPI can be displayed at the selected location 4629. In one implementation, a default widget (e.g., single value widget) is displayed for the adhoc KPI.
The configuration interface 4631 can display data that pertains to the adhoc KPI. For example, configuration interface 4631 can display source information for the adhoc KPI. The source information can indicate whether the adhoc KPI is derived from an adhoc search or data model. An adhoc KPI can be defined by a search query. The search query can be derived from a data model or an adhoc search query. An adhoc search query is a user-defined search query.
In one implementation, when the adhoc search button 4621 is activated for creating an adhoc KPI, the adhoc KPI is derived from an adhoc search query by default, and the adhoc type button 4624 is displayed as enabled. The adhoc type button 4624 can also be user-selected to indicate that the adhoc KPI is to be derived from an adhoc search query.
When the adhoc type button 4624 is enabled, a text box 4626 can be displayed for the search language defining the adhoc search query. In one implementation, the text box 4626 is populated with the search language for a default adhoc search query. In one implementation, the default adhoc search query is a count of events, and the search language “index=internal|timechart count is displayed in the text box 4626. A user can edit the search language via the text box 4626 to change the adhoc search query.
When the data model type button 4625 is selected, the configuration interface 4631 can display an interface for using a data model to define the adhoc KPI is displayed.
Referring to
Referring to
Referring to
Referring to
At block 4751, the computing machine identifies one or more key performance indicators (KPIs) for one or more services to be monitored via a service-monitoring dashboard. A service can be provided by one or more entities. Each entity can be associated with machine data. The machine data can include unstructured data, log data, and/or wire data. The machine data associated with an entity can include data collected from an API for software that monitors that entity.
A KPI can be defined by a search query that derives one or more values from machine data associated with the one or more entities that provide the service. Each KPI can be defined by a search query that is either entered by a user or generated through a graphical interface. In one implementation, the computing machine accesses a dashboard template that is stored in a data store that includes information identifying the KPIs to be displayed in the service-monitoring dashboard. In one implementation, the dashboard template specifies a service definition that associates the service with the entities providing the service, specifies the KPIs of the service, and also specifies the search queries for the KPIs. As discussed above, the search query defining a KPI can derive one or more values for the KPI using a late-binding schema that it applies to machine data. In some implementations, the service definition identified by the dashboard template can also include information on predefined states for a KPI and various visual indicators that should be used to illustrate states of the KPI in the dashboard.
The computing machine can optionally receive input (e.g., user input) identifying one or more ad hoc searches to be monitored via the service-monitoring dashboard without selecting services or KPIs.
At block 4753, the computing machine identifies a time range. The time range can be a default time range or a time range specified in the dashboard template. The machine data can be represented as events. The time range can be used to indicate which events to use for the search queries for the identified KPIs.
At block 4755, for each KPI, the computing machine identifies a KPI widget style to represent the respective KPI. In one implementation, the computing machine accesses the dashboard template that includes information identifying the KPI widget style to use for each KPI. As discussed above, examples of KPI widget styles can include a Noel gauge widget style, a single value widget style, a spark line widget style, and a trend indicator widget style. The computing machine can also obtain, from the dashboard template, additional visual characteristics for each KPI widget, such as, the name of the widget, the metric unit of the KPI value, settings for using nominal colors or colors to represent states and/or trends, the type of value to be represented in KPI widget (e.g., the type of value to be represented by value 4407 in a spark line widget), etc.
The KPIs widget styles can display data differently for representing a respective KPI. The computing machine can produce a set of values and/or a value, depending on the KPI widget style for a respective KPI. If the KPI widget style represents the respective KPI using values for multiple points in time in the time range, method 4750 proceeds to block 4757. Alternatively, if the KPI widget style represents the respective KPI using a single value during the time range, method 4750 proceeds to block 4759.
At block 4759, if the KPI widget style represents the respective KPI using a single value, the computing machine causes a value to be produced from a set of machine data or events whose timestamps are within the time range. The value can be a statistic calculated based on one or more values extracted from a specific field in the set of machine data or events when the search query is executed. The statistic can be an average of the extracted values, a mean of the extracted values, a maximum of the extracted values, a last value of the extracted values, etc. A single value widget style, a Noel gauge widget style, and trend indicator widget style can represent a KPI using a single value.
The search query that defines a respective KPI can produce a single value which a KPI widget style can use. The computing machine can cause the search query to be executed to produce the value. The computing machine can send the search query to an event processing system. As discussed above, machine data can be represented as events. The machine data used to derive the one or more KPI values can be identifiable on a per entity basis by referencing entity definitions that are aggregated into a service definition corresponding to the service whose performance is reflected by the KPI.
The event processing system can access events with time stamps falling within the time period specified by the time range, identify which of those events should be used (e.g., from the one or more entity definitions in the service definition for the service whose performance is reflected by the KPI), produce the result (e.g., single value) using the identified events, and send the result to the computing machine. The computing machine can receive the result and store the result in a data store.
At block 4757, if the KPI widget style represents the respective KPI using a set of values, the computing machine causes a set of values for multiple points in time in the time range to be produced. A spark line widget style can represent a KPI using a set of values. Each value in the set of values can represent an aggregate of data in a unit of time in the time range. For example, if the time range is “Last 15 minutes”, and the unit of time is one minute, then each value in the set of values is an aggregate of the data in one minute in the last 15 minutes.
If the search query that defines a respective KPI produces a single value instead of a set of multiple values as required by the KPI widget style (e.g., for the graph of the spark line widget), the computing machine can modify the search query to produce the set of values (e.g., for the graph of the spark line widget). The computing machine can cause the search query or modified search query to be executed to produce the set of values. The computing machine can send the search query or modified search query to an event processing system. The event processing system can access events with time stamps falling within the time period specified by the time range, identify which of those events should be used, produce the results (e.g., set of values) using the identified events, and send the results to the computing machine. The computing machine can store the results in a data store.
At block 4761, for each KPI, the computing machine generates the KPI widget using the KPI widget style and the value or set of values produced for the respective KPI. For example, if a KPI is being represented by a spark line widget style, the computing machine generates the spark line widget using a set of values produced for the KPI to populate the graph in the spark line widget. The computing machine also generates the value for the spark line widget based on the dashboard template. The dashboard template can store the selection of the type of value that is to be represented in a spark line widget. For example, the value can represent the first data point in the graph, the last data point the graph, an average of all of the points in the graph, the maximum value from all of the points in the graph, or the mean of all of the points in the graph.
In addition, in some implementations, the computing machine can obtain KPI state information (e.g., from the service definition) specifying KPI states, a range of values for each state, and a visual characteristic (e.g., color) associated with each state. The computing machine can then determine the current state of each KPI using the value or set of values produced for the respective KPI, and the state information of the respective KPI. Based on the current state of the KPI, a specific visual characteristic (e.g., color) can be used for displaying the KPI widget of the KPI, as discussed in more detail above.
At block 4763, the computing machine generates a service-monitoring dashboard with the KPI widgets for the KPIs using the dashboard template and the KPI values produced by the respective search queries. In one implementation, the computing machine accesses a dashboard template that is stored in a data store that includes information identifying the KPIs to be displayed in the service-monitoring dashboard. As discussed above, the dashboard template defines locations for placing the KPI widgets, and can also specify a background image over which the KPI widgets can be placed.
At block 4765, the computing machine causes display of the service-monitoring dashboard with the KPI widgets for the KPIs. Each KPI widget provides a numerical and/or graphical representation of one or more values for a corresponding KPI. Each KPI widget indicates how an aspect of the service is performing at one or more points in time. For example, each KPI widget can display a current KPI value, and indicate the current state of the KPI using a visual characteristic associated with the current state. In one implementation, the service-monitoring dashboard is displayed in a viewing/investigation mode based on a user selection to view the service-monitoring dashboard is displayed in the viewing/investigation mode.
At block 4767, the computing machine optionally receives a request for detailed information for one or more KPIs in the service-monitoring dashboard. The request can be received, for example, from a selection (e.g., user selection) of one or more KPI widgets in the service-monitoring dashboard.
At block 4759, the computing machine causes display of the detailed information for the one or more KPIs. In one implementation, the computing machine causes the display of a deep dive visual interface, which includes detailed information for the one or more KPIs. A deep dive visual interface is described in greater detail below.
The service-monitoring dashboard can allow a user to change a time range. In response, the computing machine can send the search query and the new time range to an event processing system. The event processing system can access events with time stamps falling within the time period specified by the new time range, identify which of those events should be used, produce the result (e.g., one or more values) using the identified events, and send the result to the computing machine. The computing machine can then cause the service-monitoring dashboard to be updated with new values and modified visual representations of the KPI widgets.
