1. Field of the Invention
This invention relates generally to a mailing envelope and, more particularly, to an envelope having side seam and closure flap profiles that improve performance during processing by automated mail handing equipment.
2. Description of the Related Art
Envelopes have long been used to transport a wide variety of items through the mail, including letters, documents, photographs, and the like. In this arrangement, certain items will be placed in the generally rectangularly-shaped envelope and the closure flap subsequently adhered to securely hold the items for shipment. In recent years, there has been a need to produce a mailing envelope that is ideally suited for sending correspondence to or from businesses that deal in high-volume mailing, such as credit card companies, or other billing or advertising companies. However, because of the expense of designing specialized envelopes and various postal regulations levying surcharges for using non-standard mail, envelope designs used on a mass-market basis are very standard.
A typical mailing envelope design consists of a number of flaps and panels that are folded and adhesively secured together. Often these designs take into consideration the integrity of the envelope and the various seams which are adhered together to form its shape. Despite being structurally sound, envelopes are often difficult for automated mail handling equipment to process. Business mailings often require such equipment to perform well in all three stages of the mailing process, including: (1) insertion of an item into an envelope for shipment; (2) within the mail stream while the envelope is being transported and properly routed to its destination; and (3) automated opening of the envelope to reveal its contents. Failure at any of these stages can cause excessive delays and costs for a mass-market mailing regime that relies on such mailing handling equipment to process thousands of envelopes, and items contained therein, in a short amount of time.
During the mechanical insertion process, an envelope is advanced along a conveyor system and one or more inserts is placed inside the envelope. The envelope can then be sealed and placed into the mail stream. Various equipment is used to advance the envelope in the mail stream, including conveyor systems similar to those used in the first stage of the process. In final stage, an envelope is remitted with a check or other papers enclosed. The envelope is again received in a conveyor system and positioned such that an automated opening device can cut away the top edge and side edges of the envelope to reveal the contents. In all three stages of the mail handling process, a number of different devices are used to advance and securely hold the envelopes in position, such as mechanical fingers and other known devices.
Standard envelopes used for business mailings employ a number of design features that can cause the envelope and inserts to jam or snag within the automated mail handling equipment. For example, a typical closure flap has fairly sharp shoulder sections that frequently produce mail handling problems. Because these shoulder sections—if parallel to the envelope side edges—are aligned fairly perpendicular to the direction of travel of the envelope along the conveyor, there is little room for error by feeding or advancing equipment that grasps the closure flap of the rapidly traveling envelope. Instead of allowing the mail handling equipment to gradually encounter the closure flap, the side edge of the closure flap is substantially fully presented so that misaligned envelopes essentially cannot be aligned by the equipment.
Another feature that introduces error into the automated system is an envelope having jagged transition points between the various flaps and panels of the rear surface that make up the “throat” of the envelope. When an inserting mechanism attempts to place an insert into the envelope, the interface of the side flap with the rear panel creates a ridge that can cause the insert to snag on the throat, interfering with the proper direction of travel of the insert. Additionally, vacuum suction devices used to lift the envelope rear surface to aid in placing the insert inside the envelope may fail to properly adhere to the rear surface when encountering a jagged transition point. Further, the traditional “throat” design for an envelope present a straight edge that becomes a perpendicular barrier to inserts. Instead of allowing the insert to contact the throat gradually, the traditional design forces the insert to contact the throat all at once, often causing the insert to jam and fail to maintain proper alignment for envelope insertion.
Envelope advancement along a conveyor or similar system is also impeded by traditional envelope configurations. For ease of manufacture, the side seam formed at the junction of the envelope rear and side panels are typically positioned immediately adjacent to the overall envelope side edge. However, this design can cause various envelope-grabbing apparatuses (e.g., mechanical fingers) to snag or catch on the seam as the envelope side edge is grasped for advancement. Under these circumstances, the integrity of the envelope is compromised. Further, such a design often forces an automated opening device to cut through an adhesive layer holding the rear panel and side flaps together, speeding the dulling and degradation of the opening device.
One type of envelope design that avoids some of the aforementioned problems is a diagonal cut envelope. This envelope design includes a pair of diagonal seams extending upwardly and inwardly from both lowermost corners of the rear panel of the envelope. Although this envelope addresses the concern with automated mail handling equipment, these envelopes present an uneven rear panel surface. This is undesirable because it is often necessary, especially in bulk mailings, to include printing or a window on the rear panel surface of the envelope. An uneven surface greatly complicates the application of printing or the inclusion of a window.
