The present disclosure relates generally to entryway control and monitoring systems.
Some automobiles are equipped with one or more embedded remote controllers, such as, e.g., an embedded universal garage door opener. Once programmed, the controller may be used to open and close a door (e.g., a garage door) of an entryway (e.g., a garage connected to the vehicle user's residence) when the controller is activated.
An entryway control and monitoring system is disclosed herein. The system includes a remote controller for opening and closing the entryway and a telematics unit. The remote controller and the telematics unit are each disposed in a vehicle. The system further includes any of i) a vehicle bus that operatively connects the remote controller to the telematics unit, or ii) respective short range wireless connection units disposed in each of the remote controller and the telematics unit that selectively operatively connect the remote controller and the telematics unit. Computer readable code embedded on a non-transitory, tangible computer readable medium is executable by a processor of the telematics unit to at least one of control or monitor an operation of the remote controller.
Features and advantages of examples of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though perhaps not identical, components. For the sake of brevity, reference numerals or features having a previously described function may or may not be described in connection with other drawings in which they appear.
Example(s) of the system may be used to control and monitor an entryway. As used herein, an “entryway” refers to an access point into a space, and entry into the space through the access point may be limited by an obstruction, such as a door. It is to be understood that the obstruction may partially block the entryway, and during these instances, limited access into the space may be available through the entryway. For example, a door that is partially open may enable a person or an animal to enter the space through the entryway, whereas a mobile vehicle (e.g., a car) may be too large to fit through the entryway that is being partially blocked by the door. It is further to be understood that passage through the entryway is not available in instances where the entryway is completely blocked by the obstruction (i.e., the door is closed).
In an example, the space including the entryway may define a residence (e.g., a person's home), a business (e.g., a restaurant, a store, etc.), a storage area (e.g., a garage, a barn, etc.), and/or the like. Further, the obstruction may be a door, examples of which include a door that swings via one or more hinges (e.g., a front door, side door, and/or back door of a residence) and a door guided by one or more rails (e.g., a garage door). In one particular example, the entryway is an access point into a garage of a person's residence or business, and the obstruction is a garage door designed to block the entryway to the garage when the garage door is closed. The garage door is further designed to permit access into the garage through the entryway when the garage door is at least partially open.
In some examples, the system may be used to control the entryway; namely to control the blocking and unblocking of the entryway by the obstruction (e.g., the door) so that an entity (e.g., a person, a vehicle, a bicycle, etc.) can enter the space (e.g., the garage) through the entryway. In an example, the entity may be able to move the obstruction via some physical means, and once moved, the entity may pass through the entryway and enter the space. This may be accomplished, e.g., by physically unlocking the obstruction (via, e.g., a key) and then applying a physical force to move the obstruction into an opened position (i.e., so that the obstruction no longer blocks the entryway). In another example, the obstruction may be moved electronically, e.g., by actuating a controller that is associated with a motorized opening mechanism operatively connected to the obstruction. Upon actuating the controller, the obstruction may be moved from an opened position to a closed position, and visa versa. In one example, the controller may be associated with a garage door opening mechanism, and may be referred to herein as a remote controller for a garage door opener.
In the examples of the system disclosed herein, the entryway may be controlled by actuating the remote controller to move the obstruction (e.g., a door) to an opened position so that an entity can pass through the entryway. The obstruction may also be moved, via actuating the remote controller, from an opened position to a closed position in order to block the entryway. In an example, the remote controller is disposed in a vehicle, and is in operative communication with an in-vehicle telematics unit over a vehicle data network (e.g., a vehicle bus). The telematics unit may be in direct communication with the remote controller via the vehicle bus, or a gateway (e.g., a body control module) may be used to gate messaging between the telematics unit and the remote controller that are connected to different serial busses. In response to a user request, the remote controller may be actuated on demand by the telematics unit of the vehicle to open or close the door. In this way, the actuation of the remote controller does not require any physical effort on behalf of the user (e.g., the vehicle owner), and this may be useful when a user of the vehicle is, e.g., locked out of his/her vehicle and desires access into or out of his/her garage.
In other examples of the system, the entryway may be monitored, e.g., to detect any unauthorized attempts to obtain some access to the entryway that is then-currently being blocked by the obstruction (e.g., a closed door). These examples of the system also utilize the remote controller that is disposed inside the vehicle and is in operative communication with the telematics unit. However, for monitoring the entryway, the remote controller communicates with the telematics unit when an unauthorized attempt to access the entryway has been detected. Upon receiving this communication, the telematics unit may notify an entity external to the vehicle (e.g., a telematics service center) of the unauthorized attempt to access, e.g., the garage through the entryway.
Details of the system, and of the methods for controlling and monitoring an entryway using the system will be now described herein in conjunction with
At the outset, the term “user”, as used herein, includes a vehicle owner, a vehicle driver, and/or a vehicle passenger. In some instances, the user is also an owner or authorized user of a space, such as, e.g., a residence, a business, a storage area, and/or the like. As an owner or authorized user, the user is authorized to access an entryway of the space.