Each service is provided by one or more entities. Each entity is associated with machine data. The machine data can include for example, and is not limited to, unstructured data, log data, and wire data. The machine data that is associated with an entity can include data collected from an API for software that monitors that entity. The machine data used to derive the one or more values represented by a KPI is identifiable on a per entity basis by referencing entity definitions that are aggregated into a service definition corresponding to the service whose performance is reflected by the KPI.
Each KPI is defined by a search query that derives the one or more values represented by the corresponding KPI widget from the machine data associated with the one or more entities that provide the service whose performance is reflected by the KPI. The search query for a KPI can derive the one or more values for the KPI it defines using a late-binding schema that it applies to machine data.
In one implementation, the GUI 4700 includes one or more search result widgets (e.g., widget 4712) displaying a value produced by a respective search query, as specified by the dashboard template. For example, widget 4712 can represent the results of a search query producing a stats count for a particular entity.
In one implementation, GUI 4700 facilitates user input for displaying detailed information for one or more KPIs. A user can select one or more KPI widgets to request detailed information for the KPIs represented by the selected KPI widgets. The detailed information for each selected KPI can include values for points in time during the period of time. The detailed information can be displayed via one or more deep dive visual interfaces. A deep dive visual interface is described in greater detail below.
Referring to
GUI 4750 can display the items 4751 (e.g., service-related KPI widgets, adhoc KPI widgets, images, connectors, text, shapes, line etc.) as specified using the KPI-selection interface, modifiable dashboard template, configuration interface, and customization tool bar.
In one implementation, one or more widgets (e.g., service-related KPI widgets, adhoc KPI widgets) that are presented in view mode can be selected by a user to display one or more GUIs presenting more detailed information, for example, in a deep dive visualization, as described in greater detail below.
For example, a service-related KPI widget for a particular KPI can be displayed in view mode. When the service-related KPI widget is selected, a deep dive visualization can be displayed that presents data pertaining to the service-related KPI. The service-related KPI is related to a particular service and one or more other services based on dependency. The data that is presented in the deep dive visualization can include data for all of the KPIs that are related to the particular service and/or all of the KPIs from one or more dependent services.
When an adhoc KPI widget is displayed in view mode, and is selected, a deep dive visualization can be displayed that presents data pertaining to the adhoc search for the adhoc KPI.
GUI 4750 can include a button 4753 for displaying an interface (e.g., interface 4312 in
At block 4911, the computing machine receives a request to display a service-monitoring page (also referred to herein as a “service-monitoring home page” or simply as a “home page”). In one implementation, the service monitoring page includes visual representations of the health of a system that can be easily viewed by a user (e.g., a system administrator) with a quick glance. The system can include one or more services. The performance of each service can be monitored using an aggregate KPI characterizing the respective service as a whole. In addition, various aspects (e.g., CPU usage, memory usage, response time, etc.) of a particular service can be monitored using respective aspect KPIs typifying performance of individual aspects of the service. For example, a service can have 10 separate aspect KPIs, each monitoring a various aspect of the service.
As discussed above, each KPI is associated with a service provided by one or more entities, and each KPI is defined by a search query that produces a value derived from machine data pertaining to the one or more entities. A value of each aggregate KPI indicates how the service in whole is performing at a point in time or during a period of time. A value of each aspect KPI indicates how the service in part (with respect to a certain aspect of the service) is performing at a point in time or during a period of time.
At block 4912, the computing machine can determine data associated with one or more aggregate KPI definitions and one or more aspect KPI definitions, useful for creating the home page GUI. In an implementation, determining the data can include referencing service definitions in a data store, and/or referencing KPI definitions is a data store, and/or referencing stored KPI values, and/or executing search queries to produce KPI values. In an implementation, determining the data can include determining KPI-related information for each of a set of aggregate KPI definitions and for each of a set of aspect KPI definitions. The KPI-related information for each aggregate or aspect KPI definition can include a KPI state. At block 4912, the computing machine can determine an order for both the set of aggregate KPI definitions and the set of aspect KPI definitions. (Information related to the KPI definition can vicariously represent the KPI definition in the ordering process such that if the information related to the KPI definition is ordered with respect to the information related to other KPI definitions, the KPI definition is considered equivalently ordered by implication.) Many criteria are possible on which to base the ordering of a set of KPI definitions including, for example, the most recently produced KPI value or the most recently indicated KPI state.
At block 4913, the computing machine causes display of the requested service-monitoring page having a services summary region and a services aspects region. The service summary region contains an ordered plurality of interactive summary tiles. In one implementation, each summary tile corresponds to a respective service and provides a character or graphical representation of at least one value for an aggregate KPI characterizing the respective service as a whole. The services aspects region contains an ordered plurality of interactive aspect tiles. In one implementation, each aspect tile corresponds to a respective aspect KPI and provides a character or graphical representation of one or more values for the respective aspect KPI. Each aspect KPI can have an associated service and can typify performance for an aspect of the associated service.
The requested service-monitoring page can also include a notable events region presenting an indication of one or more correlation searches that generate the highest number of notable events in a given period of time. In one implementation, the notable events region includes the indication of each correlation search, a value representing the number of notable events generated in response to execution of each correlation search, and a graphical representation of the number of notable events generated over the given period of time.
In one implementation, the computing machine is a client device that causes display of the requested service-monitoring page by receiving a service monitoring web page or a service monitoring UI document from a server and rendering the service monitoring web page using a web browser on the client device or rendering the service monitoring UI document using a mobile application (app) on the client device. Alternatively, the computing machine is a server computer that causes display of the requested service-monitoring page by creating a service monitoring web page or a service monitoring UI document, and providing it to a client device for display via a web browser or a mobile application (app) on the client device.
In one implementation, creating a service monitoring web page or a service monitoring UI document includes determining the current and past values of the aggregate and aspect KPIs, determining the states of the aggregate and aspect KPIs, and identifying the most critical aggregate and aspect KPIs. In one implementation, various aspects (e.g., CPU usage, memory usage, response time, etc.) of a particular service can be monitored using a search query defined for an aspect KPI which is executed against raw machine data from entities that make up the service. The values from the raw machine data that are returned as a result of the defined search query represent the values of the aspect KPI. An aggregate KPI can be conFig.d and calculated for a service to represent an overall summary of a service. (The overall summary of a service, in an embodiment, can convey the health of the service, i.e., its sufficiency for meeting, or satisfaction of, operational objectives.) In one example, a service can have multiple separate aspect KPIs. The separate aspect KPIs for a service can be combined (e.g., averaged, weighted averaged, etc.) to create an aggregate KPI whose value is representative of the overall performance of the service. In one implementation, various thresholds can be defined for either aggregate KPIs or aspect KPIs. The defined thresholds correspond to ranges of values that represent the various states of the service. The values of the aggregate KPIs and/or aspect KPIs can be compared to the corresponding thresholds to determine the state of the aggregate or aspect KPI. The various states have an ordered severity that can be used to determine which KPIs should be displayed in service-monitoring page. In one implementation, the states include “critical,” “high,” “medium,” “normal,” and “low,” in order from most severe to least severe. In one implementation, some number of aggregate and aspect KPIs that have the highest severity level according to their determined state can be displayed in the corresponding region of the service-monitoring page. Additional details of thresholding, state determination and severity are described above with respect to
At block 4914, the computing machine performs monitoring related to the homepage. Such monitoring can include receiving notification of an operating system event such as a timer pop, or receiving notification of a GUI event such as a user input. Blocks 4915 through 4917 each signify a determination as to whether a particular monitored event has occurred and the processing that should result if it has. In one embodiment, each of blocks 4915-4917 can be associated with the execution of an event handler. At block 4915, a determination is made whether notification has been received indicating that dynamic update or refresh of the homepage should occur. The notification can ensue from a user clicking a refresh button of the GUI, or from the expiration of a refresh interval timer established for the homepage, for example. If so, processing returns to block 4912 in one embodiment. At block 4916, a determination is made whether notification has been received indicating that a display mode for the homepage should be changed. The notification can ensue from a user clicking a display mode button of the GUI, such as one selecting a network operations center display mode over a standard display mode, for example. If so, processing returns to block 4913 where the homepage is caused to be displayed in accordance, presumably, with the user input. At block 4917, a determination is made whether notification has been received indicating some other user interaction or input. If so, processing proceeds to block 4918 where an appropriate response to the user input is executed.
