The present invention generally relates to converting equipment and, more particularly, to apparatus for converting paper into sheets, collating and automatic envelope stuffing operations.
Converting equipment is known for automatically stuffing envelopes. Such equipment may include components for feeding a pre-printed web of paper, for cutting such web into one or more discrete sheets for collating sheets, and for feeding such discrete sheet collations into envelopes. Such equipment may further include components to convey the stuffed envelopes to a specified location. The industry has long known devices which accomplish these and other functions. However, improvements are needed where high volumes of paper piece count and high speeds are required without sacrificing reliability accuracy and quality of end product.
More particularly, a large roll of paper is typically printed in discrete areas with piece specific information. That is, the initial roll of paper comprises vast numbers of discrete areas of already-printed indicia-specific information with each discrete area defining what is to eventually comprise a single page or sheet of indicia specific information. To complicate the process, a variable number of sheets with related indicia must be placed into the envelopes so that the content of one envelope varies from the content of another by sheet count and, of course, by the specific indicia on the included sheets. As one example, financial reports of multiple customers or account specifics may require a varied number of customer or account specific sheets to be cut, respectively collated, stuffed and discharged for delivery. Thus, the contents of each envelope include either a single sheet or a “collation” of from two to many sheets, each “collation” being specific to a mailing to an addressee.
In such an exemplary operation, a financial institution might send billing or invoice information to each of its customers. The billing information or “indicia” for one customer may require anywhere from one final sheet to a number of sheets which must be collated, then placed in that customer's envelope. While all this information can be printed in sheet size discrete areas, on a single roll, these areas must be well defined, cut, merged or collated into sheets for the same addressee or destination, placed into envelopes, treated and discharged. Thus, a system for conducting this process has in the past included certain typical components, such as a paper roll stand, drive, sheet cutter, merge unit, accumulate or collate unit, folder, envelope feeder, envelope inserter, and finishing and discharge units. Electronic controls are used to operate the system to correlate the functions so correct sheets are collated and placed in correct destination envelopes.
In such multi-component systems, the pass-through rate from paper roll to finished envelope is dependent on the speed of each component, and overall production speed is a function of the slowest or weakest link component. Overall reliability is similarly limited. Moreover, the mean down time from any malfunction or failure to repair is limited by the most repair-prone, most maintenance consumptive component. Such systems are capital intensive, requiring significant floor plan or footprint, and require significant labor, materials and maintenance capabilities and facilities.
In some such systems, envelopes are fed from a magazine or conveying device that applies a constant pressure against a stack of envelopes, and with the force required to remove one of the envelopes from the stack being thus fixed. This may result in a force that is too high or too low for the operation. If the pressure is too high, for example, other components of the system may be unable to remove an envelope from the stack without damaging the envelope.
Other such systems may include motors that turn on and off or that reverse in order to adjust the pressure exerted upon the stack of envelopes. Such systems may present limitations as to the attainable speeds of operation.
Accordingly, it is desirable to provide improved envelope conveying and positioning apparatus for a subsequent insertion of discrete paper or film objects into the envelopes in a high speed handling machine. It is also desirable to provide a converting apparatus and related methods that address inherent problems observed with conventional converting apparatus.
To these ends, a preferred embodiment of the invention includes managing the bias force exerted against a substantially horizontal stack of envelopes toward a feed position by biasing the stack against a feed pressure sensor apparatus proximate a feed position and controlling the bias force in response to the sensed feed pressure.
More particularly, an apparatus for processing envelopes includes a support plate and a pressure sensing lever for supporting a stack of envelopes in a generally upright orientation. The pressure sensing lever pivots in accordance with pressure exerted by the stack of envelopes. In some embodiments, a feeding apparatus is operatively controlled by a sensor monitoring the pivoting of the sensing lever such that pivotal movement of the pressure sensing lever is detected by the sensor and the feeding apparatus is controlled to change the pressure exerted against the stack of envelopes in response to sensed pressure changes.
