The technology of the disclosure relates generally to envelope tracking (ET) power management in wireless communication devices.
Mobile communication devices have become increasingly common in current society. The prevalence of these mobile communication devices is driven in part by the many functions that are now enabled on such devices. Increased processing capabilities in such devices means that mobile communication devices have evolved from being pure communication tools into sophisticated mobile multimedia centers that enable enhanced user experiences.
The redefined user experience requires higher data rates offered by wireless communication technologies, such as long-term evolution (LTE). To achieve the higher data rates in mobile communication devices, sophisticated power amplifiers (PAs) may be employed to increase output power of radio frequency (RF) signals (e.g., maintaining sufficient energy per bit) communicated by mobile communication devices. However, the increased output power of RF signals can lead to increased power consumption and thermal dissipation in mobile communication devices, thus compromising overall performance and user experiences.
Envelope tracking is a power management technology designed to improve efficiency levels of PAs to help reduce power consumption and thermal dissipation in mobile communication devices. As the name suggests, envelope tracking employs a system that keeps track of the amplitude envelope of the RF signals communicated by mobile communication devices. The envelope tracking system constantly adjusts supply voltage applied to the PAs to ensure that the PAs are operating at a higher efficiency for a given instantaneous output power requirement of the RF signals.
However, the envelope tracking system can only maintain good linearity and high efficiency up to an inherent bandwidth limit. In the advent of fifth-generation new radio (5G-NR) technology, the RF signals may be modulated with a higher bandwidth (e.g., >100 MHz) than the inherent bandwidth limit of the envelope tracking system, thus reducing linearity and efficiency of the envelope tracking system. As such, it may be desirable to improve linearity and efficiency of the envelope tracking system to support the 5G-NR technology.
Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes an amplifier circuit configured to amplify a radio frequency (RF) signal based on an ET modulated voltage. The ET modulated voltage corresponds to a time-variant voltage envelope, which can be misaligned from a time-variant signal envelope of the RF signal due to inherent temporal delay in the ET amplifier circuit. As a result, the amplifier circuit may suffer degraded linearity performance. In this regard, a voltage processing circuit is provided in the ET amplifier circuit and configured to operate in a low-bandwidth mode (e.g., modulation bandwidth≤60 MHz) and a high-bandwidth mode (e.g., modulation bandwidth>60 MHz). In the high-bandwidth mode, the voltage processing circuit is configured to cause the ET modulated voltage to be modified to help improve delay tolerance of the ET amplifier circuit. As a result, it may be possible to reduce linearity degradation of the amplifier circuit to a predetermined threshold.
In one aspect, an ET amplifier circuit is provided. The ET amplifier circuit includes an ET voltage circuit configured to generate an ET modulated voltage corresponding to a time-variant voltage envelope. The ET amplifier circuit also includes a signal processing circuit configured to generate an RF signal corresponding to a time-variant signal envelope. The ET amplifier circuit also includes an amplifier circuit configured to amplify the RF signal based on the ET modulated voltage. The ET amplifier circuit also includes a voltage processing circuit configured to operate in a low-bandwidth mode and a high-bandwidth mode. The voltage processing circuit is further configured to cause the ET voltage circuit to modify the ET modulated voltage in the high-bandwidth mode to reduce linearity degradation caused by a temporal misalignment between the time-variant voltage envelope and the time-variant signal envelope at the amplifier circuit to a predetermined threshold.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure and, together with the description, serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Aspects disclosed in the detailed description include an envelope tracking (ET) amplifier circuit. The ET amplifier circuit includes an amplifier circuit configured to amplify a radio frequency (RF) signal based on an ET modulated voltage. The ET modulated voltage corresponds to a time-variant voltage envelope, which can be misaligned from a time-variant signal envelope of the RF signal due to inherent temporal delay in the ET amplifier circuit. As a result, the amplifier circuit may suffer degraded linearity performance. In this regard, a voltage processing circuit is provided in the ET amplifier circuit and configured to operate in a low-bandwidth mode (e.g., modulation bandwidth≤60 MHz) and a high-bandwidth mode (e.g., modulation bandwidth>60 MHz). In the high-bandwidth mode, the voltage processing circuit is configured to cause the ET modulated voltage to be modified to help improve delay tolerance of the ET amplifier circuit. As a result, it may be possible to reduce linearity degradation of the amplifier circuit to a predetermined threshold.