In one implementation, the visual representations in services summary region 4921 contain an ordered plurality of interactive summary tiles 4922. Each of interactive summary tiles 4922 corresponds to a respective service in the system (e.g., Activesync, Outlook, Outlook RPC) and provides a character or graphical representation of at least one value for an aggregate KPI characterizing the respective service as a whole. In one implementation, each of interactive summary tiles 4922 includes an indication of the corresponding service (i.e., the name or other identifier of the service), a numerical value indicating the aggregate KPI, and a sparkline indicating how the value of the aggregate KPI has changed over time. In one implementation, each of interactive summary tiles 4922 has a background color indicative of the state of the service. The state of the service can be determined by comparing the aggregate KPI of the service to one or more defined thresholds, as described above. In addition, each of interactive summary tiles 4922 can include a numerical value representing the state of the aggregate KPI characterizing the service and/or a textual indication of the state of the aggregate KPI (e.g., the name of the current state). In one implementation, only a certain number of interactive summary tiles 4922 can be displayed in services summary region 4921 at one time. For example, some number (e.g., 15, 20, etc.) of the most critical services, as measured by the severity of the states of their aggregate KPIs, can be displayed. In another implementation, tiles for user selected services can be displayed (i.e., the most important services to the user). In one implementation, which services are displayed, as well as the number of services displayed can be conFig.d by the user through menu element 4927.
The interactive summary tiles 4922 of service monitoring page 4920 are depicted as rectangular tiles arranged in an orthogonal array within a region, without appreciable interstices. Another implementation can include tiles that are not rectangular, or arranged in a pattern that is not an orthogonal array, or that has interstitial spaces (grout) between tiles, or some combination. Another implementation can include tiles having no background color such that a tile has no clearly visible delineated shape or boundary. Another implementation can include tiles of more than one size. These and other implementations are possible.
In one implementation, services summary region 4921 further includes a health bar gage 4923. The health bar gage 4923 can indicate distribution of aggregate KPIs of all services across each of the various states, rather than just the most critical services. The length of a portion of the health bar gage 4923, which is colored according to a specific KPI state, depends on the number of services with aggregate KPIs in that state. In addition, the health bar gage 4923 can have numeric indications of the number of services with KPIs in each state, as well as the total number of services in the system being monitored.
In one implementation, the visual representations in services aspects region 4924 contain an ordered plurality of interactive aspect tiles 4925. Each of interactive aspect tiles 4925 corresponds to a respective aspect KPI and provides a character or graphical representation of one or more values for the respective aspect KPI. Each aspect KPI can have an associated service and can typify performance for an aspect of the associated service. In one implementation, each of interactive aspect tiles 4925 includes an indication of the corresponding aspect KPI (i.e., the name or other identifier of the aspect KPI), an indication of the service with which the aspect KPI is associated, a numerical value indicating the current value of the aspect KPI, and a sparkline indicating how the value of the aspect KPI has changed over time. In one implementation, each of interactive aspect tiles 4925 has a background color indicative of the state of the aspect KPI. The state of the aspect KPI can be determined by comparing the aspect KPI to one or more defined thresholds, as described above. In addition, each of interactive aspect tiles 4925 can include a numerical value representing the state of the aspect KPI and/or a textual indication of the state of the aspect KPI (e.g., the name of the current state). In one implementation, only a certain number of interactive aspect tiles 4925 can be displayed in services aspects region 4924 at one time. For example, some number (e.g., 15, 20, etc.) of the most critical aspect KPIs, as measured by the severity of the states of the KPIs, can be displayed. In another implementation, tiles for user selected aspect KPIs can be displayed (i.e., the most important KPIs to the user). In one implementation, which aspect KPIs are displayed, as well as the number of aspect KPIs displayed can be conFig.d by the user through menu element 4928.
In one implementation, services aspects region 4924 further includes an aspects bar gage 4926. The aspects bar gage 4926 can indicate the distribution of all aspect KPIs across each of the various states, rather than just the most critical KPIs. The length of a portion of the aspects bar gage 4926 that is colored according to a specific state depends on the number of aspect KPIs in that state. In addition, the aspects bar gage 4926 can have numeric indications of the number of aspect KPIs in each state, as well as the total number of aspect KPIs in the system being monitored.
The tiles of a region (e.g., 4922 of 4921, 4925 of 4924) each occupy an ordered position within the region. In one embodiment, the order of region tiles proceeds from left-to-right then top-to-bottom, with the first tile located in the leftmost, topmost position. In one embodiment, the order of region tiles proceeds from top-to-bottom then left-to-right. In one embodiment, the order of region tiles proceeds from right-to-left then top-to-bottom. In one embodiment, different regions can have different ordering arrangements. Other ordering is possible. A direct use of the ordered positions of tiles within a region is for making the association between a particular KPI definition and the particular tile for displaying information related to it. For example, a set of aspect KPI definitions with a determined order such as discussed in relation to block 4912 of
In one embodiment service-monitoring page 4920 includes a display mode selection GUI element 4929 enabling a user to indicate a selection of a display mode. In one embodiment, display mode selection element 4929 enables the user to select between a network operations center (NOC) display mode and a home display mode. In one embodiment, tiles displaying KPI-related information while in NOC mode are larger (occupy more relative display area) than corresponding tiles displayed while in home mode. In an embodiment, display area is acquired to accommodate the larger tiles by a combination of one or more of reducing the total tile count, reducing or eliminating interstitial space between tiles or between displayed elements of the GUI, generally, reducing or eliminating GUI elements (such as any auxiliary regions area), or other methods. The transformation of the GUI display from home to NOC mode changes the size of tiles relative to one or more other GUI elements and, so, is not a simple zoom function applied to the service-monitoring page 4920. In one embodiment, an indicator within a tile displaying KPI-related information while in NOC mode is larger (occupies more relative display area) than the corresponding indicator displayed while in home mode. For example, a character-type indicator within a tile can display using a larger or bolder font while in NOC mode than while in home mode. In one embodiment, display area is acquired to accommodate the larger indicator by a combination of reducing or eliminating other indicators appearing within the tile. Embodiments with more than two display mode selection options, such as associated with GUI element 4929, are possible.
In one implementation, the notable events region 4930 includes the indication (e.g., the name) of each correlation search 4931, a value representing the number of notable events generated in response to execution of each correlation search 4932, and a graphical representation (e.g., a sparkline) of the number of notable events generated over the given period of time 4933. In one implementation, the correlation searches shown in notable events region 4930 can be sorted according to the data in each of columns 4931, 4932, and 4933.
In one implementation, only a certain number of correlation searches can be displayed in notable events region 4930 at one time. For example, some number (e.g., 5, 10, etc.) of the correlation searches that generate the most notable events in a given period of time can be displayed. In another implementation, all correlation searches that generated a minimum number of notable events in a given period of time can be displayed. In one implementation, which correlation searches are displayed, as well as the number of correlation searches displayed can be conFig.d by the user.
In an embodiment, notable events region 4930 can be replaced by, or supplemented with, one or more other information regions. For example, one embodiment of an other-information region can display most-recently-used items, such as most-recently-viewed service-monitoring dashboards, or most-recently-used deep dive displays. Each most-recently-used item can contain the item name or some other identifier for the item. Any notable event regions and other information regions in a GUI display can be collectively referred to as auxiliary regions. In one embodiment, items displayed in auxiliary regions support user interaction. User interaction may, for example, provide an indication to the computing machine of a user's desire to navigate to a GUI component related to the item with which the user interacted. For example, a user can click on a notable event name in the notable event region to navigate to a GUI displaying detailed information about the event. For example, a user can click on the name of a most-recently-viewed service-monitoring dashboard in an other-information region to navigate to the dashboard GUI. In one embodiment, auxiliary regions are displayed together in an auxiliary regions area. An auxiliary regions area can be located in a GUI display as described above for the notable events region 4930.
In response to one or more of interactive aspect tiles 4925 being selected, menu elements 4942 and 4943 can be displayed in service-monitoring page 4920. Menu element 4942 can be used to cancel the selection of any interactive aspects tiles 4925 in services aspects region 4924. Activation of menu element 4942 can cause the selected tiles to be unselected and revert to the non-selected state as shown in
As noted herein above, implementations of the present disclosure allow applying user-configurable policies for identifying non-responsive or orphan entities of a service monitoring system and provide users with the ability to identify, retire, and eventually delete these entities. Retired entities are excluded from interacting with any other components of the service monitoring system. A retired entity can stay in the retired state until it is deleted from the system or restored to the active state.
