ENTRANCE REFRIGERATOR

Information

  • Patent Application
  • 20200271360
  • Publication Number
    20200271360
  • Date Filed
    February 24, 2020
    4 years ago
  • Date Published
    August 27, 2020
    4 years ago
Abstract
An entrance refrigerator is provided with a cold air supply device including a thermoelectric module at a bottom of a storage compartment of the entrance refrigerator. An upper surface of a cold sink of the thermoelectric module is slanted, such that condensation formed on the surface of the cold sink flows down along the slanted upper surface of the cold sink.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefits of priority to Korean Patent Application No. 10-2019-0021867, filed on Feb. 25, 2019, and Korean Patent Application No. 10-2019-0087444, filed on Jul. 19, 2019, all of which are herein incorporated by reference in their entireties.


BACKGROUND

The present disclosure relates to a refrigerator installed at an entrance of a building, such as a home or a business.


Recently, delivery services for delivering fresh goods to predetermined places are being utilized. In particular, when the goods are fresh food, a delivery vehicle is provided with a refrigerator or a warmer to store and deliver the food so as to prevent the food from spoiling or cooling.


Generally, the food is packed in a packaging material and delivered so as to keep the food cool or warm, depending on the type of food. The packaging material is often composed of environmental pollutants such as polystyrene foam. The social atmosphere recently has placed an emphasis on a reduction of an amount of packaging material used.


When a user is at home at the time of a delivery, the delivery person may deliver the food to the user in a face-to-face manner. However, when the user is not at home or when the delivery time is too early or too late, it is difficult for the delivery person to deliver the food in a face-to-face manner.


Therefore, there is a need to be able to deliver the food even if the delivery person does not face the user, and to prevent the food from spoiling or cooling until the food is finally delivered to the user.


To solve this problem, in recent years, a product has been introduced in which a refrigerator is installed at an entrance (e.g. a front door) of a predetermined place, so that a delivery person can deliver the food into the refrigerator in order to keep the food fresh until a user can receive the food by accessing the refrigerator at a convenient time.


Korean Patent Application Publication No. 2011-0033394 (Mar. 31, 2011) discloses an entrance refrigerator mounted on a front door.


When the temperature of the storage compartment of the entrance refrigerator is lower than an outside temperature, condensation may form on the bottom of the storage compartment.


Outdoor air may enter into the storage compartment when an outdoor side door of the entrance refrigerator is opened, and indoor air may enter into the storage compartment when an indoor side door of the entrance refrigerator is opened.


In particular, in summer, the temperature and humidity of indoor air and outdoor air are higher than the temperature and humidity inside the storage compartment. Therefore, in the process of cooling indoor air or outdoor air, having entered into the storage compartment, to a storage compartment temperature, water contained in the indoor air or the outdoor air may condense on the floor, wall, or ceiling of the storage compartment.


Due to gravity, condensation formed on the ceiling of the storage compartment may fall to the bottom of the storage compartment, and condensation formed on the wall of the storage compartment or the surface of stored goods may flow down to the bottom of the storage compartment.


In addition, when goods stored in the storage compartment are vegetables, water flowing down from the stored goods themselves may also flow to the bottom of the storage compartment.


If water collected on the bottom of the storage compartment is not removed quickly, bacteria and mold may grow on the bottom of the storage compartment, deteriorating the hygiene of the stored goods.


In addition, when the storage compartment is switched to a freezing storage mode below a freezing temperature while water is present at the bottom of the storage compartment, ice may be formed on the bottom or the walls of the storage compartment. In addition, since the size of the ice increases with time, the space of the storage compartment is narrowed.


Therefore, there is a need for a method for quickly discharging water collected on the bottom of the storage compartment to the outside of the storage compartment.


In addition, in the case of the entrance refrigerator provided with a cold air supply device including a thermoelectric module for cooling the storage compartment, there is a need for a method for quickly discharging condensation formed on the surface of a cold sink of the thermoelectric module to the outside of the entrance refrigerator.


Specifically, when the storage compartment is maintained at a temperature lower than the outside temperature, condensation may occur on the surface of the cold sink attached to the heat absorbing surface of the thermoelectric element. In order to eliminate the condensation, it is necessary to perform a defrosting operation of evaporating the condensation. The defrosting operation may be performed, for example, by applying a reverse voltage to the thermoelectric element.


As a result, while the defrosting operation is performed, heat generated in the cold sink penetrates into the storage compartment, causing a problem of increasing the storage compartment temperature.


SUMMARY

The present disclosure has been proposed as a solution to the above-described problem.


That is, an object of the present disclosure is to provide an entrance refrigerator capable of quickly removing water accumulated on a bottom of a storage compartment.


In addition, an object of the present disclosure is to provide an entrance refrigerator capable of quickly removing condensation from a surface of a cold sink of a thermoelectric module.


In order to achieve the above objects, an entrance refrigerator according to one embodiment is provided with a cold air supply device including a thermoelectric module provided at a bottom of a storage compartment of the entrance refrigerator. An upper surface of a cold sink of the thermoelectric module is slanted, such that condensation formed on the surface of the cold sink flows down along the slanted upper surface of the cold sink.


The upper surface of the cold sink is slanted to be gradually lowered from one side end to the other side end of the cold sink.


In addition, the bottom of the storage compartment of the entrance refrigerator where the thermoelectric module is located is recessed or stepped with a predetermined depth.


In addition, the recessed or stepped bottom of the storage compartment may include a left drain floor located at the left side of the upper surface of the cold sink, and a right drain floor located at the right side of the upper surface of the cold sink.


In addition, a drain hole is formed in a drain floor adjacent to a lower side among the left end and the right end of the upper surface of the cold sink, such that condensation formed on the cold sink may flow down toward the drain hole.


In addition, a mount plate is seated on the upper surface of the drain floor, and a drain hole is formed in the mount plate corresponding to a portion where the drain hole is formed. As a result, condensation formed on the cold sink may flow down along the upper surface of the mount plate and may be discharged through the drain hole.


The drain hole formed in the drain floor may be formed to pass through the cabinet, and a drain port communicating with the drain hole may extend from the bottom of the cabinet.


A drain box may be mounted on a bottom surface of the cabinet to allow water discharged from the drain port to be collected in the drain box.


The entrance refrigerator configured as described above according to the embodiment has the following effects.


The bottom of the storage compartment may be designed to be slanted to one side, and the drain hole may be formed at the point where the water falling on the bottom of the storage compartment is collected, thereby rapidly discharging the water collected on the bottom of the storage compartment to the outside of the storage compartment through the drain hole.


In addition, since the drain box is mounted below the cabinet and directly below the drain hole, water discharged through the drain hole may be collected in the drain box. As a result, it is possible to prevent the water discharged through the drain hole from leaking to the outside of the entrance refrigerator and falling to the floor of the entrance.


In addition, the drain box may be detachably coupled to the bottom surface of the cabinet, or the drain box may be pulled out of the housing accommodating the drain box. Therefore, there is an advantage in that the operation of discarding the water filled in the drain box can be easily performed.