Before discussing an ET amplifier circuit of the present disclosure, a brief overview of an existing ET amplifier circuit that may experience degraded overall linearity performance as a result of inherent temporal delay associated with the existing ET amplifier circuit is first provided with reference to
The signal processing circuit 12 is configured to convert the digital signal 18 into an RF signal 24 having a time-variant signal envelope 26 formed based on the time-variant digital signal envelope 22. In this regard, the time-variant digital signal envelope 22, which is defined by the time-variant digital signal amplitudes 20, can be seen as a digital representation of the time-variant signal envelope 26.
The digital signal 18 may be modulated to include a digital in-phase signal 281, which has a number of time-variant in-phase amplitudes I, and a digital quadrature signal 28Q, which has a number of time-variant quadrature amplitudes Q. In this regard, the time-variant digital signal amplitudes 20 of the digital signal 18 can be expressed as √{square root over (I2+Q2)}.
The existing ET amplifier circuit 10 includes a mixer 30 that combines the time-variant digital signal amplitudes 20 with a digital voltage reference signal 32 to generate a digital target voltage reference signal 34. In this regard, the digital target voltage reference signal 34 is associated with the time-variant digital signal envelope 22 and, therefore, the time-variant digital signal amplitudes 20.
The existing ET amplifier circuit 10 includes lookup table (LUT) circuitry 36 (denoted as “LUT” in
The existing ET amplifier circuit 10 includes a voltage digital-to-analog converter (DAC) 42 configured to convert the digital target voltage signal 40 into a target voltage signal 44 having a time-variant target voltage envelope 46 formed based on the time-variant digital target voltage amplitudes 38. The DAC 42 is configured to provide the target voltage signal 44 to the ET voltage circuit 14.
The ET voltage circuit 14 receives the target voltage signal 44 having the time-variant target voltage envelope 46. The time-variant target voltage envelope 46 may represent a time-variant target voltage VTARGET for the ET voltage circuit 14. The ET voltage circuit 14 is configured to generate an ET modulated voltage VCC having a time-variant voltage envelope 48 that tracks the time-variant target voltage envelope 46. The ET modulated voltage VCC is a time-variant ET modulated voltage formed based on the time-variant target voltage VTARGET. Accordingly, the ET modulated voltage VCC tracks the time-variant target voltage VTARGET.
The amplifier circuit 16 is coupled to the signal processing circuit 12 to receive the RF signal 24 having the time-variant signal envelope 26. The amplifier circuit 16 is also coupled to the ET voltage circuit 14 to receive the ET modulated voltage VCC corresponding to the time-variant voltage envelope 48. The amplifier circuit 16 is configured to amplify the RF signal 24 based on the ET modulated voltage VCC. In this regard, to maintain linearity and efficiency in the amplifier circuit 16, the time-variant voltage envelope 48 of the ET modulated voltage VCC needs to align closely with the time-variant signal envelope 26 at the amplifier circuit 16.
However, the signal processing circuit 12, the LUT circuitry 36, the DAC 42, and the ET voltage circuit 14 may each incur processing/propagation delays. In addition, the amplifier circuit 16 may be a multi-stage amplifier including a driver stage 50 and an output stage 52 that also incur respective processing/propagation delays. As a result, the time-variant voltage envelope 48 may be out of alignment with the time-variant signal envelope 26 at the amplifier circuit 16.