The entity lifecycle management is driven by one or more user-defined entity lifecycle management policies 4450, which can be created via a GUI based on predefined templates, as described in more detail herein below. The user-defined entity lifecycle management policies 4450 can be translated into respective custom search commands 4460, which can be applied to the IT Service Intelligence (ITSI) summary (event data) 4430 and to the metrics data 4440 produced by the service monitoring system.
Each of the entity lifecycle management policies 4450 can be associated with a user-specified symbolic name and can specify one or more entity lifecycle management action (e.g., entity retirement) rules. In an illustrative example, an entity retirement rule can target non-responsive entities by specifying the threshold period of time in which an entity has not been sending any data. Accordingly, an entity that has not been sending any data for a period of time exceeding the threshold period specified by the entity retirement rule would be identified as a candidate entity for retirement. In another illustrative example, an entity retirement rule can target orphan entities by specifying the threshold period of time in which the entity has not been associated with any service. Accordingly, an entity that has not been associated with any service for a period exceeding the threshold period of time specified by the entity retirement rule would be identified as a candidate entity for retirement.
In some implementations, in addition to entity lifecycle management action rules, an entity lifecycle management policy can specify the entity evaluation frequency, which specifies the frequency of running the search commands produced by translating the entity lifecycle management policy.
In some implementations, the service monitoring system can provide a GUI for creating and/or editing entity lifecycle management policy definitions, as schematically illustrated by
In some implementations, the service monitoring system can provide a GUI for displaying the defined entity lifecycle management policies and performing bulk actions upon user-selected policies, as schematically illustrated by
In some implementations, the GUI 4602 can provide, for each entity lifecycle management policy 4670A-4670N, a corresponding toggle switch 4680 for enabling/disabling the entity lifecycle management policy 4670A-4670N. Disabling the entity lifecycle management policy can remove retirement candidate designations from the one or more candidate retirement entities that had been identified by the policy before the policy was disabled. Similarly, permanently deleting the entity lifecycle management policy can remove retirement candidate designations from the one or more candidate retirement entities that had been identified by the policy before the policy was deleted.
In some implementations, the GUI 4602 can further include, for each entity lifecycle management policy 4670A-4670N, a corresponding last evaluation date 4672A-4672N and/or a corresponding policy evaluation frequency 4672A-4674N.
In some implementations, the GUI 4602 can further provide, for each entity lifecycle management policy 4670A-4670N, a corresponding checkbox 4676A-4676N for selecting the policies for performing a bulk action that is selected by the drop-down list 4678. The chosen bulk action is then applied to the entity lifecycle management policies 4670 that are selected by their corresponding checkboxes 4676. As schematically illustrated by
In some implementations, the service monitoring system allows a user to specify multiple non-conflicting entity lifecycle management rules, each of which would be translated into corresponding search commands, which are then applied to the entity definitions and to the events/metrics data produced by the service monitoring system. Translating an entity lifecycle management rules into search commands can involve selecting a template corresponding to the entity lifecycle management rule type, and substituting the template fields with the values supplied by the rule (e.g., the threshold period of time for identifying non-responsive or orphan entities).
In some implementations, the service monitoring system allows a user to associate entity lifecycle management policies with specific entity types, such that a set of entity lifecycle management rules to be applied to a given entity is defined based on the entity type. By default, a newly defined entity lifecycle management rule can be applied to all entity types. The entity lifecycle management policy definition GUI can allow the user to select specific entity types to be associated with that policy.
As noted herein above, the search commands derived from the entity lifecycle policy definitions can be executed with the desired frequency, thus identifying certain entities as retirement candidates. These entities can be presented to a user via a GUI that lists all identified retirement candidate entities and allows the user to perform individual or bulk actions upon selected entities, as schematically illustrated by
In some implementations, the list of entities displayed by the GUI 4802 can display one or more entities that have been selected, by applicable entity lifecycle management policy, as candidate entities for performing entity lifecycle actions (e.g., retirement). In the list of entities, such entity can have an attention icon displayed 4820 in a visual association to the entity name. If a cursor is hovered over a displayed attention icon, the entity lifecycle management policy that updated the entity is shown in a popup bubble 4830.
As schematically illustrated by
In some implementations, the GUI 4802 can further provide, for each entity 4810, a corresponding checkbox 4850 for selecting the entity for performing a bulk action that is selected by the drop-down list 4840. The chosen bulk action is then applied to the entities 4810 that are selected by their corresponding checkboxes 4850. The bulk actions 4840 can include retiring or deleting the selected entities. In some implementations, the bulk actions 4840 can further include editing the selected entities and/or putting the selected entities into the maintenance mode.
In some implementations, the service monitoring system allows a user to restore a retired entity to the active state or delete a retired entity from the system, as schematically illustrated by
For each entity 4970, the GUI 4902 can provide a list of available actions 4940 that can be performed with respect to the entity. The actions 4978 can include restoring the entity to the active status (un-retiring), editing, or deleting the entity.
In some implementations, the GUI 4902 can further provide, for each entity 4970, a corresponding checkbox 4980 for selecting the entity for performing a bulk action that is selected by the drop-down list that is triggered by the button 4982. The chosen bulk action is then applied to the entities 4970 that are selected by their corresponding checkboxes 4984. The bulk actions can include restoring the entity to the active status (un-retiring), editing, or deleting the entity.
In some implementations, the service monitoring system can further implement restoring, to the active status, the retired entities that have become active and/or associated with at least one service. In an illustrative example, a saved search can identify retirement candidate entities that started sending data since the retirement event. In another illustrative example, a saved search can identify retirement candidate entities that have become associated with at least one service since the retirement event. The identified entities can then be transitioned into an active status automatically or be presented to a user via a GUI for review and selection of entities to be restored to the active status.
At block 5110, the processing device implementing the method receives one or more policy definitions specifying respective one or more entity lifecycle management policies. In an illustrative examples, the policy definitions can be created by a policy creation/editing GUI based on a set of predefined templates. Each policy lifecycle management policy can include one or more entity lifecycle management rules. In an illustrative example, an entity retirement rule can target non-responsive entities by specifying the threshold period of time in which an entity has not been sending any data. In another illustrative example, an entity retirement rule can target orphan entities by specifying the threshold period of time in which the entity has not been associated with any service, as described in more detail herein above.
At block 5120, the processing device applies one or more active entity lifecycle management policies to the active entities defined in the service monitoring system in order to identify one or more candidate entities for retirement. In various illustrative examples, entities can include devices, applications, services, and/or user accounts. In some implementations, applying an entity lifecycle management policy involves translating the policy into a set of search commands, which are then executed based on the schedule associated with the entity lifecycle management policy, as described in more detail herein above.
At block 5130, the processing device identifies, as retired entities, at least a subset of the one or more candidate entities. In an illustrative example, the processing device can cause a GUI to be displayed, such that the GUI lists the identified retirement candidate entities. The processing device can then receive the user selection of one or more candidate entities for retirement, as described in more detail herein above.
At block 5140, the processing device excludes the retired entities from the active entities defined in the system. In an illustrative example, each entity definition includes a status flag, which can be set to active or retired status. In some implementations, the status flag can support three states: active, retirement candidate, or retired. Setting the status flag to the retired status would effectively exclude the affected entity from interacting with any other entities or components of the service monitoring system. In some implementations, setting the status flag to the retired status would also suppress generation of alerts associated with the affected entity, as described in more detail herein above. In some implementations, two separate flags can be supported for each entity definition, such that one flag would correspond to the candidate retirement state, while the other flag would correspond to the retired state.
At block 5150, the processing device executes one or more search queries that derive, from machine data associated with one or more active entities, values of one or more key performance indicators (KPIs) reflecting respective aspects of performance of one or more services, as described in more detail herein above.
At block 5210, the processing device implementing the method identifies a plurality of retired entities. In an illustrative example, the processing device can cause a GUI to be displayed, such that the GUI lists the identified retirement candidate entities. The processing device can then receive the user selection of one or more candidate entities for retirement, as described in more detail herein above.
At block 5220, the processing device restores one or more retired entities to the active status. In an illustrative example, the processing device can cause a GUI to be displayed, such that the GUI lists the retired entities. The processing device can then receive the user selection of one or more retired entities to be restored to the active status, as described in more detail herein above.
At block 5230, the processing device permanently deletes one or more retired entities. In an illustrative example, the processing device can cause a GUI to be displayed, such that the GUI lists the retired entities. The processing device can then receive the user selection of one or more retired entities to be permanently deleted from the system, as described in more detail herein above.
At block 5310, the processing device implementing the method receives one or more policy definitions specifying respective one or more entity lifecycle management policies, as described in more detail herein above.
