The invention relates to an envelope-filling machine.
The invention relates to an envelope-filling machine having the features of the precharacterizing clause of Patent claim 1.
Envelope-filling machines of this type have been on the market for a considerable length of time.
A drive system for a mail-processing machine having an envelope-filling station, which, however, does not disclose all the features of the envelope-filling machine available on the market, can be gathered from DE 198 30 337 C1.
It is a characteristic of envelope-filling machines of this type that some of the assembly parts require a continuous drive or a partially continuous drive which is achieved by controlled clutch actuation, while another part of the assembly parts of a machine of this type require an intermittent drive.
An enclosure-collating path having endless, circulating conveyor belts or chains which are oriented in the longitudinal direction and define enclosure compartments along their upper run between conveying fingers is driven intermittently in that region in which the enclosure-collating path runs past enclosure-feeding stations when the latter are driven synchronously, or is provided with a continuous drive if the enclosure-feeding stations can insert enclosures into the moving enclosure-collating path. In every case, however, an end section of the enclosure-collating path has to move the enclosure conveying compartments forwards intermittently, as a push-in station which is provided at the end of the enclosure-collating path, performs a working stroke in the transverse direction and is intended for inserting a set of enclosures into an envelope requires intermittent conveying of the sets of enclosures. The intermittently driven end section of the enclosure-collating path, which end section adjoins a continuously driven section of the enclosure-collating path, accepts the continuously conveyed sets of enclosures on account of a greater conveying speed and conveys them in front of the push-in station, whose push-in apparatus works synchronously but is actuated by a continuous drive, for example via a crank mechanism. The same applies to gripper arrangements which are provided in the enclosure-feeding stations and are driven synchronously via a common pivoting shaft running in the longitudinal direction of the envelope-filling machine but are in turn actuated from a continuously circulating drive shaft, for example via a crank mechanism.
The envelopes can be conveyed on an envelope-filling table which lies next to and parallel to the enclosure-collating path, initially by means of continuously actuated conveying means, for example conveyor belts moved with their upper run approximately at the level of the envelope-filling table, as far as the push-in station. If an envelope has been filled with a set of enclosures, a synchronously driven conveyor chain then grips the filled envelope or item of mail, pulls the item of mail out of the region in front of the push-in station, pulls it through an envelope-closing path and finally feeds it to an apparatus for further conveying or pulls it into an envelope-turning station which turns over the filled envelope so that its address side or envelope window side lies on top and subsequently feeds it to an apparatus for further conveying. The turning station is driven synchronously, which happens by coupling it to a continuous drive in a time-controlled manner.
The drive system of the known mail-processing machines or envelope-filling machines comprises, below the level of the enclosure-collating path, the base plate of the push-in station and the surface of the envelope-filling table, an electric drive motor in a framework and a step-down gear mechanism attached to the said drive motor, which is, however, not shown in the above-mentioned DE 198 30 337 C1. Furthermore, the drive system of the known machines comprises a bevel gear mechanism and a step-by-step motion linkage which is coupled to the said bevel gear mechanism. This drive system thus provides output shafts which cause shafts which extend in the longitudinal direction of the machine, that is to say parallel to the longitudinal orientation of the enclosure-collating path, to rotate continuously, these shafts making the actuation movements possible which proceed in a transverse direction with respect to the longitudinal direction of the machine, via crank mechanisms or eccentric drives. Furthermore, the drive system provides continuously rotating output shafts which are oriented in the transverse direction and make it possible to drive shafts which extend in the transverse direction and are coupled to enclosure-conveying means or to envelope-conveying means, as long as the latter are to be driven continuously, and furthermore provides output shafts of the step-by-step motion linkage which are coupled to shafts which require intermittent enclosure conveying or intermittent envelope conveying.
It has been shown then that, in the known mail-processing machines or envelope-filling machines of the above-discussed type, the arrangement of the various drive members, transmission shafts and drive shafts below the level of the enclosure-collating path, the envelope-filling table and, in particular, below the enclosure-feeding stations, takes up a considerable amount of space, is very complicated and prevents defined sensor devices from being attached below the enclosure-feeding stations.
It is accordingly an object of the invention to configure an envelope-filling machine in such a way that the drive system is less complicated, has a smaller number of transmission shafts and bearing points, can be manufactured more economically and can be arranged in such regions below the enclosure-collating path, the envelope-filling table and the enclosure-feeding stations that additional space is available for attaching sensor devices.
Advantageous refinements and developments are the subject matter of the subordinate patent claims to claim 1, the content of which is expressly made a constituent part of the description as a result of this, without repeating the wording at this point.