In addition, when the thermoelectric module of the cold air supply device is mounted on the bottom of the cabinet, the cold sink is mounted to be slanted obliquely toward the drain hole, such that condensed water generated on the surface of the cold sink flows toward the drain hole along the surface of the cold sink. Therefore, the growth of frost or ice on the surface of the cold sink may be prevented.


In addition, by designing the cold sink such that the upper surface of the cold sink is slanted, the water generated on the surface of the cold sink can flow quickly toward the drain hole even if the thermoelectric module is coupled to the cabinet in a horizontal state. Therefore, the growth of frost or ice on the surface of the cold sink may be prevented.


The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front view of an entrance refrigerator installed at a front door, according to an embodiment.



FIG. 2 is a side view of the entrance refrigerator installed at the front door, according to an embodiment.



FIG. 3 is a front perspective view of the entrance refrigerator according to an embodiment.



FIG. 4 is a rear perspective view of the entrance refrigerator according to an embodiment.



FIG. 5 is a bottom perspective view of the entrance refrigerator according to an embodiment.



FIG. 6 is a front perspective view of the entrance refrigerator in a state in which an outdoor side door is removed for clarity of illustration, according to an embodiment.



FIG. 7 is a rear perspective view of the entrance refrigerator in a state in which an indoor side door is removed for clarity of illustration, according to an embodiment.



FIG. 8 is an exploded perspective view of the entrance refrigerator according to an embodiment.



FIG. 9 is a perspective view of a mount plate of the entrance refrigerator, according to an embodiment.



FIG. 10 is a perspective view of a cabinet constituting the entrance refrigerator, according to an embodiment.



FIG. 11 is a partial perspective view illustrating the bottom surface of the cabinet on which a drain box is mounted.



FIG. 12 is a partial perspective view illustrating a state in which the drain box and the cabinet are separated.



FIG. 13 is a perspective view of the drain box of the entrance refrigerator, according to an embodiment.



FIG. 14 is a cutaway perspective view of a cold air supply device of the entrance refrigerator, according to an embodiment.



FIG. 15 is a partial longitudinal cross-sectional view of the entrance refrigerator, taken along line 15-15 of FIG. 10.



FIG. 16 is a partial longitudinal cross-sectional view of the entrance refrigerator, taken along line 16-16 of FIG. 10.



FIG. 17 is a top perspective view of a cold sink according to an embodiment.



FIG. 18 is a bottom perspective view of the cold sink of FIG. 17.



FIG. 19 is a partial longitudinal cross-sectional view of the entrance refrigerator, taken along line 15-15 of FIG. 10, and including a cold sink according to an embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Hereinafter, an entrance refrigerator 10 according to an embodiment will be described in detail with reference to the accompanying drawings.



FIG. 1 is a front view of an entrance refrigerator 10 according to an embodiment installed at a front door of a building, such as a residence, and FIG. 2 is a side view of the entrance refrigerator 10 installed at the front door, according to an embodiment.


Referring to FIGS. 1 and 2, the entrance refrigerator 10 according to the embodiment may be mounted by passing through a suitably-sized opening in a front door 1 or a front wall of a house.


In detail, the entrance refrigerator 10 may be mounted at a point spaced apart from a knob 2 of the front door 1, for example, the entrance refrigerator 10 may be mounted at the center of the front door 1.


In addition, the entrance refrigerator 10 is preferably installed at a height within two meters from the bottom of the front door 1 for convenience of a user and for convenience to a delivery person who delivers goods to the entrance refrigerator 10. Preferably, the entrance refrigerator 10 may be installed at a height in a range of 1.5 meters to 1.7 meters from the bottom of the front door 1.


One portion of the entrance refrigerator 10 is exposed to the outside O (outdoors), and another portion of the entrance refrigerator 10 is exposed to the inside I (indoors). For example, in the entrance refrigerator 10, the surface exposed to the outside O may be defined as the front surface (or outdoor portion) at the front side (exterior side) of the door or wall, and the surface exposed to the inside I may be defined as the rear surface (or indoor portion) at the rear side (interior side) of the door or wall. The door or wall provides a barrier in or around a building, such as, but not limited to, a house, apartment, office, hospital, or the like.


Hereinafter, the configuration of the entrance refrigerator 10 according to the embodiment will be described in more detail with reference to the accompanying drawings.



FIG. 3 is a front perspective view of the entrance refrigerator 10 according to an embodiment, FIG. 4 is a rear perspective view of the entrance refrigerator 10, and FIG. 5 is a bottom perspective view of the entrance refrigerator 10.


Referring to FIGS. 3 to 5, the entrance refrigerator 10 according to the embodiment may include a cabinet 11, an outdoor side door 12, an indoor side door 13, and a housing 15.


The cabinet 11 has a front opening provided in a portion of the cabinet 11 located at the front (exterior) side of the door or exterior wall, and a rear opening provided in a portion of the cabinet 11 located at the rear (interior) side of the door or interior wall. The cabinet 11 may have an approximately hexahedral shape with a front wall and a rear wall interconnected by a plurality of side walls. The front opening may be provided in the front wall of the cabinet 11, and the rear opening may be provided in the rear wall of the cabinet 11, although the embodiment is not limited thereto. For example, the front opening and the rear opening may be provided on a same side of the cabinet 11 depending on the location where the entrance refrigerator 10 is being installed. The outdoor side door 12 may be rotatably coupled to the cabinet 11 so as to selectively open or close the front opening of the cabinet 11. The outdoor side door 12 may be opened by the delivery person in order to store goods in the entrance refrigerator 10. In addition, the outdoor side door 12 may be opened by the user so as to withdraw goods from the entrance refrigerator 10.


Here, the term “user” is defined as a person who has ordered goods that are stored in the entrance refrigerator 10 by the delivery person, or as a person having authority to release the goods from the entrance refrigerator 10.


In addition, the indoor side door 13 may be rotatably coupled to the cabinet 11 so as to selectively open or close the rear opening of the cabinet 11.


A display 14 may be provided on the outdoor side door 12. The display 14 may display information about an operating state of the entrance refrigerator 10, an internal temperature of the entrance refrigerator 10, and the presence or absence of goods in the entrance refrigerator 10.


In addition, the delivery person who delivers goods may input a password or the like through the display 14 for opening the outdoor side door 12.


A code scanner for recognizing an encryption code provided in a shipping order or a shipping box may be provided on one side of the outdoor side door 12.


The indoor side door 13 is used by the user within the house to take out goods stored in the entrance refrigerator 10. That is, the user can open the indoor side door 13 to withdraw the goods from the entrance refrigerator 10 and into the house.


A guide light 131 may be provided at one side of the indoor side door 13. The guide light 131 may be a device for informing a user whether or not goods are currently stored in the entrance refrigerator 10. For example, the color of the guide light 131 may be set differently depending on whether goods are stored in the entrance refrigerator 10 or whether the entrance refrigerator 10 is empty. The user may recognize whether there are goods currently being stored even without opening the indoor side door 13.