In instances where the user is the vehicle owner, the term “user” may also be used interchangeably with the terms subscriber and/or service subscriber.
Further, the term “communication” is to be construed to include all forms of communication, including direct and indirect communication. Indirect communication may include communication between two components with additional component(s) located therebetween.
The terms “connect/connected/connection” and/or the like are broadly defined herein to encompass a variety of divergent connected arrangements and assembly techniques. These arrangements and techniques include, but are not limited to (1) the direct communication between one component and another component with no intervening components therebetween; and (2) the communication of one component and another component with one or more components therebetween, provided that the one component being “connected to” the other component is somehow in operative communication with the other component (notwithstanding the presence of one or more additional components therebetween).
Referring now to the figures, an example of an entryway control and monitoring system 10 is semi-schematically shown in
In an example, the garage door opener 16 may be actuated by activating a remote controller 18 that, as shown in
In the example depicted in
It is to be understood that the vehicle 22 may, in another example, be a land vehicle of the type that does not have a passenger compartment, an example of which includes a motorcycle. The remote controller 18 may, in this example, be disposed anywhere near a driver control area, such as on the handle bars of the motorcycle.
The vehicle 22 may otherwise be a water vehicle (such as a boat) or an air vehicle (such as a plane, a helicopter, or the like). As a water vehicle, the vehicle 22 may have a driver control area that is either uncovered or is enclosed to form a passenger compartment. For any of these configurations, the remote controller 18 may be disposed in the driver control area of the water vehicle, and may be used to control, e.g., a door of an entryway of some type of water-based structure. Examples of a water-based structure may include a boat house or marina having a garage door. In instances where the vehicle 22 is an air vehicle, the vehicle 22 may include a cockpit or other enclosed pilot control area within which the remote controller 18 may be operatively disposed. In this example, the remote controller 18 may be configured to control the movement of, e.g., a door of an airplane hangar or the like.
The vehicle 22 is generally equipped with suitable hardware and software that enables the vehicle 22, via its telematics unit 24, to communicate (e.g., transmit and/or receive voice and data communications) with entities outside of the vehicle 22. These communications may be established using a carrier/communication system, such as the system 116 shown and described below in conjunction with
It is to be understood that the remote controller 18 may be installed anywhere inside the passenger compartment 20 of the vehicle 22. In one example, the remote controller 18 may be placed on/in an overhead panel 26 of the vehicle 22 as shown in
The remote controller 18 may be embodied as any suitable controller having some type of feature (such as, e.g., a button or switch) that, when activated, triggers a transmission of a radio frequency (RF) signal to the garage door opener 16. In an example, the RF signal transmission may be accomplished via a transmitter 32 operatively attached to the controller 18, and the RF signal may be received by a receiver 34 operatively attached to the garage door opener 16. In another example, the remote controller 18 may be voice activated, where upon detecting a verbal command, the controller 18 (via the transmitter 32) transmits the RF signal to the garage door opener 16. Upon receiving the RF signal by the receiver 34, a processor (not shown) associated with the garage door opener 16 executes a command to open or close the garage door 14.
In an example, the remote controller 18 may include a single actuatable feature that, when actuated, causes the transmitter 32 to transmit an RF signal to the garage door opener 16 to open or close the garage door 14. It is to be understood that, in this example, the opening and closing of the garage door 14 depends, at least in part, on the initial position of the garage door 14 at the time the RF signal is received. For instance, if the garage door 14 is initially positioned in an at least partially open position, then upon receiving the RF signal from the transmitter 32 of the controller 18, the processor of the garage door opener 16 executes a command to move the garage door 14 so that the door closes. If, on the other hand, the garage door 14 is initially positioned in a closed position, then upon receiving the RF signal from the transmitter 32, the processor of the garage door opener 16 executes a command to move the garage door 14 so that the door at least partially opens.
In another example, the remote controller 18 may include one actuatable feature for closing the garage door 14 and another actuatable feature for opening the garage door 14. In other words, two separate buttons, two separate voice commands, or the like may be used as the actuatable features for the activation of the respective opening and closing commands. Thus, in this example, the opening and closing of the garage door 14 depends upon which one of the actuatable features of the controller 18 is being actuated.