Thus, a need exists for a new envelope design having a panel and flap arrangement that minimizes problems at all stages of the automated mail handling process and presents a smooth rear panel surface. This design would provide the same overall outside dimensions as a standard business mailing envelope while being configured for ease of manufacture.
It is an object of the present invention to provide an envelope assembly having an improved panel and flap geometry. It is a further object of the present invention to provide such an envelope that is configured for ease of accurate placement of an insert within the envelope pocket. It is yet a further object of the invention to provide such an envelope configured for smooth feeding and advancement within automated mail handing equipment. It is still a further object of the present invention to provide such an envelope with a panel and flap configuration such that an envelope opening device must penetrate a minimum amount of material, and essentially no adhesive, in order to cut open the envelope. It is yet another object of the present invention to provide such an envelope with the panel and flaps adhered together such that an envelope insert will not be caught between any envelope seams. It is still further an object of the present invention to provide such an envelope that is durable, easy to manufacture, inexpensive to produce and generally well suited for the intended usage thereof.
The present invention provides an envelope assembly, or envelope, with an improved panel and flap configuration for better performance in the automated mail handling process. The envelope comprises a front panel having top, bottom and side edges, side flaps extending from the side edges, a rear panel extending from the bottom edge, and a closure flap extending from the top edge. The front panel has a typical rectangular shape and forms the front surface of the envelope. The envelope rear surface is formed by folding over the rear panel and side flaps along the front panel bottom and side edges, respectively, to overlap each other and be positioned opposite of the front panel. An adhesive is used to secure the rear panel and side flaps together to create the envelope pocket into which items to be mailed are placed. To seal the envelope pocket, the closure flap is folded over from the front panel top edge towards the rear surface and an adhesive secures the closure flap to the rear surface in an overlapping relationship.
The improved performance of the envelope is achieved through altering the standard configuration and dimensions of the aforesaid envelope components. Each of a set of side edges of the rear panel have a tapering region sloping inward from the envelope side edges and extending upward from the envelope bottom corners. Thus, a substantial portion of the rear panel has a shorter width from side edge to side edge than the front panel. This configuration tapers the rear surface side seams away from the envelope side edges and exposes a much larger area of the side flaps along the envelope rear surface, thereby providing two key benefits. First, the tapered side seams allow a mail handling system to more easily grasp the side flaps for better envelope advancement. Secondly, the exposed side flaps facilitate an automated opening device cutting through merely the side flaps and front panel to open the sides of the envelope to remove the contents, as opposed to cutting additionally through the rear panel and the adhesive securing the side flaps to the rear panel. In addition, the rear panel is adhered to side flaps as close to the inside edge of the flaps as possible such that any items placed in the envelope will not become wedged between the rear panel and the side flaps, which would make it more difficult for automated mail handling equipment to extract the items.
To facilitate placement of an insert within the envelope pocket, the rear panel and side flaps have sloped upper edges extending downward from the envelope upper corners toward the center of the rear surface. In this configuration, the upper edges of the rear panel and side flaps form a “V-throat” that allows gradual contact of an insert with the envelope to reduce jamming or improper insert alignment. Further, the rear panel and side flaps have an optimized geometry to provide a relatively smooth transition point along the recited upper edges that form the “V-throat” such that inserts are unlikely to snag when contacting the envelope at insertion.
The closure flap is provided with generally curved shoulder areas extending along an outer edge of the closure flap proximal to the envelope upper corners. The advantage provided by such a shoulder area design is that envelope feeding and advancing devices in the mail handling process that first encounter the side edge of an envelope will receive the closure flap more gradually. This allows such devices to adjust more easily to the position of the closure flap as it is advancing and thereby reduce jamming of the envelope. Beyond the shoulder area region, the side flap upper edge is sufficiently sized and shaped as to provide sufficient coverage of the “V-throat” region of the envelope rear surface when the envelope is sealed.
In view of the foregoing discussion, it can be seen that the present invention solves many of the problems associated with the use of standard business mailing envelopes in the automated mail handling process.
Other advantages and components of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, which constitute a part of this specification and wherein are set forth exemplary embodiments of the present invention to illustrate various objects and features thereof.