In this regard,
If the time-variant signal envelope 26 and the time-variant voltage envelope 48 are perfectly aligned, an instantaneous amplitude of the RF signal 24 (not shown), which is represented by a voltage VS, would substantially equal the ET modulated voltage VCC at time tx. However, as shown in
In a non-limiting example, the linearity performance of the amplifier circuit 16 can be measured by adjacent channel leakage ratio (ACLR). The ACLR represents a ratio between in-band power and out-of-band leakage power. In this regard, a higher ACLR indicates a better linearity performance of the amplifier circuit 16.
Notably, the RF signal 24 may be a long-term evolution (LTE) signal, which is typically modulated at up to 60 MHz modulation bandwidth or a fifth-generation new-radio (5G-NR) signal that is often modulated at more than 100 MHz modulation bandwidth. In this regard, the existing ET amplifier circuit 10 must adhere to a more stringent delay budget to achieve a desirable ACLR at the amplifier circuit 16 for communicating the RF signal 24 in a 5G-NR system.
With reference back to
In this regard,
The ET amplifier circuit includes an ET voltage circuit 60, which may be functionally equivalent to the ET voltage circuit 14 of
The ET amplifier circuit 58 includes a signal processing circuit 68, which may be functionally equivalent to the signal processing circuit 12 of
The ET amplifier circuit 58 includes an amplifier circuit 80, which may be functionally equivalent to the amplifier circuit 16 of
Similar to the existing ET amplifier circuit 10 of
In this regard, the ET amplifier circuit 58 is configured to include a voltage processing circuit 86. The voltage processing circuit 86 may operate in a low-bandwidth mode and a high-bandwidth mode. In a non-limiting example, the voltage processing circuit 86 operates in the low-bandwidth mode when the RF signal 72 is modulated with less than or equal to 60 MHz (≤60 MHz) bandwidth and in the high-bandwidth mode when the RF signal 72 is modulated with more than 60 MHz (>60 MHz) bandwidth.
In the high-bandwidth mode, the voltage processing circuit 86 can be configured to cause the ET voltage circuit 60 to modify the ET modulated voltage VCC to reduce the voltage differential Δv (as shown in
In contrast, in the low-bandwidth mode, the voltage processing circuit 86 may be configured not to cause the ET voltage circuit 60 to modify the ET modulated voltage VCC. The ET amplifier circuit 58 may include a control circuit 88, which can be a microprocessor or a digital signal processor (DSP), for example. The control circuit 88 may be configured to control the voltage processing circuit 86 to operate in the high-bandwidth mode and the low-bandwidth mode via a first control signal 90 and a second control signal 92, respectively. In this regard, it may be possible to flexibly and dynamically toggle the ET amplifier circuit 58 between the low-bandwidth mode and the high-bandwidth mode.
The voltage processing circuit 86 includes a digital voltage processing circuit 94 and a DAC 96. The digital voltage processing circuit 94 is configured to receive the time-variant digital signal amplitudes 76 and generate a digital target voltage signal 98. In the low-bandwidth mode, the digital voltage processing circuit 94 generates the digital target voltage signal 98 corresponding to a number of time-variant digital target voltage amplitudes 100. Subsequently, the DAC 96 converts the digital target voltage signal 98 into the target voltage signal 62. Accordingly, the time-variant target voltage envelope 64 is formed based on, and thus tracking, the time-variant digital target voltage amplitudes 100.
In the high-bandwidth mode, the digital voltage processing circuit 94 generates the digital target voltage signal 98 corresponding to a number of time-variant modified digital target voltage amplitudes 102. Subsequently, the DAC 96 converts the digital target voltage signal 98 into the target voltage signal 62. Accordingly, the time-variant target voltage envelope 64 is formed based on, and thus tracking, the time-variant modified digital target voltage amplitudes 102. Given that the time-variant voltage envelope 66 tracks the time-variant target voltage envelope 64, the time-variant modified digital target voltage amplitudes 102 can cause the ET modulated voltage VCC to be modified accordingly. Further, since the time-variant signal envelope 78 and the time-variant voltage envelope 66 are both formed based on the time-variant digital signal amplitudes 76, it may be possible to reduce the voltage differential Δv between the time-variant voltage envelope 66 and the time-variant signal envelope 78 by modifying the ET modulated voltage VCC. As a result, it may be possible to improve delay tolerance of the ET amplifier circuit 58, which can lead to improvement in linearity performance (e.g., ACLR) of the amplifier circuit 80.