In instances where the system 10 is used to control the entryway 12, the actuatable feature(s) of the remote controller 18 may be activated by a signal produced by the telematics unit 24. For instance, the telematics unit 24 may submit a command signal to the remote controller 18 via the vehicle bus 134, and this command signal is generated by the telematics unit 24 in response to a request to do so by a telematics service center 124 (which is shown in
The request may have been submitted to the telematics service center 124 by the vehicle owner/user using a communications device 28. The communications device 28 may be a mobile communications device (such as, e.g., a cellular phone or a smartphone) or a stationary communications device (such as, e.g., a landline phone). Upon receiving the request, the service center 124, in turn, sends a data message (e.g., a packet data message) to the telematics unit 24, where such data message includes the user's request. The method for controlling the entryway 12 will be described further in conjunction with
In an example, the vehicle 22 is also configured with a security system 30 that, when activated, sets the vehicle 22 into an armed state. In an example, the security system 30 may include a vehicle alarm 36 that is operatively connected to the security system 30 (as shown in
The vehicle security system 30 may be activated by the user, for example, when the vehicle ignition system is set to an OFF state (e.g., by powering off the vehicle 22) and activating a door-lock function. The door-lock function may be activated by actuating a door-locking button disposed on the driver- or passenger-side door, by actuating a door-locking function button on a key fob, or by other suitable methods. The vehicle 22 may otherwise be placed in an armed state by actuating a separate in-vehicle security system 30, which is not connected to or associated with the vehicle ignition and the door-locking systems. It is to be understood that the security system 30 may be particularly useful in the examples of the instant disclosure for monitoring the entryway 12, which will be described below in conjunction with
The carrier/communication system 116 includes one or more cell towers 118, one or more base stations 119 and/or mobile switching centers (MSCs) 120, and one or more service providers (e.g., 190) including mobile network operators(s). The system 100 further includes one or more land networks 122, and one or more telematics service/call centers 124. In an example, the carrier/communication system 116 is a two-way radio frequency communication system, and may be configured with a web service supporting system-to-system communications (e.g., communications between the service center 124 and the service provider 190).
The following paragraphs provide a brief overview of one example of the system 100. It is to be understood, however, that additional components and/or other systems not shown here could employ the system 10, and the method(s) for using the system 10 as disclosed herein.
Some of the vehicle hardware 126 is shown generally in
Operatively coupled to the telematics unit 24 is the network connection or vehicle bus 134. Examples of suitable network connections include a controller area network (CAN), a media oriented system transfer (MOST), a local interconnection network (LIN), an Ethernet, and other appropriate connections, such as those that conform with known ISO, SAE, and IEEE standards and specifications, to name a few. The vehicle bus 134 enables the vehicle 22 to send and receive signals from the telematics unit 24 to various units of equipment and systems both outside the vehicle 22 and within the vehicle 22 to perform various functions, such as unlocking a door, executing personal comfort settings, and/or the like. In one example, the vehicle bus 134 enables the vehicle 22 to send and receive signals from the telematics unit 24 to the remote controller 18 (e.g., for controlling the entryway 12), and to send and receive signals from the remote controller 18 to the telematics unit 24 (e.g., during monitoring of the entryway 12).
In some instances, a gateway may be used to connect the in-vehicle telematics unit 24 that is operatively connected to the vehicle bus 134 to the remote controller 18 that is operatively connected to another bus 151. In this configuration, the gateway enables the transmission of serial data messages (e.g., a command to actuate the remote controller 18) between components of the different buses 134, 151 (e.g., the telematics unit 14 and the remote controller 18). In an example, the gateway is a body control module 133, which may be an electronic control unit that enables the communication between components connected to one serial bus (e.g., the remote controller 18 connected to the bus 151) with components connected to another serial bus (e.g., the telematics unit 14 connected to the vehicle bus 134).
The telematics unit 24 is an onboard vehicle dedicated communications device. In an example, the telematics unit 24 is linked to a telematics service center (e.g., the service center 124) via the carrier system 116, and is capable of calling and transmitting data to the service center 124.
The telematics unit 24 provides a variety of services, both individually and through its communication with the service center 124. The telematics unit 24 generally includes an electronic processing device 136 operatively coupled to one or more types of electronic memory 138, a cellular chipset/component 140, a wireless modem 142, a navigation unit containing a location detection (e.g., global positioning system (GPS)) chipset/component 144, a real-time clock (RTC) 146, a short-range wireless communication network 148 (e.g., a BLUETOOTH® unit), and a dual antenna 150. In one example, the wireless modem 142 includes a computer program and/or set of software routines (i.e., computer readable instructions embedded on a non-transitory, tangible medium) that are executable by the processing device 136.
It is to be understood that the telematics unit 24 may be implemented without one or more of the above listed components (e.g., the real time clock 146). It is to be further understood that telematics unit 24 may also include additional components and functionality as desired for a particular end use.
The electronic processing device 136 of the telematics unit 24 may be a micro controller, a controller, a microprocessor, a host processor, and/or a vehicle communications processor. In another example, electronic processing device 136 may be an application specific integrated circuit (ASIC). Alternatively, electronic processing device 136 may be a processor working in conjunction with a central processing unit (CPU) performing the function of a general-purpose processor. The electronic processing device 136 (also referred to herein as a processor) may, for example, include software programs having computer readable code to initiate and/or perform various functions of the telematics unit 24, as well as computer readable code for performing various steps of the examples of the method for controlling the entryway 12 and the examples of the method for monitoring the entryway 12.