The housing 15 is provided at the lower end of the cabinet 11, either integrally as part of the cabinet 11 or as a separate element attached to the cabinet 11. A cold air supply device 30 (cold air supplier), to be described later, is accommodated in the housing 15. The front surface of the housing 15 comes into close proximity with the rear surface of the front door 1 or the wall when the entrance refrigerator 10 is mounted on the front door 1 or the wall, and contact between a portion of the front surface of the housing 15 and the rear surface of the front door 1 or the wall cancels the moment due to the eccentric load of the entrance refrigerator 10 within the opening of the front door 1 or the wall.


In detail, the entrance refrigerator 10 according to the embodiment has a structural characteristic in which a volume of a part exposed indoors is larger than a volume of a part exposed outdoors of the front door 1. Therefore, the center of gravity of the entrance refrigerator 10 is formed at a point eccentric rearwardly of the center of the entrance refrigerator 10. As a result, the moment is generated by the load of the entrance refrigerator 10 and the load of goods stored therein. With such an arrangement, it is possible that the entrance refrigerator 10 could be pulled out of the front door 1 by the moment.


However, since the front surface of the housing 15 contacts the rear surface of the front door 1 or the wall, the moment acting on the entrance refrigerator 10 is cancelled, thereby preventing the entrance refrigerator 10 from being separated from the front door 1.


A pair of guide ducts 16 may be provided at left and right edges of the bottom surface of the housing 15. A discharge port 161 is formed at the front end of each guide duct 16 so that indoor room air, which flows into the cold air supply device 30 in the housing 15 and performs a heat dissipation function, may be discharged out of the housing 15.


A guide plate 18 may be provided on an angled surface of the cabinet 11 formed by the bottom surface of the cabinet 11 and the front surface of the housing 15. The function of the guide plate 18 will be described below with reference to the accompanying drawings.


An opening for suctioning indoor room air may be formed in the bottom surface of the housing 15, and a suction plate 17 may be mounted at the opening. A plurality of through-holes 171 may be formed in the suction plate 17, and indoor room air is introduced into the housing 15 through the plurality of through-holes 171. At least part of the indoor room air introduced into the housing 15 is discharged back out of the housing 15 through the discharge ports 161 of the guide ducts 16.



FIG. 6 is a front perspective view of the entrance refrigerator 10 in a state in which the outdoor side door 12 is removed for clarity of illustration, according to an embodiment, and FIG. 7 is a rear perspective view of the entrance refrigerator 10 in a state in which the indoor side door 13 is removed for clarity of illustration, according to an embodiment.


Referring to FIGS. 6 and 7, a storage compartment 111 in which goods may be stored is provided within the cabinet 11. The storage compartment 111 may be considered as a main body of the entrance refrigerator 10 according to the embodiment.


A tray 19 on which goods are placed may be provided at a lower portion of the storage compartment 111.


In addition, a guide rib 25 may be formed along the rear edge of the cabinet 11. The guide rib 25 may protrude a predetermined distance from the rear surface of the cabinet 11 and extend along an edge of the cabinet 11. The guide rib 25 is provided to guide some of the air discharged from the housing 15 upwardly to the area surrounding the indoor side door 13 so that condensation is prevented from forming on a gasket 22 surrounding the rear surface of the indoor side door 13.



FIG. 8 is an exploded perspective view of the entrance refrigerator 10 according to an embodiment.


Referring to FIG. 8, as described above, the entrance refrigerator 10 according to the embodiment may include the cabinet 11, the indoor side door 13, the outdoor side door 12, the housing 15, the guide duct 16, the suction plate 17, and the tray 19.


The entrance refrigerator 10 may further include a base plate 20 disposed at the bottom portion of the cabinet 11. The tray 19 may be disposed above the base plate 20. The bottom surface of the tray 19 may be spaced apart upward from the base plate 20.


The entrance refrigerator 10 may further include a cold air supply device 30 accommodated in the housing 15.


The cold air supply device 30 may be a device to which a thermoelectric element (Peltier element) is applied, but the cold air supply device 30 is not limited thereto. For example, a general cooling cycle may be applied to the cold air supply device 30.


When a current is supplied to the thermoelectric element, one surface thereof acts as a heat absorbing surface in which a temperature drops, and the other surface thereof acts as a heat generating surface in which a temperature increases. In addition, when the direction of the current supplied to the thermoelectric element is changed, the heat absorbing surface and the heat generating surface are swapped.


The structure and function of the cold air supply device will be described in more detail with reference to the accompanying drawings.


The entrance refrigerator 10 may further include a mount plate 24 mounted on the bottom of the cabinet 11, and a flow guide 23 mounted on the upper surface of the mount plate 24.


In addition, the flow guide 23 may be understood as a device for forming the flow passage of the air inside the storage compartment 111 which forcibly flows by the heat absorption fan 33.


The base plate 20 may be disposed above the flow guide 23 to minimize a possibility that foreign substances could fall directly onto the flow guide 23.


An outer gasket 21 is provided on an inner side of the outdoor side door 12 that faces the cabinet 11, and an inner gasket 22 is provided on an inner side of the indoor side door 13 that faces the cabinet 11. The outer gasket 21 and the inner gasket 22 prevent cold air within the storage compartment 111 from leaking to the outside of the entrance refrigerator 10. Alternatively, the outer gasket 21 may be provided on a portion of the cabinet 11 that faces an inner side of the outdoor side door 12, and the inner gasket 22 may be provided on a portion of the cabinet 11 that faces an inner side of the indoor side door 13. The portion of the cabinet 11 may be a contact shoulder 115 to be described later. The outer gasket 21 and the inner gasket 22 prevent cold air within the storage compartment 111 from leaking to the outside of the entrance refrigerator 10.



FIG. 9 is a perspective view of a mount plate of the entrance refrigerator 10, according to an embodiment.


Referring to FIG. 9, the mount plate 24 according to the embodiment may have a shape in which a rectangular plate is bent a plurality of times.


In detail, the mount plate 24 may include a flow guide seating portion 241, a front flange 244, and a rear flange 245.


The flow guide 23 is disposed directly above the flow guide seating portion 241, and a space formed between the flow guide 23 and the flow guide seating portion 241 may be defined as a cold air supply flow passage. The temperature of the cold air flowing due to the heat absorption fan 33 is lowered while passing through the cold sink 32. The cold air is distributed to the left and right sides of the cold sink 32 and flows into the bottom left and bottom right sides of the storage compartment 111 along the cold air supply flow passage.


A through-hole 242 may be formed in the center of the flow guide seating portion 241, and part of the cold air supply device 30 may pass through the through-hole 242 and be mounted therein. In detail, the cold sink 32 is disposed in the through-hole 242, such that the cold air passing through the cold sink 32 and the water formed on the cold sink 32 flow to the flow guide seating portion 241. The flow of cold air passing through the cold sink 32 and the flow of condensation formed on the surface of the cold sink 32 will be described in more detail with reference to the accompanying drawings.