In addition to improving delay tolerance of the ET amplifier circuit 58, it may also be beneficial to further reduce the temporal delay Δt (as shown in
The digital voltage processing circuit 94 may be configured based on a number of embodiments, which are discussed next.
The digital voltage processing circuit 94A includes a mixer 110 configured to combine the time-variant digital signal amplitudes 76 with a digital voltage reference signal 112 to generate a digital target voltage reference signal 114. Accordingly, the digital target voltage reference signal 114 corresponds to the time-variant digital signal amplitudes 76, which can be represented by time-variant voltages VIN.
The digital voltage processing circuit 94A includes low-bandwidth LUT circuitry 116 (denoted as “LBW LUT Circuitry”) and high-bandwidth LUT circuitry 118 (denoted as “HBW LUT Circuitry”). Both the low-bandwidth LUT circuitry 116 and the high-bandwidth LUT circuitry 118 are configured to receive the digital target voltage reference signal 114 associated with the time-variant digital signal amplitudes 76. The low-bandwidth LUT circuitry 116 is further configured to generate the digital target voltage signal 98 corresponding to the time-variant digital target voltage amplitudes 100. The high-bandwidth LUT circuitry 118 is further configured to generate the digital target voltage signal 98 corresponding to the time-variant modified digital target voltage amplitudes 102.
The digital voltage processing circuit 94A includes a multiplexer 120 coupled to the low-bandwidth LUT circuitry 116 and the high-bandwidth LUT circuitry 118. The control circuit 88 (not shown) may control the multiplexer 120 to output the digital target voltage signal 98 having the time-variant modified digital target voltage amplitudes 102 in the high-bandwidth mode via the first control signal 90. The control circuit 88 may also control the multiplexer 120 to output the digital target voltage signal 98 having the time-variant digital target voltage amplitudes 100 in the low-bandwidth mode via the second control signal 92.
The low-bandwidth LUT circuitry 116 may include a low-bandwidth LUT configured to correlate the time-variant digital target voltage amplitudes 100 with the time-variant digital signal amplitudes 76. Likewise, the high-bandwidth LUT circuitry 118 may include a high-bandwidth LUT configured to correlate the time-variant modified digital target voltage amplitudes 102 with the time-variant digital signal amplitudes 76. The time-variant modified digital target voltage amplitudes 102 stored in the high-bandwidth LUT may be determined based on the time-variant digital target voltage amplitudes 100 stored in the low-bandwidth LUT, as explained next in
The digital voltage processing circuit 94B includes gain adjustment circuitry 134, which can be activated in the high-bandwidth mode via the first control signal 90 and deactivated in the low-bandwidth mode via the second control signal 92. When activated, the gain adjustment circuitry 134 generates a respective voltage offset ΔV for each of the time-variant digital signal amplitudes 76. The gain adjustment circuitry 134 may generate the voltage offset ΔV as the constant voltage offset VOFFSET of
The digital voltage processing circuit 94B includes a combiner 136. The combiner 136 is configured to combine the respective voltage offset ΔV with each of the time-variant digital target voltage amplitudes 100 generated by the low-bandwidth LUT circuitry 116. In this regard, in the high-bandwidth mode, the combiner 136 may receive the respective voltage offset ΔV as a non-zero voltage offset. Accordingly, the combiner 136 outputs the digital target voltage signal 98 having the time-variant modified digital target voltage amplitudes 102. In contrast, in the low-bandwidth mode, the combiner 136 may receive the respective voltage offset ΔV as a zero voltage offset. Accordingly, the combiner 136 outputs the digital target voltage signal 98 having the time-variant digital target voltage amplitudes 100.