Still referring to
The cellular chipset/component 140 may be an analog, digital, dual-mode, dual-band, multi-mode and/or multi-band cellular phone. Basically, the cellular chipset 140 is a semiconductor engine that enables the telematics unit 24 to connect with other devices (e.g., other mobile communications devices, e.g., 28) using some suitable type of wireless technology. The cellular chipset-component 140 uses one or more prescribed frequencies in the 800 MHz analog band or in the 800 MHz, 900 MHz, 1900 MHz and higher digital cellular bands. In some cases, the cellular chipset/component 140 may also use a frequency below 800 MHz, such as 700 MHz or lower. In yet other cases, the cellular chipset/component 140 may use a frequency above 2600 MHz. Any suitable protocol may be used, including digital transmission technologies, such as TDMA (time division multiple access), CDMA (code division multiple access), GSM (global system for mobile telecommunications), and LTE (long term evolution). In some instances, the protocol may be short range wireless communication technologies, such as BLUETOOTH®, dedicated short range communications (DSRC), or Wi-Fi™. In other instances, the protocol is Evolution Data Optimized (EVDO) Rev B (3G) or Long Term Evolution (LTE) (4G). In an example, the cellular chipset/component 140 may be used in addition to other components of the telematics unit 24 to establish communications between the vehicle 22 and another party.
Also associated with electronic processing device 136 is the previously mentioned real time clock (RTC) 146, which provides accurate date and time information to the telematics unit 24 hardware and software components that may require and/or request date and time information. In an example, the RTC 146 may provide date and time information periodically, such as, for example, every ten milliseconds.
The electronic memory 138 of the telematics unit 24 may be configured to store data associated with the various systems of the vehicle 22, vehicle operations, vehicle user preferences and/or personal information, and the like.
The telematics unit 24 provides numerous services alone or in conjunction with the service center 124, some of which may not be listed herein, and is configured to fulfill one or more user or subscriber requests. Several examples of these services include, but are not limited to: turn-by-turn directions and other navigation-related services provided in conjunction with the GPS based chipset/component 144; airbag deployment notification and other emergency or roadside assistance-related services provided in connection with various crash and or collision sensor interface modules 152 and sensors 154 located throughout the vehicle 22; and infotainment-related services where music, Web pages, movies, television programs, videogames and/or other content is downloaded by an infotainment center 156 operatively connected to the telematics unit 24 via vehicle bus 134 and audio bus 158. In one example, downloaded content is stored (e.g., in memory 138) for current or later playback.
Again, the above-listed services are by no means an exhaustive list of all the capabilities of telematics unit 24, but are simply an illustration of some of the services that the telematics unit 24 is capable of offering. It is to be understood that when these services are obtained from the service center 124, the telematics unit 24 is considered to be operating in a telematics service mode.
Vehicle communications generally utilize radio transmissions to establish a voice channel with carrier system 116 such that both voice and data transmissions may be sent and received over the voice channel. Vehicle communications are enabled via the cellular chipset/component 140 for voice communications and the wireless modem 142 for data transmission. In order to enable successful data transmission over the voice channel, wireless modem 142 applies some type of encoding or modulation to convert the digital data so that it can communicate through a vocoder or speech codec incorporated in the cellular chipset/component 140. It is to be understood that any suitable encoding or modulation technique that provides an acceptable data rate and bit error may be used with the examples disclosed herein. In one example, an Evolution Data Optimized (EVDO) Rev B (3G) system (which offers a data rate of about 14.7 Mbit/s) or a Long Term Evolution (LTE) (4G) system (which offers a data rate of up to about 1 Gbit/s) may be used. These systems permit the transmission of both voice and data simultaneously. Generally, dual mode antenna 150 services the location detection chipset/component 144 and the cellular chipset/component 140.
The microphone 128 provides the user with a means for inputting verbal or other auditory commands, and can be equipped with an embedded voice processing unit utilizing human/machine interface (HMI) technology known in the art. Conversely, speaker(s) 130, 130′ provide verbal output to the vehicle occupants and can be either a stand-alone speaker 130 specifically dedicated for use with the telematics unit 24 or can be part of a vehicle audio component 160, such as speaker 130′. In either event and as previously mentioned, microphone 128 and speaker(s) 130, 130′ enable vehicle hardware 126 and telematics service center 124 to communicate with the occupants through audible speech. The vehicle hardware 126 also includes one or more buttons, knobs, switches, keyboards, and/or controls 132 for enabling a vehicle occupant to activate or engage one or more of the vehicle hardware components. In one example, one of the buttons 132 may be an electronic pushbutton used to initiate voice communication with the telematics service provider service center 124 (whether it be a live advisor 162 or an automated call response system 162′) to request services, to initiate a voice call to another mobile communications device, etc.