An envelope assembly in accordance with the present invention is shown generally at 10 in
The envelope 10 is typically manufactured from a single piece of flat material, such as paper stock or plastic, that is cut along an outer edge 26 to create the geometry of the various components that form the envelope. A number of lines of weakness are formed to facilitate folding along such lines to position the envelope components for final assembly, as is well known in the art. Adhesive 20 (or other joining means) is then used to securely hold the rear panel 16 and side flaps 18 together to create the rear surface 22, as seen in
The folded envelope 10 defines an envelope pocket 28 bounded by the front panel 12 and rear surface 22, an envelope top edge 30, bottom edge 32, and side edges 34, 36, as best seen in
The front panel 12 is generally rectangular in shape. If desired, the front panel 12 may include an aperture (not shown) formed into the surface to create a window in which an address placed on the envelope contents can be viewed, as is well known in the art. This window may have a protective transparent coating. The front panel 12 is interconnected with the rear panel 16 along the envelope bottom edge 32 and is formed with the pair of side flaps 18 and the closure flap 24. As best seen in
Proceeding upward along the side edges 40, 42, a generally curved inwardly tapering region 44 is formed where the overall width of the rear panel 16 between the side edges is less than that of the envelope width (W). The rear panel side edges 40, 42 slope inward and away from the envelope side edges 34, 36 in the tapering region 44. Preferably, the inward slope of side edges 40, 42 is a rapid taper beginning with a slope of at least 30 degrees, and ideally at least 40 degrees, away from envelope side edges 34, 36 immediately adjacent to bottom edge 32. This inward slope becomes less dramatic moving up the side edges 40, 42 in the tapering region 44. Above the tapering region, rear panel side edges 40, 42 are preferably straight edges that may be parallel to the envelope side edges 34, 36 for a distance, or may slightly taper away from the side edges 34, 36 moving up edges 40, 42 to expose a greater width of the side flaps 18. Preferably the exposed width of each of the side flaps 18 above the tapering region 44 is at least 3/16 of an inch for an envelope with a width of about 9½ inches. It is preferred that this exposed width of each of the side flaps 18 above the tapering region 44 is at least 3/16 of an inch and less than 1 inch for at least sixty percent (and ideally at least 3/16 of an inch and less than ½ inch for at least seventy-five percent) of the height of the respective side edge 40, 42 of the rear panel 16. In this configuration, the rear panel 16 has a width that is less than the front panel 12 to facilitate an automated opening device having to substantially only cut through the side flaps 18 and the front panel 12 to open the envelope side edges 34, 36. As a consequence, the automated opening device does not have to cut through, at most more than a small section of the rear panel 16 near the tapering region 44, nor must the device cut through adhesive 20 holding the rear panel 16 and the side flaps 18 together. One exemplary automated opening device that may be used includes a cutting mechanism with a rotary blade, such as taught in U.S. Pat. No. 5,946,996, issued to Oussani, Jr. et at., the teachings of which are incorporated herein by reference.
The side flaps 18 are generally identical in configuration and extend between a portion of the front panel 12 and rear panel 16 for the folded envelope. Each of the side flaps 18 comprises a generally trapezoidal shaped flap having a bottom edge 46, an inside edge 48, and a top edge 50. It is to be understood, however, that the side flaps 18 can be of any shape known in the art for securing the position of the rear panel 16, such as rectangular, half-circle, or other shapes. The bottom edge 46 extends generally inward from the envelope side edges 34, 36 and upward from the envelope bottom edge 30. Although the exact geometry of the bottom edge 46 is not critical, it must extend sufficiently inwardly from the envelope side edges 34, 36 as to extend beyond the corresponding rear panel side edges 40, 42 and create an overlapping profile with the rear panel 16, Preferably, the rear panel 16 overlaps a portion of each side flap 18 and the adhesive 20 is placed on a rearwardly facing surface of each side flap 18 to adhere the side flap 18 to the rear panel 16, as shown in
Preferably, each side flap has a width of approximately ⅞ inch for an envelope width of about 9½ inches. Additionally, it is preferred that the side flaps 18 are adhered with adhesive 20 to the rear panel 16 at least immediately adjacent to the inside edge 48, as shown in
At the junction of the side flap top edges 50 and the rear panel top edge 38 are relatively smooth transition points 56, shown in a close-up view in
Continuing inward from the transition point 56, the rear panel top edge 38 preferably has a downward slope such that the top edge 38, along with side flap top edges 50, form a V-shaped envelope throat 58 with a lowermost portion 60 located approximately midway between the rear panel side edges 40, 42. In this configuration, the lowermost portion is preferably located about 11/16 of an inch below the envelope top edge 30 for an envelope having a height of about 4⅛ inches. As with the transitions point 56, the envelope throat 58 geometry aids in accurate placement of the insert within the envelope pocket 28 because inserts traveling downward into the envelope pocket 28 will contact the throat 58 gradually, allowing the insert to more easily readjust if not perfectly aligned with the pocket.