In the following text, a preferred embodiment will be explained using the drawing, in which:
An envelope-filling machine of the conventional type comprises, supported on a framework indicated diagrammatically at 1, an enclosure-collating path 2 which has conveyor belts or conveyor chains which are guided over rollers or sprockets, circulate endlessly and define enclosure-conveying compartments in the region of their upper run between conveying fingers. Enclosure-feeding stations 3 are arranged in a row in the longitudinal direction corresponding to the arrow L along the enclosure-collating path 2, of which enclosure-feeding stations 3 at least some comprise enclosure cassettes in the manner known to those skilled in the art, into which enclosure cassettes enclosure stacks are inserted which lie exposed via openings at the lower end of the enclosure cassettes facing the enclosure-collating path 2, in such a way that, from the lower end of the enclosure stack, a respective lowermost enclosure can be lifted off by a pivotable suction-cup arrangement, held separate from the enclosure stack by separating fingers which can be pivoted against the lower end of the enclosure stack, and then gripped by the carriers of gripper arms 4 which are connected fixedly to a pivoting shaft 5 on a level above the upper side of the enclosure-collating path 2, the gripper carriers gripping the lowermost enclosure of the enclosure stack in the enclosure cassettes of the enclosure-feeding stations 3 in a manner known to those skilled in the art, and inserting it in a pivoting movement in each case into an enclosure-conveying compartment of the enclosure-collating path 2, after which the conveying compartments of the enclosure-collating path 2 are moved further in the direction of the longitudinal direction L about a conveying compartment pitch.
The pivoting shaft 5 is driven via a crank mechanism 6 from a main shaft 7 which extends parallel to the longitudinal direction L. In known machines, this main shaft 7 lies below the level of the enclosure-collating path 2 and below the floors of the enclosure cassettes of the enclosure-feeding stations 3.
The main shaft 7 is set in rotation by the output shaft of a step-down worm gear mechanism 9 via a chain drive 8, which step-down worm gear mechanism 9 is attached to an electric drive motor 10. A further chain drive 11 transmits drive energy from the output of the step-down worm gear mechanism 9 to an auxiliary shaft 12 which transmits drive to a further consumer via a third chain drive 13, which will be explained in greater detail in the following text.
Finally, a bevel gear mechanism 14 is coupled to the output shaft of the step-down worm gear mechanism 9, and a step-by-step motion linkage 15 whose output shaft 16 is oriented in the transverse direction corresponding to the arrow Q is coupled to the said bevel gear mechanism 14.
It goes without saying that, with the exception of the pivoting shaft 5 and the gripper arms 4 attached to the latter, the described parts of the drive system, namely the main shaft 7, the chain drives 8, 11 and 13, the electric drive motor 10, the step-down worm gear mechanism 9, the bevel gear mechanism 14 and the step-by-step motion linkage 15 as well as the auxiliary shaft 12, are situated below the level of the enclosure-collating path 2.
Moreover,
After the envelope has been filled in the station 20, the item of mail is gripped by an intermittently driven gripper chain, guided through a closing section 22 and finally pulled into a turning station 23. The intermittently driven gripper chain requires an intermittent drive which is diverted from the output 16 of the step-by-step motion linkage 15. Situated in the turning station 23 is a turning cylinder 24 having cam-controlled gripper tongs which are arranged along generating lines of its circumference and each grip a filled envelope which is conveyed next to the turning cylinder at the edge of the said envelope which is close to the rotational axis of the turning cylinder and then, while rotating the turning cylinder, deposit it in the delivery station 25 with the address side or the envelope window side lying on top. The turning cylinder 24 is driven by the auxiliary shaft 12 via the chain drive 13 and by the continuously circulating output shaft of the step-down worm gear mechanism 9 via a clutch which can be switched on and off selectively.
The synchronized drive of the enclosure-collating path 2 is performed from the output 16 of the step-by-step motion linkage, in the same way as the synchronized drive of the abovementioned gripper-carrier chain of the envelope-filling table. Drive connections with regard to this are likewise omitted in
It can be seen in
In the very diagrammatic plan view illustration shown in
It can be seen that, in the envelope-filling machine according to
A step-by-step motion linkage 36 is coupled to the bevel gear mechanism 32, it being possible to tap off intermittent rotational movements from the output shaft 37 of the said step-by-step motion linkage 36, as they are required for driving gripper chains, for conveying envelopes over the envelope-filling table and in the downstream section of the envelope-filling table, and for driving the conveyor belts or conveyor chains of the enclosure-collating path.
In a manner which is not shown, the push-in apparatus of the push-in station 21 receives the drive energy from the main shaft 30 or else, preferably, from a link fastened directly to the pivoting shaft 5, either via a crank or an eccentric drive.