The flow guide seating portion 241 may include a left flow guide seating portion 241a formed at the left side of the through-hole 242 and a right flow guide seating portion 241b formed at the right side of the through-hole 242.


In addition, a drain hole 243 may be formed in either or both of the left flow guide seating portion 241a and the right flow guide seating portion 241b. An example in which the drain hole 243, and the drain port and the drain box, which will be described later, are provided only at the left side of the through-hole 242 is described herein, but it is noted that the same may also be provided on the right side of the through-hole 242. However, for convenience of description, an example in which they are formed only at the left side of the through-hole 242 is described below.


In addition, the bottom portion in which the drain hole 243 is formed, that is, the left flow guide seating portion 241a in the present embodiment, is formed to be slanted to direct water toward the drain hole 243.


That is, the left edge and the right edge of the left flow guide seating portion 241a are preferably designed to be higher than the drain hole 243. Similarly, the front end and the rear end of the left flow guide seating portion 241a may be designed to be higher than the drain hole 243.


The front flange 244 may include a vertical portion 244a extending upward from a front end of the flow guide seating portion 241, and a horizontal portion 244b extending forward from the upper end of the vertical portion 244a. The vertical portion 244a does not necessarily need to be perpendicular to the horizontal plane, and the horizontal portion 244b does not necessarily need to be the same plane as the horizontal plane. In other words, the front flange 244 is sufficient to be bent along contours of a seating shoulder 111d (see FIG. 16) formed at the bottom of the cabinet 11.


Similarly, the rear flange 245 may also include a vertical portion 245a and a horizontal portion 245b so as to be seated on the seating shoulder 111d. The vertical portion 245a of the rear flange 245 does not necessarily need to be perpendicular to the horizontal plane, and the horizontal portion 245b does not necessarily need to be the same plane as the horizontal plane.


Guide ribs 246 may extend downward from the left edge and the right edge of the through-hole 242, respectively, to assist with holding the cold air supply device 30 in place.



FIG. 10 is a perspective view of the cabinet 11 constituting the entrance refrigerator 10, according to an embodiment, FIG. 11 is a partial perspective view illustrating the bottom surface of the cabinet 11 on which a drain box is mounted, and FIG. 12 is a partial perspective view illustrating a state in which the drain box and the cabinet 11 are separated.


The cabinet 11 may include a first portion 112 (exterior portion) inserted through the front door 1 or the wall, and a second portion 113 (interior portion) exposed to the inside.


The lower end of the second portion 113 may extend downward further than the lower end of the first portion 112. In detail, the front surface of the second portion 113 extending downward from the rear end of the bottom of the first portion 112 may be defined as a door contact surface 114. Like the front surface of the housing 15, the door contact surface 114 prevents the entrance refrigerator 10 from being separated from the front door 1 or the wall by the moment.


A contact shoulder 115 may be formed at a point spaced apart rearward from the front end of the cabinet 11 by a predetermined distance.


The contact shoulder 115 may protrude from the inner circumferential surface of the cabinet 11 by a predetermined height, and may have a rectangular band shape extending along the inner circumferential surface of the cabinet 11.


A rectangular opening defined along the inner edge of the contact shoulder 115 may define an inlet portion for goods entering or exiting the storage compartment 111.


A space between the front end of the cabinet 11 and a front surface of the contact shoulder 115 may be defined as an outdoor side door accommodation portion into which the outdoor side door 12 is received.


In a state in which the outdoor side door 12 is closed, the outer gasket 21 is in close contact with the front surface of the contact shoulder 115 to prevent leakage of cold air from the storage compartment 111.


The longitudinal cross-section of the storage compartment 111 defined at the rear of the contact shoulder 115 may have the same size as the longitudinal cross-section of the inlet portion. That is, the bottom surface of the storage compartment 111 may be coplanar with the upper edge of the contact shoulder 115 extending from the inner circumferential surface of the bottom portion of the cabinet 11. The bottom surface of the storage compartment 111 may include the base plate 20.


In addition, the left and right side surfaces of the storage compartment 111 may be coplanar with the inner edges of the contact shoulder 115 extending from the left inner circumferential surface and the right inner circumferential surface of the cabinet 11, respectively.


Finally, the ceiling surface of the storage compartment 111 may be coplanar with the lower edge of the contact shoulder 115 extending from the inner circumferential surface of the upper end of the cabinet 11.


In summary, it can be understood that the inner circumferential surface of the storage compartment 111 is coplanar with the inner edges of the contact shoulder 115.


However, the present disclosure is not limited to the above configuration. For example, the bottom surface of the storage compartment 111 may be coplanar with the bottom surface of the outdoor side door accommodation portion.


In detail, the contact shoulder 115 may be described as including a lower shoulder 115a, a left shoulder 115b, a right shoulder (see FIG. 6), and an upper shoulder 115c, and the bottom surface (floor) of the storage compartment 111 may be designed to be lower than the upper edge of the lower shoulder 115a.


In addition, the left and right side surfaces of the storage compartment 111 may be designed to be wider than the inner edges of the left shoulder 115b and the right shoulder.


Finally, the upper surface (ceiling) of the storage compartment 111 may be designed to be higher than the lower edge of the upper shoulder 115c.


According to this structure, the width and height of the storage compartment 111 may be formed to be larger than the width and height of the inlet portion.


A slot 116 may be formed at the bottom of the cabinet corresponding to the bottom of the outdoor side door accommodation portion.


The point where the slot 116 is formed may be described as a point spaced a predetermined distance rearward from the front end of the cabinet 11, or a point spaced a predetermined distance forward from the front surface of the contact shoulder 115.


The slot 116 may be formed at a position closer to the contact shoulder 115 than to the front end of the cabinet 11. As the air that has a relatively high temperature and is discharged from the housing 15 rises, the air may be introduced into the outdoor side door accommodation portion of the cabinet 11 through the slot 116.


The air flowing through the slot 116 flows along the edge of the outer gasket 21 to evaporate any condensation that may form on the outer gasket 21.


In detail, an inwardly stepped portion 119 may be formed in the bottom surface of the cabinet 11 corresponding to the first portion 112 and in the front surface of the cabinet 11 corresponding to the second portion 113. The stepped portion 119 is enclosed by the guide plate 18, and an air flow passage 119a is formed between the guide plate 18 and the stepped portion 119. The lower end of the air flow passage 119a communicates with the inside of the housing 15, and the upper end of the air flow passage 119a is connected to the slot 116.


Due to this structure, the relatively high-temperature air discharged from the housing 15 moves along the air flow passage 119a and flows into the slot 116. The air flowing through the slot 116 flows along the edge of the outer gasket 21 to evaporate any condensation that may form on the outer gasket 21.