The digital voltage processing circuit 94C includes gain adjustment circuitry 138, which can be activated in the high-bandwidth mode via the first control signal 90 and deactivated in the low-bandwidth mode via the second control signal 92. When activated, the gain adjustment circuitry 138 generates a respective gain offset ΔG for each of the time-variant digital signal amplitudes 76. When deactivated, the gain adjustment circuitry 138 may generate the gain offset ΔG as a zero gain offset.
The digital voltage processing circuit 94C includes a gain mixer 140. The gain mixer 140 is configured to combine the respective gain offset ΔG with each of the time-variant digital signal amplitudes 76. In this regard, in the high-bandwidth mode, the gain mixer 140 may receive the respective gain offset ΔG as a non-zero gain offset. Accordingly, the gain mixer 140 outputs a number of time-variant modified digital signal amplitudes 142. In contrast, in the low-bandwidth mode, the gain mixer 140 may receive the respective gain offset ΔG as a zero gain offset. Accordingly, the gain mixer 140 outputs the time-variant digital signal amplitudes 76.
The digital voltage processing circuit 94C includes LUT circuitry 144. In the high-bandwidth mode, the LUT circuitry 144 generates the digital target voltage signal 98 corresponding to the time-variant modified digital target voltage amplitudes 102 that are formed based on the time-variant modified digital signal amplitudes 142. In the low-bandwidth mode, the LUT circuitry 144 generates the digital target voltage signal 98 corresponding to the time-variant digital target voltage amplitudes 100 that are formed based on the time-variant digital signal amplitudes 76.
In the digital voltage processing circuit 94D, the gain adjustment circuitry 138 is coupled to the mixer 110. When activated, the gain adjustment circuitry 138 generates a respective gain offset ΔG for each of the time-variant digital signal amplitudes 76. When deactivated, the gain adjustment circuitry 138 may generate the gain offset ΔG as a zero gain offset.
The mixer 110 is further configured to combine the respective gain offset ΔG with each of the time-variant digital signal amplitudes 76. In this regard, in the high-bandwidth mode, the mixer 110 may receive the respective gain offset ΔG as a non-zero gain offset. Accordingly, the mixer 110 outputs the time-variant modified digital signal amplitudes 142. In contrast, in the low-bandwidth mode, the mixer 110 may receive the respective gain offset ΔG as a zero gain offset. Accordingly, the mixer 110 outputs the time-variant digital signal amplitudes 76.
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/691,454, filed on Jun. 28, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5838732 | Carney | Nov 1998 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6141377 | Sharper et al. | Oct 2000 | A |
6985033 | Shirali et al. | Jan 2006 | B1 |
7043213 | Robinson et al. | May 2006 | B2 |
7471155 | Levesque | Dec 2008 | B1 |
7570931 | McCallister et al. | Aug 2009 | B2 |
8461928 | Yahav et al. | Jun 2013 | B2 |
8493141 | Khlat et al. | Jul 2013 | B2 |
8718188 | Balteanu et al. | May 2014 | B2 |
8725218 | Brown et al. | May 2014 | B2 |
8774065 | Khlat et al. | Jul 2014 | B2 |
8803603 | Wimpenny | Aug 2014 | B2 |
8818305 | Schwent et al. | Aug 2014 | B1 |