In one embodiment, an apparatus is provided for processing envelopes in a generally upright orientation. The apparatus includes a frame structure and a support plate that is mounted on the frame structure and which is generally stationary relative to the support plate. The support plate has a generally flat surface for supporting a generally horizontal stack of the envelopes in a generally upright orientation. A pressure sensing lever of the apparatus is mounted on the frame structure and has a sensing surface oriented transverse to the support plate, with the pressure sensing lever being pivotally mountable and moveable in response to pressure exerted by the stack of the envelopes. The pressure sensing lever is positioned relative to the support plate to permit a leading portion of a first envelope of the stack to extend into a region downstream of the sensing surface.
The apparatus may include a feeding apparatus for moving the stack toward the pressure sensing lever. A sensor is operatively coupled to control the stack bias or feeding apparatus. The sensor is configured to detect pivotal movement of the pressure sensing lever, with the feeding apparatus being responsive to a signal received from the sensor corresponding to the pivotal movement of the pressure sensing lever.
Preferably the pressure sensing lever is biased so its upper end engaging the lead-most envelope is biased in an upstream direction toward the envelope stack. The pressure sensing lever may include first and second elongate portions that are respectively disposed on opposite sides of a pivot, with the first portion including the sensing surface and the second portion being operatively coupled to or otherwise associated with the sensor, with the second portion being longer than the first portion. The apparatus may include a stop member in fixed orientation relative to the support plate and configured to orient the stack of envelopes at an acute angle relative to the support plate. The stop member may be configured to support a front surface of the first envelope of the stack. The stop member is oriented transversely to the support plate for supporting the stack of envelopes, with the feeding apparatus being configured to adjust the bias or pressure exerted on the envelopes toward the stop member in response to the signal received from the sensor.
The sensor may, for example, be an infrared sensor. The support plate may include at least one ramp for receiving envelopes of the stack fed by the feeding apparatus. The apparatus may additionally include an envelope pick-up element movable to engage the leading portion of the first envelope to thereby remove the first envelope from the stack. The envelope pick-up element may be rotatable to engage at least two discrete portions of the first envelope. The stop member may be adjustable in accordance with a pre-determined length of the envelopes.
In another embodiment, an automatic envelope stuffing apparatus is provided having a first end associated with feeding of a roll of paper, a processing apparatus for converting the roll of paper into discrete sheets, and a stuffing apparatus for inserting the discrete sheets into envelopes. The apparatus includes a frame structure, and a support plate mounted on the frame structure and generally stationary relative to the frame structure, with the support plate having a generally flat surface for supporting a stack of the envelopes in a generally upright orientation. A pressure sensing lever is mounted on the frame structure and has a sensing surface oriented transverse to the support plate, with the pressure sensing lever being pivotally movable in response to pressure exerted by the stack, with the pressure sensing lever being positioned relative to the support plate to permit a leading portion of a first envelope of the stack to extend into a region downstream of the sensing surface.
In yet another embodiment, a method is provided for processing stack of envelopes. The method includes applying a first force against a stack of envelopes to move them in a travel direction, and engaging a first envelope of the stack with a pivotally movable surface. The movable surface is pivotally moved in response to the first feed force and a second feed force is applied against a stack of envelopes that is different from the first force. Applying a second feed force may, for example, include applying a feed force that is lower than the first feed force. The second feed force may be applied in response to pivotal movement of the movable surface. The method may additionally or alternatively include moving the stack of envelopes in a generally upright orientation.
In another embodiment, a method is provided for feeding single envelopes from a stack of envelopes. The method includes biasing the stack toward an envelope feed position and sensing pressure on a lead envelope at the feed position resulting from the biasing. The biasing is controlled in response to the sensing.
Such apparatus and methods are particularly useful in a paper converting and envelope stuffing system contemplating improved paper converting and sheet inserting apparatus and methods, modular based, and having improved paper handling apparatus, servo driven components, improved sensor density and improved control concepts controlling the system operation. One or more of the embodiments of the invention contemplate the provision of an improved transporting apparatus which can be used as a module of a modular paper converting and sheet insertion system where human capital, required space, required equipment, maintenance, labor and materials and facilities therefore are reduced compared to conventional systems of similar throughput.
More specifically, such improved apparatus and methods contemplate a plurality of functional modules providing the following functions in a series of modules of like or dissimilar modules where a specific module is multi-functional. The functions comprise:
More particularly, one or more aspects of the invention may contemplate, without limitation, new and unique apparatus and methods for:
While the combination of the particular functions in the particular modules are unique combinations, the invention of this application lies primarily in the paper transporting apparatus and methods described herein.