A mount plate seating portion 117 may be formed at a predetermined depth on the inner bottom surface of the cabinet 11, particularly on the bottom surface of the cabinet 11 corresponding to the second portion 113.


The seating shoulder 111d may have a stepped shape at each of the front surface and the rear surface of the mount plate seating portion 117. The seating shoulder 111d may include a front seating shoulder and a rear seating shoulder.


The front seating shoulder may have a stepped shape extending from the bottom surface of the mount plate seating portion 117 by a predetermined height and protruding forward from the front surface of the mount plate seating portion 117.


The rear seating shoulder may have a stepped shape extending from the bottom surface of the mount plate seating portion 117 by a predetermined height and protruding rearward from the rear surface of the mount plate seating portion 117.


A through-hole 118 is formed on the bottom surface of the mount plate seating portion 117.


The bottom surface of the mount plate seating portion 117 includes a left drain floor 111e formed at the left side of the through-hole 118, and a right drain floor 111g formed at the right side of the through-hole 118.


The mount plate 24 may be seated on the bottom of the mount plate seating portion 117. The bottom of the mount plate seating portion 117 is designed to be slanted in the same shape as the bottom of the mount plate 24, such that the bottom of the mount plate 24 is in close contact with the bottom of the mount plate seating portion 117.


That is, the left flow guide seating portion 241a of the mount plate 24 may be in close contact with the left drain floor 111e, and the right flow guide seating portion 241b may be in close contact with the right drain floor 111g.


A drain hole 111f may be formed in the bottom surface of the mount plate seating portion 117, and the center of the drain hole 111f may be placed on the same vertical line as the center of the drain hole 243 formed in the mount plate 24. The diameters of the two drain holes 111f and 243 may be formed to be the same.


In addition, the through-hole 242 of the mount plate 24 may be formed to have the same size as the through-hole 118 of the mount plate seating portion 117, and the centers of the through-hole 242 and the through-hole 118 may be placed on the same vertical line.


The bottom of the storage compartment 111, except for the mount plate seating portion 117, may include a front floor 111a, a left side floor 111b, and a right side floor 111c (see FIG. 15).


The front floor 111a is formed in front of the mount plate seating portion 117, and the left side floor 111b and the right side floor 111c are formed on the left and right sides, respectively, of the mount plate seating portion 117.


The bottom of the storage compartment 111 except for the mount plate seating portion 117, in other words, the front floor 111a, the left side floor 111b and the right side floor 111c, may be defined as a main floor, and the left drain floor 111e and the right drain floor 111g may be defined as a sub floor.


The front floor 111a may be formed to be slanted to be lowered toward the mount plate seating portion 117 from the front end, such that water falling on the front floor 111a flows down toward the mount plate seating portion 117.


Similarly, the left side floor 111b and the right side floor 111c may also be designed to be slanted to be lowered toward the mount plate seating portion 117, such that water falling on the left side floor 111b and the right side floor 111c flows down toward the mount plate seating portion 117.


The cold air supply device 30 passes through the through-holes 118 and 242 such that the upper portion of the cold air supply device 30 is partially exposed to the storage compartment and the lower portion of the cold air supply device 30 is partially exposed to the inside of the housing 15.


As shown in FIG. 12, a drain port 111h may protrude downward from the outer bottom surface of the cabinet 11 by a predetermined length. An upper opening of the drain port 111h communicates with the drain hole 111f formed in the bottom of the mount plate seating portion 117.


In addition, a drain box 50 is mounted on the outer bottom surface of the cabinet 11 to store water discharged from the drain port 111h.


Hereinafter, the structure of the drain box 50 will be described with reference to the accompanying drawings.



FIG. 13 is a perspective view of the drain box 50 of the entrance refrigerator 19, according to an embodiment.


Referring to FIG. 13, the drain box 50 may be formed in a hexahedral shape in which portions of the upper surface and the side surfaces thereof are opened, but the present disclosure is not necessarily limited thereto.


The drain box 50 may include a bottom portion 51, a front portion 52, a rear portion 53, a left side portion 54, a right side portion 55, and an upper portion that is opened.


A short side of the bottom portion 51 may be defined as a width, and a long side of the bottom portion 51 may be defined as a length.


The front portion 52 extends upward from a front end of the bottom portion 51 by a predetermined height, and a fastening rib 521 protrudes from the outer peripheral surface of the upper end thereof. A fastening hole 522 is formed in the fastening rib 521.


The rear portion 53 extends upward from a rear end of the bottom portion 51 by a predetermined height, and a fastening rib 531 protrudes from the outer peripheral surface of the upper end thereof. A fastening hole 532 is formed in the fastening rib 531.


The upper ends of the front portion 52 and the rear portion 53 may be on the same plane and may come in close contact with the bottom surface of the cabinet 11.


The left side portion 54 may extend upward from the left end of the bottom portion 51 by the same height as the front portion 52. A left recessed portion 541 may be formed in the left side portion 54 to be recessed downwardly by a predetermined depth.


The right side portion 55 may extend upward from the right end of the bottom portion 51 by the same height as the left side portion 54. A right recessed portion 551 may be formed in the right side portion 55 to be the same size as the left recessed portion 541.


The left recessed portion 541 and the right recessed portion 551 may be understood as portions of a flow passage of air flowing toward the side end of the housing 15 due to the heat dissipation fan 36. That is, the left recessed portion 541 and the right recessed portion 551 may be understood as being provided to prevent the flow of air forcedly flowing due to the heat dissipation fan 36 from being disturbed by the drain box 50.


In addition, the air passing through the left recessed portion 541 and the right recessed portion 551 is in a state in which the temperature is raised due to exchanging heat with the heat sink 34. Therefore, the high-temperature air flowing across the drain box 50 is discharged to the outside of the housing 15 in a state in which the humidity is increased by evaporating the condensed water stored in the drain box 50.


A port receiver 56 may protrude upward from the bottom portion 51 by a predetermined height. A recessed portion 561 recessed from the upper end of the port receiver 56 by a predetermined depth D may be formed in the port receiver 56.


The end portion of the drain port 111h extending from the bottom surface of the cabinet 11 is accommodated in the recessed portion 561. Therefore, the condensed water discharged from the drain port 111h falls into the recessed portion 561, and the condensed water that overflows from the recessed portion 561 is collected in the main portion of the drain box 50 defined by the bottom portion 51, the front portion 52, the rear portion 53, the left side portion 54, and the right side portion 55.


Since the end portion of the drain port 111h is kept submerged in the condensed water filled in the recessed portion 561, the occurrence of air flowing from the housing 15 into the storage compartment 111 through the drain port 111h may be prevented.


A device for draining the condensed water collected in the drain box 50 may be further provided.


For example, a drain hose may be provided at one side of the bottom portion 51, and the drain hose may extend outward from the housing 15. Alternatively, a drain pump may be attached to one side of the drain box 50, and a drain hose may extend from the drain pump to the outside of the housing 15.