The closure or seal flap 24 extends from the front panel 12 along the envelope top edge 30 and is movable between an open position where items can be inserted and removed from the envelope pocket 28, and a closed or sealed position where the flap overlaps and adheres to the envelope rear surface 22. The closure flap 24 has an outer edge 62 that can have a range of profiles as long as the flap has sufficient height as to overlap with the envelope throat 58 and adhere to the rear surface 22. In the preferred embodiment, the closure flap 24 has a pair of curved shoulder regions 64 extending from each of the envelope upper corners 52, 54 along the outer edge 62. Preferably, the radius of curvature of the shoulder regions 64 is at least 1 inch, and preferably about 1⅝ inches, and the length of the shoulder regions along the closure flap outer edge 62 is at least 1 inch, and preferably about 1¾ inches, for an envelope having a width of about 9½ inches and a height of about 4⅛ inches. Additionally, the peak height of the closure flap 24 should be about 1⅝ inches to adequately cover the V-shaped envelope throat 58 of an assembled envelope having a width of about 9½ inches and a height of about 4⅛ inches. The shoulder regions 64 ensure that envelope feeding and advancing devices in the automated mail handling process that first encounter the side edge of an envelope receive the closure flap gradually. This allows the mail handling devices to adjust to the position of the closure flap 24 as it is advancing and thereby reduce the likelihood of the envelope 10 jamming. This closure flap profile further cooperates with the closure flap opening mechanism of an inserting machine to reduce jamming of the closure flap.
In the automated mail handing process, mail handing equipment receives an envelope 10 containing an insert for processing. More specifically, an automated opening device secures the position of the envelope 10 and makes a series of side cuts 200 adjacent to one or more of the envelope side edges 34, 36, and, if desired, a top cut 202 adjacent to the envelope top edge 30, as shown in
Thus, the folded envelope of the present invention provides an improved design that offers more reliable performance in the automated mail handing process. This design incorporates a panel and flap configuration that facilitates the placement of inserts within the envelope, the movement of the envelope through the mail handing process, and the opening of the envelope by automated opening devices. While certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/969,944, filed Oct. 3, 2001 now abandoned, entitled “Envelope Having Improved Overlap Profile” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
442841 | West | Dec 1890 | A |
1171323 | D'Agostino | Feb 1916 | A |
1796723 | Rife | Mar 1931 | A |
1943688 | Moore | Jan 1934 | A |
2001340 | Bear | May 1935 | A |
2014914 | Teicher | Sep 1935 | A |
2074949 | Swift | Mar 1937 | A |
2128196 | Vogel | Aug 1938 | A |
2384223 | Wilbur | Sep 1945 | A |
3338500 | Bushey | Aug 1967 | A |
3370781 | Sroge | Feb 1968 | A |
3420432 | Cooper | Jan 1969 | A |
3467299 | Meyer | Sep 1969 | A |
3558040 | Krueger | Jan 1971 | A |
3946938 | Kranz | Mar 1976 | A |
4047661 | Klein | Sep 1977 | A |
4072264 | Kranz | Feb 1978 | A |
4180168 | Hiersteiner | Dec 1979 | A |
4366636 | Hearsh | Jan 1983 | A |
4436202 | Berkley | Mar 1984 | A |
4545521 | Hiersteiner | Oct 1985 | A |
4565317 | Kranz | Jan 1986 | A |
4667457 | Rogovein | May 1987 | A |
5168689 | Macelis | Dec 1992 | A |
5421700 | Kranz | Jun 1995 | A |
5425565 | Rogovein et al. | Jun 1995 | A |
5425656 | Wakata | Jun 1995 | A |
5464316 | Kranz | Nov 1995 | A |
5478185 | Kranz | Dec 1995 | A |
5678754 | Kranz | Oct 1997 | A |
5707002 | Miyamoto | Jan 1998 | A |
5802808 | Lygia | Sep 1998 | A |
5894986 | Lederman | Apr 1999 | A |
5927592 | Kranz | Jul 1999 | A |
5967403 | Kranz | Oct 1999 | A |
6192661 | Bodart | Feb 2001 | B1 |
6279817 | Flynn | Aug 2001 | B1 |
20050173500 | Kranz | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
3027484 | Jul 1980 | DE |
3043192 | Nov 1980 | DE |
4436294 | Apr 1996 | DE |
29517555 | Apr 1997 | DE |
0379368 | Jul 1990 | EP |
WO 8503039 | Jul 1985 | WO |
Number | Date | Country | |
---|---|---|---|
20050230458 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09969944 | Oct 2001 | US |
Child | 10418802 | US |