The audio component 160 is operatively connected to the vehicle bus 134 and the audio bus 158. The audio component 160 receives analog information, rendering it as sound, via the audio bus 158. Digital information is received via the vehicle bus 134. The audio component 160 provides AM and FM radio, satellite radio, CD, DVD, multimedia and other like functionality independent of the infotainment center 156. Audio component 160 may contain a speaker system (e.g., speaker 130′), or may utilize speaker 130 via arbitration on vehicle bus 134 and/or audio bus 158.
Still referring to
Other vehicle sensors 164, connected to various sensor interface modules 166 are operatively connected to the vehicle bus 134. Example vehicle sensors 164 include, but are not limited to, gyroscopes, accelerometers, speed sensors, magnetometers, emission detection and/or control sensors, environmental detection sensors, and/or the like. Examples of sensor interface modules 166 include powertrain control, climate control, body control, and/or the like.
The vehicle hardware 126 may also include the display 180, which may be operatively directly connected to or in communication with the telematics unit 24, or may be part of the audio component 160. The display 180 may be any human-machine interface (HMI) disposed within the vehicle 22 that includes audio, visual and/or haptic capabilities. The display 180 may, in some instances, be controlled by or in network communication with the audio component 160, or may be independent of the audio component 160. Examples of the display 180 include a VFD (Vacuum Fluorescent Display), an LED (Light Emitting Diode) display, a driver information center display, a radio display, an arbitrary text device, a heads-up display (HUD), a touchscreen display, an LCD (Liquid Crystal Display) display, and/or the like. The display 180 may be referred to herein as a graphic user interface (GUI).
It is to be understood that the vehicle 22 also includes other components, such as the remote controller 18 as previously mentioned. Again, the remote controller 18 may be considered to be part of the vehicle hardware 126, and is operatively directly or indirectly connected to or in communication with the telematics unit 24.
As mentioned above, the system 100 includes the carrier/communication system 116. A portion of the carrier/communication system 116 may be a cellular telephone system or any other suitable wireless system that transmits signals between the vehicle hardware 126 and land network 122. According to an example, the wireless portion of the carrier/communication system 116 includes one or more cell towers 118, base stations 119 and/or mobile switching centers (MSCs) 120, as well as any other networking components required to connect the wireless portion of the system 116 with land network 122. It is to be understood that various cell tower/base station/MSC arrangements are possible and could be used with the wireless portion of the system 116. For example, a base station 119 and a cell tower 118 may be co-located at the same site or they could be remotely located from one another; or a single base station 119 may be coupled to various cell towers 118; or various base stations 119 could be coupled with a single MSC 120. A speech codec or vocoder may also be incorporated in one or more of the base stations 119, but depending on the particular architecture of the wireless network 116, it could be incorporated within an MSC 120 or some other network components as well.
Land network 122 may be a conventional land-based telecommunications network that is connected to one or more landline telephones, and that connects the wireless portion of the carrier/communication network 116 to the call/data center 124. For example, land network 122 may include a public switched telephone network (PSTN) and/or an Internet protocol (IP) network. It is to be understood that one or more segments of the land network 122 may be implemented in the form of a standard wired network, a fiber or other optical network, a cable network, wireless networks, such as wireless local networks (WLANs) or networks providing broadband wireless access (BWA), or any combination thereof.
The service center 124 of the telematics service provider (also referred to herein as a call center) is designed to provide the vehicle hardware 126 with a number of different system back-end functions. According to the example shown in
The processor 184, which is often used in conjunction with the computer equipment 174, is generally equipped with suitable software and/or programs enabling the processor 184 to accomplish a variety of service center functions. Further, the various operations of the service center 124 are carried out by one or more computers (e.g., computer equipment 174) programmed to carry out some of the tasks of the service center 124. The computer equipment 174 (including computers) may include a network of servers (including server 170) coupled to both locally stored and remote databases (e.g., database 172) of any information processed. The processor 184 may be configured to run computer program code encoded on a non-transitory, tangible medium to perform some of the steps of the controlling and monitoring methods described in detail below.
Switch 168, which may be a private branch exchange (PBX) switch, routes incoming signals so that voice transmissions are usually sent to either the live advisor 162 or the automated response system 162′, and data transmissions are passed on to a modem (similar to modem 142) or other piece of equipment (not shown) for demodulation and further signal processing. The modem preferably includes an encoder, as previously explained, and can be connected to various devices such as the server 170 and database 172.