As another method, an opening/closing port may be formed on the rear surface of the housing 15, that is, the opposite side of the surface in close contact with the front door 1, and the drain box 50 may be slidably withdrawn from the housing through the opening/closing port. With such an arrangement, the lower end of the drain port 111h is spaced apart from the upper end of the port receiver 56.


The drain box 50 may be mounted on the bottom surface of the cabinet 11 so as to be slidably movable in the front-to-rear direction of the cabinet 11, and a protective cover may be rotatably mounted on the opening/closing port.


In other words, an accommodation box for accommodating the drain box 50 may be provided on the bottom surface of the cabinet 11 exposed to the internal space of the housing 15, and a drawer structure in which the drain box 50 is slidably inserted into the accommodation box may be provided.



FIG. 14 is a cutaway perspective view of the cold air supply device 30 of the entrance refrigerator 10, according to an embodiment.


The cold air supply device 30 illustrated in FIG. 14 is a cold air supply device 30 that is cut by a vertical plane extending in the horizontal direction such that a front portion thereof is removed.


Referring to FIG. 14, the cold air supply device 30 according to the embodiment may include a thermoelectric element 31, a cold sink 32 attached to the heat absorbing surface of the thermoelectric element 31, a heat absorption fan 33 disposed in front of (or above) the cold sink 32, a heat sink 34 attached to the heat generating surface of the thermoelectric element 31, a heat dissipation fan 36 disposed behind (or below) the heat sink 34, and an insulation material 35 for preventing heat transfer between the cold sink 32 and the heat sink 34.


The insulation material 35 is provided to surround the side surface of the thermoelectric element 31. The cold sink 32 is in contact with the front surface of the insulation material 35, and the heat sink 34 is in contact with the rear surface of the insulation material 35.


In addition, the cold sink 32 and the heat sink 34 may include a thermal conductor directly attached to the heat absorbing surface or the heat generating surface, respectively, of the thermoelectric element 31, and a plurality of heat exchange fins extending from the surface of the thermal conductor.


The heat absorption fan 33 is disposed to face the inside of the cabinet 11, and the heat dissipation fan 36 is disposed directly above the suction plate 17.


The cold sink 32 includes a sink body 321 in direct contact with the heat absorbing surface of the thermoelectric element 31, and a plurality of heat exchange fins 322 arranged on the upper surface of the sink body 321. The sink body 321 may include a first portion in direct contact with the heat absorbing surface of the thermoelectric element 31, and a second portion formed on the upper surface of the first portion and having an area larger than that of the first portion.


The heat sink 34 includes a sink body 341 in direct contact with the heat generating surface of the thermoelectric element 31, and a plurality of heat exchanger fins 342 arranged on the bottom surface of the sink body 341 and connected with the sink body 341 by a plurality of heat pipes 343. The sink body 341 may include a first portion in direct contact with the heat generating surface of the thermoelectric element 31, and a second portion formed on the bottom surface of the first portion and having an area larger than that of the first portion.


The insulation material 35 may be interposed between the second portion of the cold sink 32 and the second portion of the heat sink 34. The insulation material 35 may have a rectangular band shape.


The components of the cold air supply device 30 except for the heat absorption fan 33 and the heat dissipation fan 36 may be defined as a thermoelectric module. The heat absorption fan 33 may be fixedly coupled to the fan housing of the flow guide 23, and the heat dissipation fan 36 may be fixedly coupled to the suction plate 17 or the lower side of the thermoelectric module by one or more fastening screws.


A fastening bracket 38 may be coupled to the outer circumferential surface of the insulation material 35. The fastening bracket 38 may be understood as a mounting member that allows the thermoelectric module to be fixedly mounted on the bottom surface of the cabinet 11.


A sealing member 37 may surround the upper surface of the fastening bracket 38. The sealing member 37 is in close contact with the edge of the through-hole 118 formed in the bottom of the cabinet 11. Therefore, the sealing member 37 prevents the air inside the storage compartment 111 from leaking to the internal space of the housing 15.



FIG. 15 is a partial longitudinal cross-sectional view of the entrance refrigerator 10, taken along line 15-15 of FIG. 10, and FIG. 16 is a partial longitudinal cross-sectional view of the entrance refrigerator 10, taken along line 16-16 of FIG. 10.


Referring to FIGS. 10, 15, and 16, there is a need for a drain structure that collects water, falling on the bottom of the storage compartment 111 or water formed on the surface of the cold sink 32 of the cold air supply device 30, in one place, and discharges the water to the outside of the storage compartment 111.


To achieve this purpose, the bottom surface of the storage compartment 111 may be slanted to one side.


The inner bottom surface of the cabinet 11 forming the bottom of the storage compartment 111 may include the front floor 111a, the left side floor 111b, and the right side floor 111c.


When the rear end of the mount plate seating portion 117 has a structure that is spaced forward from the rear end of the storage compartment 111, the surface defined as the seating shoulder 111d may also be formed on the rear side of the bottom surface of the storage compartment 111.


The bottom surface of the storage compartment 111 may be designed to be slanted to be lowered toward the mount plate seating portion 117. According to this structure, all the water falling on the bottom of the storage compartment 111 flows down along the edge of the mount plate seating portion 117.


In addition, the water flowing along the edge of the mount plate seating portion 117 flows to the upper surface of the mount plate 24 disposed on the mount plate seating portion 117.


The drain hole 243 (see FIG. 9) is formed in the flow guide seating portion 241 of the mount plate 24, and the flow guide seating portion 241 is formed to be slanted downward toward the drain hole 243. Thus, the water flowing onto the mount plate 24 is discharged through the drain hole 243.


In addition, the water falling on the right flow guide seating portion 241b formed on the right side of the through-hole 242 of the mount plate 24 flows toward the left flow guide seating portion 241a along the upper surface of the sink body 321 of the cold sink 32. To this end, the upper surface of the left end of the sink body 321 and the upper surface of the right end of the sink body 321 may be designed to form the same surface as the right edge of the left flow guide seating portion 241a and the left edge of the right flow guide seating portion 241b, respectively.


As another method, as described above, the drain hole 243 may be formed in the right flow guide seating portion 241b. That is, the left flow guide seating portion 241a and the right flow guide seating portion 241b may be symmetrical with respect to the vertical plane that divides the through-hole 242 from left and right.


The thermoelectric module may be mounted to be slanted with respect to the cabinet 11, as shown in FIG. 15, such that the water formed on the surface of the cold sink 32 flows toward the drain hole 243 of the mount plate 24 along the upper surface of the sink body 321 of the cold sink 32.


In detail, at least the left edge of the sink body 321 of the cold sink 32 is coupled below the right edge, such that the water flowing down on the upper surface of the sink body 321 flows toward the drain hole 243.


With this arrangement, the upper surface of the sink body 321 and the upper surface of the right flow guide seating portion 241b of the mount plate 24 form a single slanted surface, such that the water falling on the right flow guide seating portion 241b flows along the upper surface of the sink body 321 and flows to the drain hole 243. Alternatively, the thermoelectric module may be coupled to the cabinet such that the right edge of the sink body 321 is lower than the left edge of the right flow guide seating portion 241b, and the right edge of the left flow guide seating portion 241a is lower than the left edge of the sink body 321.