At block 5320, the processing device applies one or more active entity lifecycle management policies to the active entities defined in the service monitoring system in order to identify one or more candidate entities for retirement, as described in more detail herein above.
At block 5330, the processing device disables at least one of the active entity lifecycle management policies. In an illustrative example, the processing device can cause a GUI to be displayed, such that the GUI lists the active entity lifecycle management policies. The processing device can then receive the user selection of one or more active entity lifecycle management policies to be disabled, as described in more detail herein above.
At block 5340, the processing device removes retirement candidate designations from the one or more candidate retirement entities that had been previously identified by the disabled entity lifecycle management policies.
At block 5410, the processing device implementing the method receives a policy definition specifying an entity lifecycle management policy. The policy may include one or more entity lifecycle management rules. Each rule may specify a logical condition to be satisfied by an active entity definition in order to qualify the active entity to the candidate retirement status. In an illustrative example, an entity retirement rule can target non-responsive entities by specifying the threshold period of time in which an entity has not been sending any data. In another illustrative example, an entity retirement rule can target orphan entities by specifying the threshold period of time in which the entity has not been associated with any service, as described in more detail herein above.
At block 5420, the processing device identifies, for each entity lifecycle management rule, a template corresponding to the entity lifecycle management rule type. A template can include a sequence of statements in a chosen query language, in which certain intermediate values are replaced by fillable template fields.
At block 5430, the processing device translates each entity lifecycle management rule, based on the identified corresponding template, to a set of search commands. In an illustrative example, the translation may involve substituting the template fields with the values supplied by the rule (e.g., the threshold period of time for identifying non-responsive or orphan entities).
Modern data centers often comprise thousands of host computer systems that operate collectively to service requests from even larger numbers of remote clients. During operation, these data centers generate significant volumes of performance data and diagnostic information that can be analyzed to quickly diagnose performance problems. In order to reduce the size of this performance data, the data is typically pre-processed prior to being stored based on anticipated data-analysis needs. For example, pre-specified data items can be extracted from the performance data and stored in a database to facilitate efficient retrieval and analysis at search time. However, the rest of the performance data is not saved and is essentially discarded during pre-processing. As storage capacity becomes progressively cheaper and more plentiful, there are fewer incentives to discard this performance data and many reasons to keep it.
This plentiful storage capacity is presently making it feasible to store massive quantities of minimally processed performance data at “ingestion time” for later retrieval and analysis at “search time.” Note that performing the analysis operations at search time provides greater flexibility because it enables an analyst to search all of the performance data, instead of searching pre-specified data items that were stored at ingestion time. This enables the analyst to investigate different implementations of the performance data instead of being confined to the pre-specified set of data items that were selected at ingestion time.
However, analyzing massive quantities of heterogeneous performance data at search time can be a challenging task. A data center can generate heterogeneous performance data from thousands of different components, which can collectively generate tremendous volumes of performance data that can be time-consuming to analyze. For example, this performance data can include data from system logs, network packet data, sensor data, and data generated by various applications. Also, the unstructured nature of much of this performance data can pose additional challenges because of the difficulty of applying semantic meaning to unstructured data, and the difficulty of indexing and querying unstructured data using traditional database systems.
These challenges can be addressed by using an event-based system, such as the SPLUNK® ENTERPRISE system produced by Splunk Inc. of San Francisco, California, to store and process performance data. The SPLUNK® ENTERPRISE system is the leading platform for providing real-time operational intelligence that enables organizations to collect, index, and harness machine-generated data from various websites, applications, servers, networks, and mobile devices that power their businesses. The SPLUNK® ENTERPRISE system is particularly useful for analyzing unstructured performance data, which is commonly found in system log files. Although many of the techniques described herein are explained with reference to the SPLUNK® ENTERPRISE system, the techniques are also applicable to other types of data server systems.
In the SPLUNK® ENTERPRISE system, performance data is stored as “events,” wherein each event comprises a collection of performance data and/or diagnostic information that is generated by a computer system and is correlated with a specific point in time. Events can be derived from “time series data,” wherein time series data comprises a sequence of data points (e.g., performance measurements from a computer system) that are associated with successive points in time and are typically spaced at uniform time intervals. Events can also be derived from “structured” or “unstructured” data. Structured data has a predefined format, wherein specific data items with specific data formats reside at predefined locations in the data. For example, structured data can include data items stored in fields in a database table. In contrast, unstructured data does not have a predefined format. This means that unstructured data can comprise various data items having different data types that can reside at different locations. For example, when the data source is an operating system log, an event can include one or more lines from the operating system log containing raw data that includes different types of performance and diagnostic information associated with a specific point in time. Examples of data sources from which an event can be derived include, but are not limited to: web servers; application servers; databases; firewalls; routers; operating systems; and software applications that execute on computer systems, mobile devices, and sensors. The data generated by such data sources can be produced in various forms including, for example and without limitation, server log files, activity log files, configuration files, messages, network packet data, performance measurements and sensor measurements. An event typically includes a timestamp that can be derived from the raw data in the event, or can be determined through interpolation between temporally proximate events having known timestamps.
The SPLUNK® ENTERPRISE system also facilitates using a flexible schema to specify how to extract information from the event data, wherein the flexible schema can be developed and redefined as needed. Note that a flexible schema can be applied to event data “on the fly,” when it is needed (e.g., at search time), rather than at ingestion time of the data as in traditional database systems. Because the schema is not applied to event data until it is needed (e.g., at search time), it is referred to as a “late-binding schema.”
During operation, the SPLUNK® ENTERPRISE system starts with raw data, which can include unstructured data, machine data, performance measurements or other time-series data, such as data obtained from weblogs, syslogs, or sensor readings. It divides this raw data into “portions,” and optionally transforms the data to produce timestamped events. The system stores the timestamped events in a data store, and enables a user to run queries against the data store to retrieve events that meet specified criteria, such as containing certain keywords or having specific values in defined fields. Note that the term “field” refers to a location in the event data containing a value for a specific data item.
As noted above, the SPLUNK® ENTERPRISE system facilitates using a late-binding schema while performing queries on events. A late-binding schema specifies “extraction rules” that are applied to data in the events to extract values for specific fields. More specifically, the extraction rules for a field can include one or more instructions that specify how to extract a value for the field from the event data. An extraction rule can generally include any type of instruction for extracting values from data in events. In some cases, an extraction rule comprises a regular expression, in which case the rule is referred to as a “regex rule.”
In contrast to a conventional schema for a database system, a late-binding schema is not defined at data ingestion time. Instead, the late-binding schema can be developed on an ongoing basis until the time a query is actually executed. This means that extraction rules for the fields in a query can be provided in the query itself, or can be located during execution of the query. Hence, as an analyst learns more about the data in the events, the analyst can continue to refine the late-binding schema by adding new fields, deleting fields, or changing the field extraction rules until the next time the schema is used by a query. Because the SPLUNK® ENTERPRISE system maintains the underlying raw data and provides a late-binding schema for searching the raw data, it enables an analyst to investigate questions that arise as the analyst learns more about the events.
In the SPLUNK® ENTERPRISE system, a field extractor can be conFig.d to automatically generate extraction rules for certain fields in the events when the events are being created, indexed, or stored, or possibly at a later time. Alternatively, a user can manually define extraction rules for fields using a variety of techniques.
Also, a number of “default fields” that specify metadata about the events rather than data in the events themselves can be created automatically. For example, such default fields can specify: a timestamp for the event data; a host from which the event data originated; a source of the event data; and a source type for the event data. These default fields can be determined automatically when the events are created, indexed or stored.
In some embodiments, a common field name can be used to reference two or more fields containing equivalent data items, even though the fields can be associated with different types of events that possibly have different data formats and different extraction rules. By enabling a common field name to be used to identify equivalent fields from different types of events generated by different data sources, the system facilitates use of a “common information model” (CIM) across the different data sources.
During operation, the forwarders 7101 identify which indexers 7102 will receive the collected data and then forward the data to the identified indexers. Forwarders 7101 can also perform operations to strip out extraneous data and detect timestamps in the data. The forwarders next determine which indexers 7102 will receive each data item and then forward the data items to the determined indexers 7102.
Note that distributing data across different indexers facilitates parallel processing. This parallel processing can take place at data ingestion time, because multiple indexers can process the incoming data in parallel. The parallel processing can also take place at search time, because multiple indexers can search through the data in parallel.
System 7100 and the processes described below with respect to
Next, the indexer determines a timestamp for each event at block 7203. As mentioned above, these timestamps can be determined by extracting the time directly from data in the event, or by interpolating the time based on timestamps from temporally proximate events. In some cases, a timestamp can be determined based on the time the data was received or generated. The indexer subsequently associates the determined timestamp with each event at block 7204, for example by storing the timestamp as metadata for each event.