The communications module 186 is configured, via suitable communications equipment (such as equipment capable of handling messaging between the service center 124 and the telematics unit 24 (e.g., switches, switchboards, etc.), modems (e.g., a wireless modem similar to modem 142), TCP/IP supporting equipment, and/or the like), to enable the call center 124 to establish a communication with the telematics unit 24, the communications device 28, or visa versa. The communications module 186 is capable of receiving message(s) (i.e., packet data) from the communications device 28, where such message(s) may include a request to activate the remote controller 18 for the garage door opener 16. The communications module 186 is also capable of sending message(s) to the telematics unit 24 (e.g., as packet data) with a command to execute the request (i.e., to activate the remote controller 18). Further, the communications module 186 may send message(s) to the communications device 28, where such message(s) contain a notification that an unauthorized attempt to access the entryway 12 has occurred.
It is to be appreciated that the service center 124 may be any central or remote facility, manned or unmanned, mobile or fixed, to or from which it is desirable to exchange voice and data communications. As such, the live advisor 162 may be physically present at the service center 124 or may be located remote from the service center 124 while communicating through the service center 124.
The communications network provider 190 generally owns and/or operates the carrier/communication system 116. The communications network provider 190 includes a mobile network operator that monitors and maintains the operation of the communications network 190. The network operator directs and routes calls, and troubleshoots hardware (cables, routers, network switches, hubs, network adaptors), software, and transmission problems. It is to be understood that, although the communications network provider 190 may have back-end equipment, employees, etc. located at the telematics service provider service center 124, the telematics service provider is a separate and distinct entity from the network provider 190. In an example, the equipment, employees, etc. of the communications network provider 190 are located remote from the service center 124. The communications network provider 190 provides the user with telephone and/or Internet services, while the telematics service provider provides a variety of telematics-related services (such as, for example, those discussed hereinabove). The communications network provider 190 may interact with the service center 124 to provide services (such as emergency services) to the user.
While not shown in
Further, the service center 124 components shown in
An example of a method for controlling an entryway (such as the entryway 12 to a garage of a user's residence) will now be described in conjunction with
In an example of controlling the entryway 12, the user submits a request to the telematics service center 124 to activate the remote controller 18. When the remote controller 18 is activated, the garage door 14 either opens or closes, thereby enabling or denying access into the entryway 12. The submission of the request to activate the remote controller 18 is shown schematically at step 300 in
It is to be understood that the user is authenticated before the request is actually fulfilled (or processed) by the service center advisor 162, 162′. In an example, the processor 184, running suitable computer program code, may attempt to match the phone number of the communications device 28 used to submit the request with a phone number in a user profile stored in one of the databases 172 at the service center 124. This user profile may have been set up when the user activated his/her account with the service center 124. The profile generally contains the details of the agreement established between the service center owner (i.e., telematics service provider) and the user, personal information of the user (e.g., the user's name, garage address, home phone number, cellular phone number, electronic mailing (e-mail) address, etc.), and authentication information. During the comparison, if the processor 184 finds that the two phone numbers (i.e., the phone number of the communications device 28 and the phone number stored in the user profile) match, the processor 184 may assume that the caller is an authorized user.
The user may otherwise be authenticated utilizing authorization information previously stored in the user profile, and the authorization information may include answers to prescribed challenges presented to a caller (e.g., the user). The prescribed challenges may include a question or request for information relating to personal information of the user, such as, e.g., “What is your mother's maiden name?”, “What was the name of your first pet?”, “Describe the color of your first car”, and/or the like. The answers to these questions or requests (i.e., the personal or authorization information) are originally answered by the user, e.g., upon setting up his/her account with the service center 124, and the answers are stored in the user's profile. When the caller requests to activate the remote controller 18 to open/close the garage door 14, the caller may be presented with the challenges, and if answered correctly, the request will be processed by the service center advisor 162, 162′.
In another example, the user may use a mobile communications device 28 to submit a text message (e.g., a short message service (SMS) message) to the service center 124. This text message contains the user's request to open or close the entryway 12. In this case, the service center 124 (via the processor 184) may authenticate the message utilizing the phone number (or mobile dialing number (MDN)) of the device 28, and comparing the MDN to the phone number stored in the user profile. The user's request is processed if there is a match. In some cases, the service center 124 (via the communications module 186) may send a response message to the user's mobile communications device 28 that contains a confirmation that the request has been received and is currently being processed.
The user request may include a verbal command (for voice calls) or a text-based command (for text messages) to open or close the entryway 12. An example of the command may be something similar to “Please open my garage door”, or the like. In instances where the request is a verbal request and is received by a human advisor 162, the advisor 162 will authenticate the caller and, if the caller is properly authenticated, then either i) process the request, or ii) obtain further information from the user if the advisor 162 is uncertain as to the particulars of the user's request. Once the advisor 162 has obtained enough information, the advisor 162 may refer to the user profile stored in the database 172 to obtain the mobile dialing number of the telematics unit 24 so that a message may be pushed to the telematics unit 24 to activate the remote controller 18.