Since the left flow guide seating portion 241a of the mount plate 24 is formed along contours of the left drain floor 111e, the bottom surface of the left flow guide seating portion 241a of the mount plate 24 may be in close contact with the upper surface of the left drain floor 111e.


Similarly, since the right flow guide seating portion 241b of the mount plate 24 is also formed along contours of the right drain floor 111g, the bottom surface of the right flow guide seating portion 241b of the mount plate 24 may be in close contact with the upper surface of the right drain floor 111g.


Although the right end of the upper surface of the cold sink 32 is illustrated as being higher than the upper left end of the cold sink 32, the upper left end may be designed to be higher than the right end of the upper surface, if the drain port 111h is provided in the right drain floor 111g.


The drain hole 111f is formed in the lower drain floor at the bottom surface of the mount plate seating portion 117.


The drain floor adjacent to the higher side end of the cold sink 32 may be defined as a first drain floor, and the drain floor adjacent to the lower side end may be defined as a second drain floor.


As illustrated in FIG. 15, the heat absorption fan 33 may be horizontally coupled to the fan housing 232 of the flow guide 23 to be oriented horizontally and parallel to a ground surface (i.e. level).


In FIG. 15, the heat dissipation fan 36 is illustrated as being slantingly coupled to the lower side of the thermoelectric module at an angle non-parallel with respect to the ground surface (i.e. non-level), but the present disclosure is not limited thereto. For example, the heat dissipation fan 36 may be horizontally coupled to the lower side of the thermoelectric module to be oriented horizontally parallel to the ground surface (i.e. level) like the heat absorption fan 33.



FIG. 17 is a top perspective view of a cold sink 32 according to an embodiment, and FIG. 18 is a bottom perspective view of the cold sink 32 of FIG. 17.


As illustrated in FIGS. 15 and 16, the thermoelectric module itself may be obliquely installed such that condensed water flows toward the drain hole 243, but alternatively, as illustrated in FIGS. 17 and 18, condensed water may be collected by obliquely sloping the upper surface of the sink body 321 of the cold sink 32 in an arrangement where the thermoelectric module is horizontally installed.


Referring to FIGS. 17 and 18, the cold air supply device mounted on the entrance refrigerator 10 according to the embodiment may include a thermoelectric module, a heat absorption fan 33 disposed on the heat absorption side of the thermoelectric module, and a heat dissipation fan 36 disposed on the heat generation side of the thermoelectric module.


The cold sink 32 of the thermoelectric module includes a bottom portion 321a, an upper surface portion 321b, a front surface portion 321f, a rear surface portion 321g, a left surface portion 321c, and a right surface portion 321d.


A plurality of heat exchange fins 322 extend from the upper surface portion 321b with a length corresponding to a width of the upper surface portion 321b. The heat exchange fins 322 are spaced apart from each other in the front-to-rear direction of the upper surface portion 321b.


Fastening bosses 321h may protrude from edges of front and rear ends of the sink body 321.


In addition, one of the left surface and the right surface of the sink body 321 that is closest to the drain hole 243 may be configured to be lower than the other thereof.


For example, when the drain hole 243 is formed on the left side of the cold sink 32, the height of the right surface portion 321d may be designed to be higher than the height of the left surface portion 321c. That is, the upper surface portion 321b may be designed obliquely such that the upper surface portion 321b is gradually lowered from the right edge to the left edge. In other words, the right edge of the upper surface portion 321b of the cold sink 32 may be higher than the left edge of the upper surface portion 321b of the cold sink 32 so that the upper surface portion 321b of the cold sink 32 is slanted with respect to a horizontal plane.


In addition, the upper surface portion 321b may be formed to be stepped, and the plurality of heat exchange fins 322 may be disposed in the stepped portion. A limiting shoulder 321e may be formed at the side end portion corresponding to the highest side of the upper surface portion 321b, to prevent water flowing down along the surface of the heat exchange fins 322 from flowing down the right surface portion 321d of the sink body 321.


Therefore, the upper surface portion 321b of the sink body 321 may be described as including a first part formed obliquely and having the plurality of heat exchange fins 322 disposed thereon, and a second part having the limiting shoulder 321e formed thereon.


In addition, since the bottom portion 321a of the cold sink 32 is designed to be coplanar with the horizontal plane (i.e. level), the thermoelectric element 31 coupled to the bottom surface of the cold sink 32, the insulation material 35, and the heat sink 34 may be fixed to the lower side of the cabinet 11 in a horizontal state.


The upper ends of the heat exchange fins 322 may be parallel with the upper surface portion 321b of the cold sink 32, so that the height of the left ends of the heat exchange fins 322 may be the same as the height of the right ends of the heat exchange fins 322. In this structure, a distance between the right bottom surface of the heat absorption fan 33 and the right upper end of the heat exchange fins 322 is shorter than a distance between the left bottom surface of the heat absorption fan 33 and the left upper end of the heat exchange fins 322.


However, the present disclosure is not limited thereto, and the height of the left end of the heat exchange fins 322 may be designed to be taller than the height of the right end of the heat exchange fins 322, such that the upper ends of the heat exchange fins 322 are horizontal. That is, each of the heat exchange fins 322 may be designed in a trapezoidal shape rather than a rectangular shape.



FIG. 19 is a partial longitudinal cross-sectional view of the entrance refrigerator 10, taken along line 15-15 of FIG. 10, and including a cold sink 32 according to an embodiment.


Referring to FIG. 19, in the entrance refrigerator 10 according to an embodiment, the cold air supply device 30 including the cold sink 32 illustrated in FIGS. 17 and 18 is mounted on the cabinet 11, except that the cold sink 32 in FIG. 19 includes the trapezoidal shaped heat exchange fins 322 described above.


In detail, the cold air supply device 30 provided with the cold sink 32 illustrated in FIGS. 17 and 18 may be inserted into and coupled to the through-hole 118 of the cabinet 11 while maintaining a horizontal state.


That is, since the upper surface of the cold sink 32 is slanted to be lowered toward the drain hole 243 of the mount plate 24, the cold air supply device 30 may be coupled to the bottom surface of the cabinet 11 in the horizontal state (i.e. level).


Therefore, the heat absorption fan 33 and the heat dissipation fan 36 may be horizontally disposed, and the thermoelectric element 31, the insulation material 35, and the cold sink 32 may be horizontally disposed.


Since the other structure is the same as the structure of the entrance refrigerator 10 illustrated in FIGS. 15 and 16, a redundant description thereof is omitted.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the present disclosure.


Thus, the technical spirit of the present disclosure is not limited to the foregoing embodiment.


Therefore, the scope of the present disclosure is defined not by the detailed description of the invention but by the appended claims, and all differences within the scope will be construed as being included in the present disclosure.