Then, the system can apply transformations to data to be included in events at block 7205. For log data, such transformations can include removing a portion of an event (e.g., a portion used to define event boundaries, extraneous text, characters, etc.) or removing redundant portions of an event. Note that a user can specify portions to be removed using a regular expression or any other possible technique.
Next, a keyword index can optionally be generated to facilitate fast keyword searching for events. To build a keyword index, the indexer first identifies a set of keywords in block 7206. Then, at block 7207 the indexer includes the identified keywords in an index, which associates each stored keyword with references to events containing that keyword (or to locations within events where that keyword is located). When an indexer subsequently receives a keyword-based query, the indexer can access the keyword index to quickly identify events containing the keyword.
In some embodiments, the keyword index can include entries for name-value pairs found in events, wherein a name-value pair can include a pair of keywords connected by a symbol, such as an equals sign or colon. In this way, events containing these name-value pairs can be quickly located. In some embodiments, fields can automatically be generated for some or all of the name-value pairs at the time of indexing. For example, if the string “dest=10.0.1.2” is found in an event, a field named “dest” can be created for the event, and assigned a value of “10.0.1.2.”
Finally, the indexer stores the events in a data store at block 7208, wherein a timestamp can be stored with each event to facilitate searching for events based on a time range. In some cases, the stored events are organized into a plurality of buckets, wherein each bucket stores events associated with a specific time range. This not only improves time-based searches, but it also allows events with recent timestamps that can have a higher likelihood of being accessed to be stored in faster memory to facilitate faster retrieval. For example, a bucket containing the most recent events can be stored as flash memory instead of on hard disk.
Each indexer 7102 is responsible for storing and searching a subset of the events contained in a corresponding data store 7103. By distributing events among the indexers and data stores, the indexers can analyze events for a query in parallel, for example using map-reduce techniques, wherein each indexer returns partial responses for a subset of events to a search head that combines the results to produce an answer for the query. By storing events in buckets for specific time ranges, an indexer can further optimize searching by looking only in buckets for time ranges that are relevant to a query.
Then, at block 7304, the indexers to which the query was distributed search their data stores for events that are responsive to the query. To determine which events are responsive to the query, the indexer searches for events that match the criteria specified in the query. This criteria can include matching keywords or specific values for certain fields. In a query that uses a late-binding schema, the searching operations in block 7304 can involve using the late-binding scheme to extract values for specified fields from events at the time the query is processed. Next, the indexers can either send the relevant events back to the search head, or use the events to calculate a partial result, and send the partial result back to the search head.
Finally, at block 7305, the search head combines the partial results and/or events received from the indexers to produce a final result for the query. This final result can comprise different types of data depending upon what the query is asking for. For example, the final results can include a listing of matching events returned by the query, or some type of visualization of data from the returned events. In another example, the final result can include one or more calculated values derived from the matching events.
Moreover, the results generated by system 7100 can be returned to a client using different techniques. For example, one technique streams results back to a client in real-time as they are identified. Another technique waits to report results to the client until a complete set of results is ready to return to the client. Yet another technique streams interim results back to the client in real-time until a complete set of results is ready, and then returns the complete set of results to the client. In another technique, certain results are stored as “search jobs,” and the client can subsequently retrieve the results by referencing the search jobs.
The search head can also perform various operations to make the search more efficient. For example, before the search head starts executing a query, the search head can determine a time range for the query and a set of common keywords that all matching events must include. Next, the search head can use these parameters to query the indexers to obtain a superset of the eventual results. Then, during a filtering stage, the search head can perform field-extraction operations on the superset to produce a reduced set of search results.
Upon receiving search query 7402, query processor 7404 sees that search query 7402 includes two fields “IP” and “target.” Query processor 7404 also determines that the values for the “IP” and “target” fields have not already been extracted from events in data store 7414, and consequently determines that query processor 7404 needs to use extraction rules to extract values for the fields. Hence, query processor 7404 performs a lookup for the extraction rules in a rule base 7406, wherein rule base 7406 maps field names to corresponding extraction rules and obtains extraction rules 7408-7409, wherein extraction rule 7408 specifies how to extract a value for the “IP” field from an event, and extraction rule 7409 specifies how to extract a value for the “target” field from an event. As is illustrated in
Next, query processor 7404 sends extraction rules 7408-7409 to a field extractor 7412, which applies extraction rules 7408-7409 to events 7416-7418 in a data store 7414. Note that data store 7414 can include one or more data stores, and extraction rules 7408-7409 can be applied to large numbers of events in data store 7414, and are not meant to be limited to the three events 7416-7418 illustrated in
Next, field extractor 7412 applies extraction rule 7408 for the first command “Search IP=“10*” to events in data store 7414 including events 7416-7418. Extraction rule 7408 is used to extract values for the IP address field from events in data store 7414 by looking for a pattern of one or more digits, followed by a period, followed again by one or more digits, followed by another period, followed again by one or more digits, followed by another period, and followed again by one or more digits. Next, field extractor 7412 returns field values 7420 to query processor 7404, which uses the criterion IP=“10*” to look for IP addresses that start with “10”. Note that events 7416 and 7417 match this criterion, but event 7418 does not, so the result set for the first command is events 7416-7417.
Query processor 7404 then sends events 7416-717 to the next command “stats count target.” To process this command, query processor 7404 causes field extractor 7412 to apply extraction rule 7409 to events 7416-7417. Extraction rule 7409 is used to extract values for the target field for events 7416-7417 by skipping the first four commas in events 7416-7417, and then extracting all of the following characters until a comma or period is reached. Next, field extractor 7412 returns field values 7421 to query processor 7404, which executes the command “stats count target” to count the number of unique values contained in the target fields, which in this example produces the value “2” that is returned as a final result 7422 for the query.
Note that query results can be returned to a client, a search head, or any other system component for further processing. In general, query results can include: a set of one or more events; a set of one or more values obtained from the events; a subset of the values; statistics calculated based on the values; a report containing the values; or a visualization, such as a graph or chart, generated from the values.
Creating queries requires knowledge of the fields that are included in the events being searched, as well as knowledge of the query processing language used for the queries. While a data analyst can possess domain understanding of underlying data and knowledge of the query processing language, an end user responsible for creating reports at a company (e.g., a marketing specialist) can not have such expertise. In order to assist end users, implementations of the event processing system described herein provide data models that simplify the creation of reports and other visualizations.
A data model encapsulates semantic knowledge about certain events. A data model can be composed of one or more objects grouped in a hierarchical manner. In general, the objects included in a data model can be related to each other in some way. In particular, a data model can include a root object and, optionally, one or more child objects that can be linked (either directly or indirectly) to the root object. A root object can be defined by search criteria for a query to produce a certain set of events, and a set of fields that can be exposed to operate on those events. A root object can be a parent of one or more child objects, and any of those child objects can optionally be a parent of one or more additional child objects. Each child object can inherit the search criteria of its parent object and have additional search criteria to further filter out events represented by its parent object. Each child object can also include at least some of the fields of its parent object and optionally additional fields specific to the child object.
Definition 7460 of child object 7436 includes search criteria 7470 and a set of fields 7474. Search criteria 7470 inherits search criteria 7442 of the parent object 7432 and includes an additional criterion of “status!=200,” which indicates that the search query should produce web access requests that qualify as unsuccessful purchase events. Fields 7474 consist of the fields inherited from the parent object 7432. As shown, child objects 7434 and 7436 include all the fields inherited from the parent object 7432. In other implementations, child objects can only include some of the fields of the parent object and/or can include additional fields that are not exposed by the parent object.
When creating a report, a user can select an object of a data model to focus on the events represented by the selected object. The user can then view the fields of the data object and request the event processing system to structure the report based on those fields. For example, the user can request the event processing system to add some fields to the report, to add calculations based on some fields to the report, to group data in the report based on some fields, etc. The user can also input additional constraints (e.g., specific values and/or mathematical expressions) for some of the fields to further filter out events on which the report should be focused.
After the search is executed, the search screen 7600 can display the results through search results tabs 7604, wherein search results tabs 7604 includes: an “events tab” that displays various information about events returned by the search; a “statistics tab” that displays statistics about the search results; and a “visualization tab” that displays various visualizations of the search results. The events tab illustrated in
The above-described system provides significant flexibility by enabling a user to analyze massive quantities of minimally processed performance data “on the fly” at search time instead of storing pre-specified portions of the performance data in a database at ingestion time. This flexibility enables a user to see correlations in the performance data and perform subsequent queries to examine interesting implementations of the performance data that can not have been apparent at ingestion time.