In instances where the voice call is received by the automated advisor 162′ (or automaton), or when the user sends a text message to the service center 124, the automaton 162′ will determine, via suitable computer programs run by the processor 184, the exact nature of the request. In the example above, the nature of the user's call is that he/she wants his/her garage door opened. Assuming that the caller/text message has been properly authenticated, the automaton 162′ will then proceed to process the user's request.
In an example, the communications device 28 is a mobile smartphone containing an application downloaded thereto from a website owned or run by the telematics service provider or from another online application store. This application may be used, by the user, to send his/her request to the service center 124 to open/close the entryway 12 (e.g., to open/close the garage door 14). The request may be received by the communications module 186, which may contain its own application for receiving the request from the communications device 28. The application resident on the communications module 186 may be specifically designed to recognize the request as a user request for opening/closing an entryway 12, and may further be configured to process the request without having to engage a service center advisor 162, 162′.
In still another example, the user may log on to a website owned or run by the telematics service provider. One of the services offered via the website may be to open or close the entryway 12 that is associated with a user's account. The request to open or close the entryway 12 may be submitted to the service center 124 via the website. In these instances, the user's authority is checked by virtue of the logging in process.
The request may be processed, for example, by generating a data message, and then transmitting the data message to the telematics unit 24. The data message may be generated by the processor 184 running suitable computer program code, and such data message may contain a command to activate the remote controller 18 disposed in the vehicle 22. Once generated, the data message is transmitted from the communications module 186 at the service center 124 (using, e.g., the application resident thereon) to the telematics unit 24 utilizing the mobile dialing number of the telematics unit 24. This step is shown at 302 in
When the telematics unit 24 receives the message from the service center 124, the telematics unit 24 transmits a signal to the remote controller 18. This is shown at 304 in
In an example, the signal transmitted from the telematics unit 24 to the remote controller 18 includes a command to execute the user's request; namely to activate the remote controller 18 to open or close the garage door 14. As shown at step 306 in
It is to be understood that the range for opening or closing the garage door 14 is limited to the radio frequency (RF) range between the transmitter 32 of the remote controller 18 and the receiver 34 of the garage door opening mechanism 16. Thus, when the controller 18 is activated on command by the telematics unit 24, the RF signal sent from the transmitter 32 cannot be received by the receiver 34 unless the transmitter 32 is within the RF range of the receiver 34. In instances where the transmitter 32 is outside the RF range of the receiver 34, the telematics unit 24 may have to resubmit the command one or more times until the transmitter 32 is within RF range of the receiver 34. The telematics unit 24 may be programmed to transmit with request for a predetermined number of times or for any number of times within a predetermined period. If the telematics unit 24 is not within the RF range at the end of the predetermined number of times or period, the telematics unit 24 will no longer transmit the signal.
In the examples disclosed herein, the remote controller 18 is operatively connected to the vehicle telematics unit 24, and thus provides a link between the vehicle 22 and the structure associated with the entryway 12 (e.g., a user's garage, house, etc.). As such, a user may have a single key (i.e., a physical key or a mobile communications unit that can contact the call center 124) to access both the vehicle 22 and the entryway 12.
An example of a method for monitoring the usage of the entryway 12 will be described in conjunction with
Referring now to
Once the vehicle 22 has been set into an armed state (i.e., upon activating the security system 30), the vehicle alarm 36 is automatically set into an activation-ready state. In the activation-ready state, the alarm 36 (whether the alarm 36 is a visual alarm, an audible alarm, etc.) may be triggered in response to the occurrence of an alarm-activating event. An example of this step is shown at 402 in
In an example not shown in the drawings, the vehicle 22 is in the armed state, and an attempt is made to activate the remote controller 18 while the vehicle 22 is in this state. This may occur, for example, where an intruder is inside of the vehicle 22 while the armed state is active (i.e., the security system 30 has been activated, for example, upon activating a door locking function or the like as previously described). This scenario may also occur when the intruder enters the vehicle 22 while the vehicle 22 is in the armed state (e.g., by breaking a window or crawling through an open window and then attempting to activate the remote controller 18 once inside the vehicle 12). In the instant example, the body control module 133 recognizes the armed state of the vehicle 22, and places the remote controller 18 into a mode that prevents its activation until the vehicle 22 is no longer in the armed state. In instances where the remote controller 18 is connected to the bus 151 and communicates with the telematics unit 14 through the body control module 133 (i.e., the gateway), and when the attempt is made to activate the remote controller 18 while the vehicle 22 is in the armed state, the body control module 133 will receive a signal from the remote controller 18 and will wake up the telematics unit 24. The body control module 133 then transmits a signal to the telematics unit 24 informing the telematics unit 24 of the unauthorized attempt to activate the remote controller 18. In response, the telematics unit 24 sends a notification to the call center 124 indicating that an unauthorized attempt to access the entryway 12 has been made while the vehicle 22 is in the armed state. The call center 124 may then notify the user in any desirable manner.