8854129 | Wilson | Oct 2014 | B2 |
8879665 | Xia et al. | Nov 2014 | B2 |
8913690 | Onishi | Dec 2014 | B2 |
8989682 | Ripley et al. | Mar 2015 | B2 |
9020451 | Khlat | Apr 2015 | B2 |
9041364 | Khlat | May 2015 | B2 |
9041365 | Kay et al. | May 2015 | B2 |
9055529 | Shih | Jun 2015 | B2 |
9065509 | Yan et al. | Jun 2015 | B1 |
9069365 | Brown et al. | Jun 2015 | B2 |
9098099 | Park et al. | Aug 2015 | B2 |
9166830 | Camuffo et al. | Oct 2015 | B2 |
9167514 | Dakshinamurthy et al. | Oct 2015 | B2 |
9197182 | Baxter et al. | Nov 2015 | B2 |
9225362 | Drogi et al. | Dec 2015 | B2 |
9247496 | Khlat | Jan 2016 | B2 |
9263997 | Vinayak | Feb 2016 | B2 |
9270239 | Drogi et al. | Feb 2016 | B2 |
9271236 | Drogi | Feb 2016 | B2 |
9280163 | Kay et al. | Mar 2016 | B2 |
9288098 | Yan et al. | Mar 2016 | B2 |
9298198 | Kay et al. | Mar 2016 | B2 |
9344304 | Cohen | May 2016 | B1 |
9356512 | Chowdhury et al. | May 2016 | B2 |
9377797 | Kay et al. | Jun 2016 | B2 |
9379667 | Khlat et al. | Jun 2016 | B2 |
9515622 | Nentwig et al. | Dec 2016 | B2 |
9520907 | Peng et al. | Dec 2016 | B2 |
9584071 | Khlat | Feb 2017 | B2 |
9595981 | Khlat | Mar 2017 | B2 |
9596110 | Jiang et al. | Mar 2017 | B2 |
9614477 | Rozenblit et al. | Apr 2017 | B1 |
9748845 | Kotikalapoodi | Aug 2017 | B1 |
9806676 | Balteanu et al. | Oct 2017 | B2 |
9831834 | Balteanu et al. | Nov 2017 | B2 |
9837962 | Mathe et al. | Dec 2017 | B2 |
9923520 | Abdelfattah et al. | Mar 2018 | B1 |
10003416 | Lloyd | Jun 2018 | B1 |
10090808 | Henzler et al. | Oct 2018 | B1 |
10110169 | Khesbak | Oct 2018 | B2 |
10158329 | Khlat | Dec 2018 | B1 |
10158330 | Khlat | Dec 2018 | B1 |
10170989 | Balteanu et al. | Jan 2019 | B2 |
10291181 | Kim et al. | May 2019 | B2 |
20020167827 | Umeda et al. | Nov 2002 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20050090209 | Behzad | Apr 2005 | A1 |
20050227646 | Yamazaki et al. | Oct 2005 | A1 |
20050232385 | Yoshikawa et al. | Oct 2005 | A1 |
20060240786 | Liu | Oct 2006 | A1 |
20070052474 | Saito | Mar 2007 | A1 |
20070258602 | Vepsalainen et al. | Nov 2007 | A1 |
20090016085 | Rader et al. | Jan 2009 | A1 |
20090045872 | Kenington | Feb 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20100308919 | Adamski et al. | Dec 2010 | A1 |
20110074373 | Lin | Mar 2011 | A1 |
20110136452 | Pratt et al. | Jun 2011 | A1 |
20110175681 | Inamori et al. | Jul 2011 | A1 |
20110279179 | Vice | Nov 2011 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200435 | Ngo et al. | Aug 2012 | A1 |
20120299645 | Southcombe et al. | Nov 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130021827 | Ye | Jan 2013 | A1 |
20130100991 | Woo | Apr 2013 | A1 |
20130130724 | Kumar Reddy et al. | May 2013 | A1 |
20130162233 | Marty | Jun 2013 | A1 |
20130187711 | Goedken et al. | Jul 2013 | A1 |
20130200865 | Wimpenny | Aug 2013 | A1 |
20130271221 | Levesque et al. | Oct 2013 | A1 |
20140009226 | Severson | Jan 2014 | A1 |
20140028370 | Wimpenny | Jan 2014 | A1 |
20140028390 | Davis | Jan 2014 | A1 |
20140057684 | Khlat | Feb 2014 | A1 |
20140103995 | Langer | Apr 2014 | A1 |
20140155002 | Dakshinamurthy et al. | Jun 2014 | A1 |
20140184335 | Nobbe et al. | Jul 2014 | A1 |
20140199949 | Nagode et al. | Jul 2014 | A1 |
20140210550 | Mathe et al. | Jul 2014 | A1 |
20140218109 | Wimpenny | Aug 2014 | A1 |
20140235185 | Drogi | Aug 2014 | A1 |