However, performing extraction and analysis operations at search time can involve a large amount of data and require a large number of computational operations, which can cause considerable delays while processing the queries. Fortunately, a number of acceleration techniques have been developed to speed up analysis operations performed at search time. These techniques include: (1) performing search operations in parallel by formulating a search as a map-reduce computation; (2) using a keyword index; (3) using a high performance analytics store; and (4) accelerating the process of generating reports. These techniques are described in more detail below.
To facilitate faster query processing, a query can be structured as a map-reduce computation, wherein the “map” operations are delegated to the indexers, while the corresponding “reduce” operations are performed locally at the search head. For example,
During operation, upon receiving search query 7501, search head 7104 modifies search query 7501 by substituting “stats” with “prestats” to produce search query 7502, and then distributes search query 7502 to one or more distributed indexers, which are also referred to as “search peers.” Note that search queries can generally specify search criteria or operations to be performed on events that meet the search criteria. Search queries can also specify field names, as well as search criteria for the values in the fields or operations to be performed on the values in the fields. Moreover, the search head can distribute the full search query to the search peers as is illustrated in
As described above with reference to the flow charts in
To speed up certain types of queries, some embodiments of system 7100 make use of a high performance analytics store, which is referred to as a “summarization table,” that contains entries for specific field-value pairs. Each of these entries keeps track of instances of a specific value in a specific field in the event data and includes references to events containing the specific value in the specific field. For example, an exemplary entry in a summarization table can keep track of occurrences of the value “94107” in a “ZIP code” field of a set of events, wherein the entry includes references to all of the events that contain the value “94107” in the ZIP code field. This enables the system to quickly process queries that seek to determine how many events have a particular value for a particular field, because the system can examine the entry in the summarization table to count instances of the specific value in the field without having to go through the individual events or do extractions at search time. Also, if the system needs to process all events that have a specific field-value combination, the system can use the references in the summarization table entry to directly access the events to extract further information without having to search all of the events to find the specific field-value combination at search time.
In some embodiments, the system maintains a separate summarization table for each of the above-described time-specific buckets that stores events for a specific time range, wherein a bucket-specific summarization table includes entries for specific field-value combinations that occur in events in the specific bucket. Alternatively, the system can maintain a separate summarization table for each indexer, wherein the indexer-specific summarization table only includes entries for the events in a data store that is managed by the specific indexer.
The summarization table can be populated by running a “collection query” that scans a set of events to find instances of a specific field-value combination, or alternatively instances of all field-value combinations for a specific field. A collection query can be initiated by a user, or can be scheduled to occur automatically at specific time intervals. A collection query can also be automatically launched in response to a query that asks for a specific field-value combination.
In some cases, the summarization tables can not cover all of the events that are relevant to a query. In this case, the system can use the summarization tables to obtain partial results for the events that are covered by summarization tables, but can also have to search through other events that are not covered by the summarization tables to produce additional results. These additional results can then be combined with the partial results to produce a final set of results for the query. This summarization table and associated techniques are described in more detail in U.S. Pat. No. 8,682,925, issued on Mar. 25, 2014.
In some embodiments, a data server system such as the SPLUNK® ENTERPRISE system can accelerate the process of periodically generating updated reports based on query results. To accelerate this process, a summarization engine automatically examines the query to determine whether generation of updated reports can be accelerated by creating intermediate summaries. (This is possible if results from preceding time periods can be computed separately and combined to generate an updated report. In some cases, it is not possible to combine such incremental results, for example where a value in the report depends on relationships between events from different time periods.) If reports can be accelerated, the summarization engine periodically generates a summary covering data obtained during a latest non-overlapping time period. For example, where the query seeks events meeting a specified criteria, a summary for the time period includes only events within the time period that meet the specified criteria. Similarly, if the query seeks statistics calculated from the events, such as the number of events that match the specified criteria, then the summary for the time period includes the number of events in the period that match the specified criteria.
In parallel with the creation of the summaries, the summarization engine schedules the periodic updating of the report associated with the query. During each scheduled report update, the query engine determines whether intermediate summaries have been generated covering portions of the time period covered by the report update. If so, then the report is generated based on the information contained in the summaries. Also, if additional event data has been received and has not yet been summarized, and is required to generate the complete report, the query can be run on this additional event data. Then, the results returned by this query on the additional event data, along with the partial results obtained from the intermediate summaries, can be combined to generate the updated report. This process is repeated each time the report is updated. Alternatively, if the system stores events in buckets covering specific time ranges, then the summaries can be generated on a bucket-by-bucket basis. Note that producing intermediate summaries can save the work involved in re-running the query for previous time periods, so only the newer event data needs to be processed while generating an updated report. These report acceleration techniques are described in more detail in U.S. Pat. No. 8,589,403, issued on Nov. 19, 2013, and U.S. Pat. No. 8,412,696, issued on Apr. 2, 2011.
The SPLUNK® ENTERPRISE platform provides various schemas, dashboards and visualizations that make it easy for developers to create applications to provide additional capabilities. One such application is the SPLUNK® APP FOR ENTERPRISE SECURITY, which performs monitoring and alerting operations and includes analytics to facilitate identifying both known and unknown security threats based on large volumes of data stored by the SPLUNK® ENTERPRISE system. This differs significantly from conventional Security Information and Event Management (STEM) systems that lack the infrastructure to effectively store and analyze large volumes of security-related event data. Traditional STEM systems typically use fixed schemas to extract data from pre-defined security-related fields at data ingestion time, wherein the extracted data is typically stored in a relational database. This data extraction process (and associated reduction in data size) that occurs at data ingestion time inevitably hampers future incident investigations, when all of the original data can be needed to determine the root cause of a security issue, or to detect the tiny fingerprints of an impending security threat.
In contrast, the SPLUNK® APP FOR ENTERPRISE SECURITY system stores large volumes of minimally processed security-related data at ingestion time for later retrieval and analysis at search time when a live security threat is being investigated. To facilitate this data retrieval process, the SPLUNK® APP FOR ENTERPRISE SECURITY provides pre-specified schemas for extracting relevant values from the different types of security-related event data, and also enables a user to define such schemas.
The SPLUNK® APP FOR ENTERPRISE SECURITY can process many types of security-related information. In general, this security-related information can include any information that can be used to identify security threats. For example, the security-related information can include network-related information, such as IP addresses, domain names, asset identifiers, network traffic volume, uniform resource locator strings, and source addresses. Security-related information can also include endpoint information, such as malware infection data and system configuration information, as well as access control information, such as login/logout information and access failure notifications. The security-related information can originate from various sources within a data center, such as hosts, virtual machines, storage devices and sensors. The security-related information can also originate from various sources in a network, such as routers, switches, email servers, proxy servers, gateways, firewalls and intrusion-detection systems.
During operation, the SPLUNK® APP FOR ENTERPRISE SECURITY facilitates detecting so-called “notable events” that are likely to indicate a security threat. These notable events can be detected in a number of ways: (1) an analyst can notice a correlation in the data and can manually identify a corresponding group of one or more events as “notable;” or (2) an analyst can define a “correlation search” specifying criteria for a notable event, and every time one or more events satisfy the criteria, the application can indicate that the one or more events are notable. An analyst can alternatively select a pre-defined correlation search provided by the application. Note that correlation searches can be run continuously or at regular intervals (e.g., every hour) to search for notable events. Upon detection, notable events can be stored in a dedicated “notable events index,” which can be subsequently accessed to generate various visualizations containing security-related information. Also, alerts can be generated to notify system operators when important notable events are discovered.
The SPLUNK® APP FOR ENTERPRISE SECURITY provides various visualizations to aid in discovering security threats, such as a “key indicators view” that enables a user to view security metrics of interest, such as counts of different types of notable events. For example,
These visualizations can also include an “incident review dashboard” that enables a user to view and act on “notable events.” These notable events can include: (1) a single event of high importance, such as any activity from a known web attacker; or (2) multiple events that collectively warrant review, such as a large number of authentication failures on a host followed by a successful authentication. For example,
As mentioned above, the SPLUNK® ENTERPRISE platform provides various features that make it easy for developers to create various applications. One such application is the SPLUNK® APP FOR VMWARE®, which performs monitoring operations and includes analytics to facilitate diagnosing the root cause of performance problems in a data center based on large volumes of data stored by the SPLUNK® ENTERPRISE system.