It is to be understood that, when the gateway (e.g., 133) is involved, the body control module 133 will not directly prevent the activation of the remote controller 18, but may play some role in allowing the remote controller 18 itself to prevent the garage door from being opened. This may involve the remote controller 18 automatically placing itself into an activation prevention mode as soon as the remote controller 18 knows that the vehicle 22 has been placed into the armed state. Knowledge of the armed state may be obtained, for example, by receiving a message transmitted from the body control module 133 indicating that the armed state of the vehicle 22 has been activated.
Referring back to
In any of the examples disclosed herein, upon triggering the alarm 36, a siren or other loud noise may be emitted from the vehicle 22, the vehicle headlights may flash, etc.
In the example shown in
The notification message may be sent, from the telematics unit 24, as a packet data message over a packet switched network. This notification message, which is sent to the service center 124, generally includes some indication (e.g., in the form of text, graphics, and/or both) that an unauthorized activation of the remote controller 18 has occurred. From this information, the communications module 186 at the service center 124, which receives the message from the telematics unit 24, forwards the message to an appropriate department or division at the service center 124 so that the message may be properly and efficiently processed. In one example, the notification message is sent to the vehicle safety and theft division at the service center 124.
When the notification message is processed, the service center 124, via suitable software programs run by the processor 184, generates another message intended to be sent to another entity, such as to the vehicle owner (as shown at step 406 of
Although the vehicle owner has been identified above as one entity that may receive the notification message from the call center, it is to be understood that other entities may be designated to receive notification messages. The other entities may include any person identified in the user profile as being authorized to receive the messages, or any third party organization (such as a police station, a fire house, etc.) also identified in the user profile as being authorized to receive the messages. In some instances, the service center 124 may automatically send the notification message to the vehicle owner unless the user profile indicates otherwise.
Referring back to step 404 in
While several examples have been described in detail, it will be apparent to those skilled in the art that the disclosed examples may be modified. Therefore, the foregoing description is to be considered non-limiting.
Number | Name | Date | Kind |
---|---|---|---|
5201067 | Grube et al. | Apr 1993 | A |
5557254 | Johnson et al. | Sep 1996 | A |
5608778 | Partridge, III | Mar 1997 | A |
5627529 | Duckworth et al. | May 1997 | A |
6072402 | Kniffin et al. | Jun 2000 | A |
6127922 | Roddy et al. | Oct 2000 | A |
6161005 | Pinzon | Dec 2000 | A |
6278869 | Lindenmeier et al. | Aug 2001 | B1 |
6295448 | Hayes, Jr. et al. | Sep 2001 | B1 |
6308083 | King | Oct 2001 | B2 |
6377173 | Desai | Apr 2002 | B1 |
6853894 | Kolls | Feb 2005 | B1 |
6885285 | Losey | Apr 2005 | B2 |
6988977 | Webber et al. | Jan 2006 | B2 |
7031665 | Trell | Apr 2006 | B1 |
7034657 | Ueda et al. | Apr 2006 | B2 |
7071813 | Fitzgibbon | Jul 2006 | B2 |
7079016 | Ho et al. | Jul 2006 | B2 |
7088265 | Tsui et al. | Aug 2006 | B2 |
7170426 | Tsui et al. | Jan 2007 | B2 |
7205908 | Tsui et al. | Apr 2007 | B2 |
7224275 | Fitzgibbon | May 2007 | B2 |
7312691 | Zambo et al. | Dec 2007 | B2 |
20010016501 | King | Aug 2001 | A1 |
20020146999 | Witte | Oct 2002 | A1 |
20030046541 | Gerdes et al. | Mar 2003 | A1 |
20030208386 | Brondrup | Nov 2003 | A1 |
20040085195 | McKibbon | May 2004 | A1 |
20040186995 | Yim et al. | Sep 2004 | A1 |
20040203379 | Witkowski et al. | Oct 2004 | A1 |
20040239482 | Fitzgibbon | Dec 2004 | A1 |
20050060067 | Nishida | Mar 2005 | A1 |
20050119827 | Willer et al. | Jun 2005 | A1 |
20050206497 | Tsui et al. | Sep 2005 | A1 |
20060143463 | Ikeda et al. | Jun 2006 | A1 |
20060202799 | Zambo | Sep 2006 | A1 |
20060232131 | Endo | Oct 2006 | A1 |
20070082706 | Campbell et al. | Apr 2007 | A1 |
20070216516 | Ghabra et al. | Sep 2007 | A1 |
20090163140 | Packham et al. | Jun 2009 | A1 |
20100321203 | Tieman et al. | Dec 2010 | A1 |
20110205040 | Van Wiemeersch et al. | Aug 2011 | A1 |
20120203619 | Lutnick et al. | Aug 2012 | A1 |
20120259771 | Hwang et al. | Oct 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130147616 A1 | Jun 2013 | US |