20140266423 | Drogi et al. | Sep 2014 | A1 |
20140266428 | Chiron et al. | Sep 2014 | A1 |
20140315504 | Sakai et al. | Oct 2014 | A1 |
20140361830 | Mathe et al. | Dec 2014 | A1 |
20150048883 | Vinayak | Feb 2015 | A1 |
20150071382 | Wu et al. | Mar 2015 | A1 |
20150098523 | Lim et al. | Apr 2015 | A1 |
20150155836 | Midya et al. | Jun 2015 | A1 |
20150188432 | Vannorsdel et al. | Jul 2015 | A1 |
20150236654 | Jiang et al. | Aug 2015 | A1 |
20150236729 | Peng et al. | Aug 2015 | A1 |
20150280652 | Cohen | Oct 2015 | A1 |
20150333781 | Alon et al. | Nov 2015 | A1 |
20160065137 | Khlat | Mar 2016 | A1 |
20160099687 | Khlat | Apr 2016 | A1 |
20160105151 | Langer | Apr 2016 | A1 |
20160118941 | Wang | Apr 2016 | A1 |
20160126900 | Shute | May 2016 | A1 |
20160173031 | Langer | Jun 2016 | A1 |
20160181995 | Nentwig et al. | Jun 2016 | A1 |
20160187627 | Abe | Jun 2016 | A1 |
20160197627 | Qin et al. | Jul 2016 | A1 |
20160226448 | Wimpenny | Aug 2016 | A1 |
20160294587 | Jiang et al. | Oct 2016 | A1 |
20170141736 | Pratt et al. | May 2017 | A1 |
20170302183 | Young | Oct 2017 | A1 |
20170317913 | Kim et al. | Nov 2017 | A1 |
20170338773 | Balteanu et al. | Nov 2017 | A1 |
20180048265 | Nentwig | Feb 2018 | A1 |
20180048276 | Khlat | Feb 2018 | A1 |
20180076772 | Khesbak et al. | Mar 2018 | A1 |
20180123453 | Puggelli et al. | May 2018 | A1 |
20180288697 | Camuffo et al. | Oct 2018 | A1 |
20180302042 | Zhang et al. | Oct 2018 | A1 |
20180309414 | Khlat et al. | Oct 2018 | A1 |
20180367101 | Chen et al. | Dec 2018 | A1 |
20190068234 | Khlat | Feb 2019 | A1 |
20190097277 | Fukae | Mar 2019 | A1 |
20190109566 | Folkmann et al. | Apr 2019 | A1 |
20190109613 | Khlat et al. | Apr 2019 | A1 |
Entry |
---|
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages. |
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages. |
U.S. Appl. No. 16/122,611, filed Sep. 5, 2018. |
U.S. Appl. No. 15/984,566, filed May 21, 2018. |
U.S. Appl. No. 15/986,948, filed May 23, 2018. |
U.S. Appl. No. 16/018,426, filed Jun. 26, 2018. |
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfister.ee.duke.edu/courses/ece485/dtsp.pdf, Mar. 3, 2017, 22 pages. |
Advisory Action for U.S. Appl. No. 15/888,300, dated Jun. 5, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/459,449, dated Mar. 28, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/704,131, dated Jul. 17, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 15/986,948, dated Mar. 28, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 15/902,244, dated Feb. 8, 2019, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages. |
Advisory Action for U.S. Appl. No. 15/986,948, dated Nov. 8, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/986,948, dated Dec. 13, 2019, 7 pages. |
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/122,611, dated Mar. 11, 2020, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/354,234, dated Mar. 6, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Dec. 1, 2020, 9 pages. |
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/514,051, dated Nov. 13, 2020, 9 pages. |
Quayle Action for U.S. Appl. No. 16/589,940, dated Dec. 4, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Jan. 13, 2021, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200007090 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62691454 | Jun 2018 | US |