This differs from conventional data-center-monitoring systems that lack the infrastructure to effectively store and analyze large volumes of performance information and log data obtained from the data center. In conventional data-center-monitoring systems, this performance data is typically pre-processed prior to being stored, for example by extracting pre-specified data items from the performance data and storing them in a database to facilitate subsequent retrieval and analysis at search time. However, the rest of the performance data is not saved and is essentially discarded during pre-processing. In contrast, the SPLUNK® APP FOR VMWARE® stores large volumes of minimally processed performance information and log data at ingestion time for later retrieval and analysis at search time when a live performance issue is being investigated.
The SPLUNK® APP FOR VMWARE® can process many types of performance-related information. In general, this performance-related information can include any type of performance-related data and log data produced by virtual machines and host computer systems in a data center. In addition to data obtained from various log files, this performance-related information can include values for performance metrics obtained through an application programming interface (API) provided as part of the vSphere Hypervisor™ system distributed by VMware, Inc. of Palo Alto, California. For example, these performance metrics can include: (1) CPU-related performance metrics; (2) disk-related performance metrics; (3) memory-related performance metrics; (4) network-related performance metrics; (5) energy-usage statistics; (6) data-traffic-related performance metrics; (7) overall system availability performance metrics; (8) cluster-related performance metrics; and (9) virtual machine performance statistics. For more details about such performance metrics, please see U.S. patent Ser. No. 14/167,316 filed 29 Jan. 2014, which is hereby incorporated herein by reference. Also, see “vSphere Monitoring and Performance,” Update 1, vSphere 5.5, EN-001357-00, http://pubs.vmware.com/vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-551-monitoring-performance-guide.pdf.
To facilitate retrieving information of interest from performance data and log files, the SPLUNK® APP FOR VMWARE® provides pre-specified schemas for extracting relevant values from different types of performance-related event data, and also enables a user to define such schemas.
The SPLUNK® APP FOR VMWARE® additionally provides various visualizations to facilitate detecting and diagnosing the root cause of performance problems. For example, one such visualization is a “proactive monitoring tree” that enables a user to easily view and understand relationships among various factors that affect the performance of a hierarchically structured computing system. This proactive monitoring tree enables a user to easily navigate the hierarchy by selectively expanding nodes representing various entities (e.g., virtual centers or computing clusters) to view performance information for lower-level nodes associated with lower-level entities (e.g., virtual machines or host systems). Exemplary node-expansion operations are illustrated in
The SPLUNK® APP FOR VMWARE® also provides a user interface that enables a user to select a specific time range and then view heterogeneous data, comprising events, log data and associated performance metrics, for the selected time range. For example, the screen illustrated in
The exemplary computer system 7800 includes a processing device (processor) 7802, a main memory 7804 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM)), a static memory 7806 (e.g., flash memory, static random access memory (SRAM)), and a data storage device 7818, which communicate with each other via a bus 7830.
Processing device 7802 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 7802 can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets or processors implementing a combination of instruction sets. The processing device 7802 can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 7802 is conFig.d to execute the notification manager 210 for performing the operations and steps discussed herein.
The computer system 7800 can further include a network interface device 7808. The computer system 7800 also can include a video display unit 7810 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 7812 (e.g., a keyboard), a cursor control device 7814 (e.g., a mouse), and a signal generation device 7816 (e.g., a speaker).
The data storage device 7818 can include a computer-readable medium 7828 on which is stored one or more sets of instructions 7822 (e.g., instructions for search term generation) embodying any one or more of the methodologies or functions described herein. The instructions 7822 can also reside, completely or at least partially, within the main memory 7804 and/or within processing logic 7826 of the processing device 7802 during execution thereof by the computer system 7800, the main memory 7804 and the processing device 7802 also constituting computer-readable media. The instructions can further be transmitted or received over a network 7820 via the network interface device 7808.
While the computer-readable storage medium 7828 is shown in an exemplary embodiment to be a single medium, the term “computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
The preceding description sets forth numerous specific details such as examples of specific systems, components, methods, and so forth, in order to provide a good understanding of several embodiments of the present invention. It will be apparent to one skilled in the art, however, that at least some embodiments of the present invention can be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in simple block diagram format in order to avoid unnecessarily obscuring the present invention. Thus, the specific details set forth are merely exemplary. Particular implementations can vary from these exemplary details and still be contemplated to be within the scope of the present invention.
In the above description, numerous details are set forth. It will be apparent, however, to one of ordinary skill in the art having the benefit of this disclosure, that embodiments of the invention can be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the description.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as “determining”, “identifying”, “adding”, “selecting” or the like, refer to the actions and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Embodiments of the invention also relate to an apparatus for performing the operations herein. This apparatus can be specially constructed for the required purposes, or it can comprise a general purpose computer selectively activated or reconFig.d by a computer program stored in the computer. Such a computer program can be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems can be used with programs in accordance with the teachings herein, or it can prove convenient to construct a more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages can be used to implement the teachings of the invention as described herein.
Implementations that are described can include graphical user interfaces (GUIs). Frequently, an element that appears in a GUI display is associated or bound to particular data in the underlying computer system. The GUI element can be used to indicate the particular data by displaying the data in some fashion, and can possibly enable the user to interact to indicate the data in a desired, changed form or value. In such cases, where a GUI element is associated or bound to particular data, it is a common shorthand to refer to the data indications of the GUI element as the GUI element, itself, and vice versa. The reader is reminded of such shorthand and that the context renders the intended meaning clear to one of skill in the art where a distinction between a GUI element and the data to which it is bound is meaningful.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. application Ser. No. 17/515,104 filed on Oct. 29, 2021, entitled “Entity Lifecycle Management in Service Monitoring System,” the entire content of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7421493 | Adams | Sep 2008 | B1 |
7937344 | Baum et al. | May 2011 | B2 |
8112425 | Baum et al. | Feb 2012 | B2 |
8751529 | Zhang et al. | Jun 2014 | B2 |
8788525 | Neels et al. | Jul 2014 | B2 |
9213540 | Rickey | Dec 2015 | B1 |
9215240 | Merza et al. | Dec 2015 | B2 |
9286413 | Coates et al. | Mar 2016 | B1 |
9454575 | Britt | Sep 2016 | B2 |
9547485 | Suzuki | Jan 2017 | B2 |
10038742 | Reddy | Jul 2018 | B2 |
10127258 | Lamas et al. | Nov 2018 | B2 |
10152561 | Choudhary | Dec 2018 | B2 |
10242122 | Rickey | Mar 2019 | B2 |
10782991 | Fitzgerald | Sep 2020 | B2 |
11134013 | Allen | Sep 2021 | B1 |
11227068 | Parthasarathy | Jan 2022 | B2 |
20100058334 | Mahindra | Mar 2010 | A1 |
20100074116 | Rodriguez | Mar 2010 | A1 |
20120142310 | Pugh | Jun 2012 | A1 |
20140380267 | Fiebig | Dec 2014 | A1 |
20160057027 | Hinrichs | Feb 2016 | A1 |
20160269249 | Maes | Sep 2016 | A1 |
20170078322 | Seiver | Mar 2017 | A1 |
20170192809 | Kaufer | Jul 2017 | A1 |
20180013651 | Lang | Jan 2018 | A1 |
20180091521 | Pachouri | Mar 2018 | A1 |
20180097701 | Wu | Apr 2018 | A1 |
20180341662 | He | Nov 2018 | A1 |
20190097887 | Maiya Belur | Mar 2019 | A1 |
20190098106 | Mungel et al. | Mar 2019 | A1 |
20210006472 | Khaspa | Jan 2021 | A1 |
20220100892 | Safi | Mar 2022 | A1 |
20220391251 | Sakthivel | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
2015126430 | Aug 2015 | WO |
Entry |
---|
Splunk Enterprise 8.0.0 Overview, available online, retrieved May 20, 2020 from docs.splunk.com. |
Splunk Cloud 8.0.2004 User Manual, available online, retrieved May 20, 2020 from docs.splunk.com. |
Splunk Quick Reference Guide, updated 2019, available online at https://www.splunk.com/pdfs/solution-guides/splunk-quick-reference-guide.pdf, retrieved May 20, 2020. |
Carraso, David, “Exploring Splunk,” published by CITO Research, New York, NY, Apr. 2012. |
Bitincka, Ledion et al., “Optimizing Data Analysis with a Semi-structured Time Series Database,” self-published, first presented at “Workshop on Managing Systems via Log Analysis and Machine Learning Techniques (SLAML)”, Vancouver, British Columbia, Oct. 3, 2010. |
Number | Date | Country | |
---|---|---|---|
Parent | 17515104 | Oct 2021 | US |
Child | 18115822 | US |