Referring to the figures and, more particularly to
The web 12 thus travels in a machine direction, generally indicated by arrow 15, through several modules that make up the converter 10. In the exemplary embodiment of
A first of the shown modules, for example, is a cutting module 30 relatively proximate first end 14 of the converter 10 and which cuts the web 12 into discrete objects such as inserts (not shown) for subsequent processing. A conveying module 40 controls and transports the discrete inserts received from the cutting module and feeds them into a folding and buffering module 50. Module 50 may, if necessary, form stacks of the discrete inserts for subsequent processing, for example, if the intended production requires stuffing the envelopes with inserts defined by more than one discrete sheet. Module 50 folds the discrete inserts, if required by the intended production, along a longitudinal axis of the discrete inserts disposed generally along the machine direction. Moreover, module 50 accumulates, collates or buffers sets of the discrete sheets into individually handled stacks, if the particular production so requires.
With continued reference to
With reference to
As noted above, the envelopes 130 first move in the general direction of arrow 138 toward the inserts 120. This movement of the envelopes 130 is provided by cooperation between a rotating vacuum drum 150 and a rotating main roller 156 that nip each envelope 130. Vacuum drum 150 and main roller 156 are supported from a frame 158 (shown in phantom in
The materials for vacuum drum 150 and main roller 156 are suitably chosen to permit engagement and movement of the envelopes in the direction of arrow 138. For example, and without limitation, at least an outer surface if not a substantial portion of the main roller 156 may be made of rubber, urethane or other materials providing a predetermined level of friction against the envelopes 130. Likewise, at least a surface 170 of vacuum drum 150 is made out of a metal such as stainless steel, which may further be coated with a release-type surface or texture to prevent, for example, build-up of adhesive or other materials on the surface 170.
Vacuum drum 150 and main roller 156 receive each envelope from guides 180 (only one shown in the view of
With continued reference to
In this exemplary embodiment, the vacuum source 204 is continuously operating i.e., it is continuously in an “ON” condition. Moreover, the vacuum drum 150 is electrically controlled, for example, servo-controlled to facilitate the selective application of negative pressure against selected groups of the holes 200 and thus, selected portions of the surface 170 of vacuum drum 150. Selection of the holes 200 to which the vacuum source 204 directs the negative pressure is chosen, for example, based on a pitch or length 130L of the envelopes 130. In this regard, the vacuum drum 150 can be rotated relative to the vacuum source 204 to align vacuum source 204 with the desired group of holes 200 that enable engagement, by rotating surface 170, of a particular type of envelope 130 and/or a selected portion of the envelope 130. For example, vacuum drum 150 can be rotated relative to the vacuum source 204 such that negative pressure is not applied to the trailing portion of the envelope 130, which may facilitate release of the envelope 130 from vacuum source 204.
Vacuum drum 150 includes two lateral portions 150a, 150b having similar structures and rotatable from a common central core 150c. The holes 200, in this regard, are positioned on both of the lateral portions 150a, 150b to thereby permit even engagement of the envelopes 130. Accordingly, the exemplary arrangement of holes 200 in this embodiment prevents or at least minimizes skewing of the envelopes 130 as they travel with rotation of the vacuum drum 150.
With continued reference to
Those of ordinary skill in the art will appreciate that, alternatively, ramp element 210 could take other forms, so long as it is arranged to be generally tangential to the surface 170 of vacuum drum 150. Likewise, it is contemplated that ramp element 210 could be alternatively a moving element, rather than completely stationary, so long as it is stationary relative to the vacuum drum 150. For example, and without limitation, an alternative embodiment may include a ramp element that moves in the same or opposite direction relative to the vacuum drum so as to define a stationary ramp element relative to vacuum drum 150.
With reference to
With particular reference to
With particular reference to
With particular reference to
With continued reference to
With reference to
The central portion 322 is circumferentially positioned in front of the outer portions 324, relative to the direction of rotation (arrow 352) thereof. Moreover, the central portion 322 of this exemplary embodiment is separately movable relative to the outer portions 324 such that the positions of these two portions 322, 324 of the pick-up element 320 can be adjusted relative to one another. Adjustment may be desirable, for example, to accommodate envelopes having different lengths 130L. Pick-up element 320 is positioned adjacent an envelope stack supporting apparatus to jointly define an envelope conveying apparatus 350, the details of which are discussed in further detail below.