38 indicates eccentric drives or crank mechanisms which are symbolically coupled directly to the main shaft 30 and are coupled via associated crank rods to pivoting shafts which extend parallel to the enclosure-collating path 2, serve to actuate the suction-cup arrangement and separating-finger arrangements at the lower end of the enclosure cassettes of the enclosure-feeding stations 3, and can also actuate synchronously actuated hold-down members along the enclosure-collating path 2.
Drive functions can be fulfilled on the envelope-filling table, in the region of an envelope feeder and the like, via the chain drive 11 which is likewise indicated in
The simplification of the entire drive system can be seen clearly in
The spatial arrangement of the assembly parts of the envelope-filling machine specified here can be seen in
Sprockets 40 and 41 serve to drive endless, circulating conveyor chains which are equipped with conveying fingers, form the enclosure-collating path 2 with their upper run and bring about synchronous conveying of enclosure-conveying compartments defined between the conveying fingers and sets of enclosures ultimately placed in the latter in the direction of the arrow L, by being coupled to an intermittent drive, in the present case to the output 37 of the step-by-step motion linkage 36.
The enclosure-feeding stations 3 are arranged in a row next to the enclosure-collating path 2, at least some of the said enclosure-feeding stations 3 comprising enclosure cassettes, as shown in
The vertical projection below the enclosure cassettes of the enclosure-feeding stations 3 is indicated in
Situated in the region between the cassettes of the enclosure-feeding stations 3 are bearing supports 43 for bearing the pivoting shaft 5 which passes through and to which gripper arms 4 are fastened in the manner shown. As has already been mentioned, the gripper arms 4 serve to pull off the respectively lowermost enclosure of the enclosure stack situated in the enclosure cassettes of the enclosure-feeding stations 3, in order to insert it into the enclosure-conveying compartments of the enclosure-collating path 2 in the way which is familiar to those skilled in the art. The gripper carriers at the lower gripper-arm end can be controlled into the open position and closed position electromagnetically or via an actuating shaft which is common to the gripper arms and slotted guide arrangements interacting with the latter or the like in a manner which is familiar to those skilled in the art.
The push-in station 21 which is indicated in
It can be seen from
According to an embodiment which is not shown, the push-in apparatus 48 can be coupled to the main shaft 30 via a crank mechanism or an eccentric drive in order to perform the working stroke and return stroke extending in the direction of the double arrow K. However, a carrier of the push-in apparatus 48 which is provided with push-in arms is preferably coupled, for example, to a link which is fastened to the pivoting shaft 5, details with respect to this being omitted in
The envelope-supplying apparatus 18 is situated next to the enclosure-collating path 2 and at substantially the same level, and, together with the mail-delivery apparatus shown in
In detail, an envelope is inserted from the lower end of an envelope stack by a suitable actuating apparatus into a gripper carrier which has been stopped in the open position near the start (indicated diagrammatically in
The synchronously driven gripper chain 50 can be driven by the continuously circulating output 34 of the bevel gear mechanism 33 via a controllable clutch, details with respect to this being omitted in order to simplify the illustration.
It can be seen in
The further path of sets of enclosures inserted into envelopes, that is to say the items of mail, in the envelope-filling machine of the type specified here is explained using
When the closed envelope which contains the set of enclosures has reached the turning station 23, the edge of the envelope which extends parallel to the direction L and is adjacent to the turning cylinder 24 passes between the bar-like pairs of tongs 51 of the turning cylinder 24 which are situated in the open position and extend along generating lines of the turning cylinder 24, the pairs of tongs moving, during the revolution with the turning cylinder 24 in a manner controlled by cam discs, from the open position, which they have when the opening of the tongs is positioned in the plane of the turning station 23, into the closed position during the rotation on the circumference of the turning cylinder 24, in order then to pass again into the open position, when their opening of the tongs is again situated in the plane of the turning station 23 after a revolution of 180°, in such a way that an envelope which has been turned by the tongs of the turning cylinder 24 is placed onto the surface of the turning station with the address side or the envelope window side pointing upwards, the envelope can be conveyed away by further conveying apparatuses 25 which are shown symbolically in
It can be seen from
It can be seen from
Number | Date | Country | Kind |
---|---|---|---|
10 2004 001 360 | Jan 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2325455 | Williams | Jul 1943 | A |
2657043 | Colby | Oct 1953 | A |
5975514 | Emigh et al. | Nov 1999 | A |
Number | Date | Country |
---|---|---|
19830337 | Nov 1999 | DE |
945283 | Sep 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20050190184 A1 | Sep 2005 | US |