Claims
  • 1. An entrance refrigerator, comprising: a cabinet configured to extend through a door or a wall, the cabinet including a storage compartment therein for storing goods, the cabinet including a through-hole provided at a bottom of the cabinet;a housing located at a lower side of the cabinet;an outdoor side door coupled to an outdoor portion of the cabinet to open or close the storage compartment;an indoor side door coupled to an indoor portion of the cabinet to open or close the storage compartment; anda cold air supplier configured to supply cold air to the storage compartment, at least a portion of the cold air supplier extending through the through-hole in the bottom of the cabinet,wherein the cold air supplier comprises: a thermoelectric module at least partially located within the through-hole in the bottom of the cabinet;a heat absorption fan located above the thermoelectric module to provide a flow of air within the storage compartment; anda heat dissipation fan located below the thermoelectric module to provide a flow of air within the housing,wherein the thermoelectric module comprises: a thermoelectric element having a heat absorbing surface and a heat generating surface;a cold sink in contact with the heat absorbing surface, the cold sink configured to be exposed to air in the storage compartment to exchange heat with the air in the storage compartment; anda heat sink in contact with the heat generating surface, the heat sink configured to be exposed to air in the housing to exchange heat with the air in the housing,wherein the cold sink includes a sink body, andwherein one of a left edge and a right edge of the sink body is higher than the other of the left edge and the right edge such that the top surface of the sink body is slanted with respect to a horizontal plane.
  • 2. The entrance refrigerator according to claim 1, wherein the cold sink comprises a plurality of heat exchange fins located on an upper surface of the sink body, wherein the heat exchange fins protrude from an upper surface of the sink body, extend lengthwise along a left-to-right direction of the sink body, and are spaced apart from each other in a front-to-rear direction of the sink body, andwherein a lower surface of the sink body is in contact with the heat absorbing surface.
  • 3. The entrance refrigerator according to claim 2, wherein the sink body includes a limiting shoulder protruded upward from an upper end of the sink body at a higher end of the top surface of the sink body.
  • 4. The entrance refrigerator according to claim 2, wherein a bottom of the storage compartment comprises: a main floor; anda sub floor disposed lower than the main floor, the sub floor having the through-hole formed therein, andwherein the sub floor comprises: a first drain floor adjacent to a higher end of the cold sink; anda second drain floor adjacent to a lower end of the cold sink.
  • 5. The entrance refrigerator according to claim 4, wherein a drain hole is provided in the second drain floor.
  • 6. The entrance refrigerator according to claim 5, further comprising a drain port extending downward from a bottom surface of the cabinet, wherein the drain hole passes through the cabinet and communicates with the drain port.
  • 7. The entrance refrigerator according to claim 6, further comprising a drain box located at the bottom surface of the cabinet and within the housing, the drain box having a water storage space therein, wherein the drain port is accommodated in the drain box.
  • 8. The entrance refrigerator according to claim 5, wherein the second drain floor is slanted downwardly away from the cold sink and toward the drain hole.
  • 9. The entrance refrigerator according to claim 8, wherein the first drain floor is slanted downwardly toward the cold sink and the drain hole.
  • 10. The entrance refrigerator according to claim 9, further comprising a mount plate disposed on the sub floor.
  • 11. The entrance refrigerator according to claim 10, wherein a bottom portion of the mount plate follows along contours of the first drain floor and the second drain floor.
  • 12. The entrance refrigerator according to claim 10, wherein the bottom portion of the mount plate includes: a mount plate through-hole vertically aligned with the through-hole of the sub floor; anda mount plate drain hole vertically aligned with the drain hole of the sub floor.
  • 13. The entrance refrigerator according to claim 5, further comprising: a mount plate disposed on the sub floor; anda flow guide spaced upwardly from a bottom portion of the mount plate, the flow guide including a fan housing configured to accommodate the heat absorption fan therein,wherein a cold air flow passage is provided between the bottom portion of the mount plate and the flow guide.
  • 14. The entrance refrigerator according to claim 13, further comprising a base plate located on the main floor to cover the flow guide, wherein a plurality of holes are provided in the base plate.
  • 15. The entrance refrigerator according to claim 14, further comprising a tray located on an upper surface of the base plate, wherein a plurality of holes are provided in a bottom of the tray, andwherein the bottom of the tray is spaced apart from an upper surface of the base plate by a predetermined spacing.
  • 16. The entrance refrigerator according to claim 4, wherein the main floor slopes downward toward the sub floor.
  • 17. A refrigerator, comprising: a cabinet configured to be located partially within a barrier of a building, the cabinet including a storage compartment therein, the cabinet having a first opening into the storage compartment and a second opening into the storage compartment, the second opening being spaced from the first opening, the cabinet including a through-hole provided at a bottom of the cabinet;a housing located at a lower side of the cabinet;a first door coupled to the cabinet to open or close the first opening;a second door coupled to the cabinet to open or close the second opening;a cold air supplier configured to supply cold air to the storage compartment, at least a portion of the cold air supplier extending through the through-hole in the bottom of the cabinet,wherein the cold air supplier comprises: a thermoelectric module at least partially located within the through-hole in the bottom of the cabinet;a heat absorption fan located above the thermoelectric module to provide a flow of air within the storage compartment; anda heat dissipation fan located below the thermoelectric module to provide a flow of air within the housing,wherein the thermoelectric module comprises: a thermoelectric element having a heat absorbing surface and a heat generating surface;a cold sink in contact with the heat absorbing surface, the cold sink configured to be exposed to air in the storage compartment to exchange heat with the air in the storage compartment; anda heat sink in contact with the heat generating surface, the heat sink configured to be exposed to air in the housing to exchange heat with the air in the housing,wherein the cold sink includes a sink body, andwherein one of a left edge and a right edge of the sink body is higher than the other of the left edge and the right edge such that the top surface of the sink body is slanted with respect to a horizontal plane.
  • 18. The refrigerator according to claim 17, wherein a bottom of the storage compartment comprises: a main floor; anda sub floor disposed lower than the main floor, the sub floor having the through-hole formed therein,wherein the sub floor comprises: a first drain floor adjacent to a higher end of the cold sink; anda second drain floor adjacent to a lower end of the cold sink, andwherein a drain hole is provided in the second drain floor.
  • 19. The refrigerator according to claim 18, further comprising: a drain port extending downward from a bottom surface of the cabinet,a drain box located at the bottom surface of the cabinet and within the housing, the drain box having a water storage space therein,wherein the drain hole passes through the cabinet and communicates with the drain port, andwherein the drain port is accommodated in the drain box.
  • 20. The refrigerator according to claim 18, wherein the second drain floor is slanted downwardly away from the cold sink and toward the drain hole, and wherein the first drain floor is slanted downwardly toward the cold sink and the drain hole.
Priority Claims (2)
Number Date Country Kind
10-2019-0021867 Feb 2019 KR national
10-2019-0087444 Jul 2019 KR national