Pick-up element 320 rotates, in this exemplary embodiment, and as noted above, in the direction of arrow 352. In this regard, and with particular reference to the stage of the process shown in
With particular reference to
With particular reference to
With particular reference to
Referring again to
A stop member 428 of the envelope conveying system 420 is similarly supported from the frame structure 424 and is mounted in a fixed orientation relative to the support plate 422. Stop member 428 includes a forward portion 428a that supports a front or forward facing face 131w of the first envelope 131 of the stack of envelopes 130. A top portion 428b of the stop member 428 supports upper edges 130u of the envelopes 130. In this regard, the stop member 428 is vertically adjustable (arrow 429) to accommodate envelopes 130 of different pitches or lengths 130L. A schematically-depicted motor 430 is operatively coupled through a jack screw (not shown) to stop member 428 to facilitate automatic adjustment of the vertical position of stop member 428 in response to length 130L. For example, and without limitation, motor 430 may be a stepper motor model HRA08C available from Sick Stegmann GmbH, a member of the Sick AG Group of Waldkirch, Germany. Jointly, the stop member 428 and the support plate 422 support the envelopes 130 in the generally upright orientation shown in
With continued reference to
A schematically-depicted sensor 450 is operatively coupled to, or in a position to sense, the second portion 438 for controlling a feeding apparatus 460 of the envelope conveying system 420. Feeding apparatus 460 exerts a feed force upon the stack of envelopes 120 that biases the stack toward the envelope feed position shown in
More specifically, the force exerted by the stack of envelopes 130 upon sensing surface 434a results from a feed or bias force applied against the stack by the feeding apparatus 460. This feed or bias force, in turn, determines the amount of pressure acting on the first envelope 131 held between the other envelopes 130 of the stack and the forward portion 428a of stop member 428. The pressure acting on the first envelope 131, in turn, determines the force necessary to remove the first envelope 131 from the stack of envelopes 130.
In this embodiment, the feeding apparatus 460 is operatively coupled to the sensor 450. In this regard, when sensor 450 detects movement of the extension 462 (arrow 470), sensor 450 sends a corresponding signal to feeding apparatus 460. In response to this signal, feeding apparatus 460 decreases or increases the amount of feed force it applies against the stack of envelopes 130 and thus, the pressure acting on the pressure sensing lever 434 and stop member 428. Accordingly, the feeding apparatus 460 is capable of controlling the pressure acting upon the first envelope 131 of the stack of envelopes 130 to thus maintain it at a predetermined desired level to facilitate removal of the first envelope 131 from the stack. For example, and without limitation, the feeding apparatus may, during operation, feed the envelopes 130 with a first feed force and a corresponding pressure exerted against the forward portion 428a of stop member 428. This first force results in pivotal movement of the pressure sensing lever 434. The sensor 450 detects the movement of extension 462 associated with the first force. Sensor 450, in turn, sends a corresponding signal to the feeding apparatus 460 which, in response to the signal, adjusts the feed force with which it feeds the envelopes 130, for example to a lower, second feed force. This lower second force results in a lower pressure exerted against forward portion 428a of stop member 428 which, in turn, results in a smaller deflection of pressure sensing lever 434.
While the present invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative example shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the general inventive concept.
This application is generally related to the following co-pending U.S. patent applications: Ser. No. ______ (Attorney Docket No. KERI-05), entitled “Apparatus for Guiding and Cutting Web Products and Related Methods;” Ser. No. ______ (Attorney Docket No. KERI-07), entitled “Inserting Apparatus for Discrete Objects into Envelopes and Related Methods;” Ser. No. ______ (Attorney Docket No. KERI-08), entitled “Transporting Apparatus for Discrete Sheets into Envelopes and Related Methods;” Ser. No. ______ (Attorney Docket No. KERI-09), entitled “Conveying Apparatus for Envelopes and Related Methods;” and Ser. No. ______ (Attorney Docket No. KERI-10), entitled “Transporting Apparatus for Web Products and Related Methods”, all being filed on even date herewith and expressly incorporated herein by reference in their entirety.