Envelope tracking circuit and related power amplifier apparatus

Information

  • Patent Grant
  • 11764737
  • Patent Number
    11,764,737
  • Date Filed
    Monday, August 23, 2021
    3 years ago
  • Date Issued
    Tuesday, September 19, 2023
    a year ago
  • Inventors
  • Original Assignees
  • Examiners
    • Baltzell; Andrea Lindgren
    • Nguyen; Khiem D
    Agents
    • Withrow & Terranova, P.L.L.C.
Abstract
An envelope tracking (ET) circuit and related power amplifier apparatus is provided. An ET power amplifier apparatus includes an ET circuit and a number of amplifier circuits. The ET circuit is configured to provide a number of ET modulated voltages to the amplifier circuits for amplifying concurrently a number of radio frequency (RF) signals. The ET circuit includes a target voltage circuit for generating a number of ET target voltages adapted to respective power levels of the RF signals and/or respective impedances seen by the amplifier circuits, a supply voltage circuit for generating a number of constant voltages, and an ET voltage circuit for generating the ET modulated voltages based on the ET target voltages and a selected one of the constant voltages. By employing a single ET circuit, it may be possible to reduce the footprint and improve heat dissipation of the ET power amplifier apparatus.
Description
FIELD OF THE DISCLOSURE

The technology of the disclosure relates generally to an envelope tracking (ET) power amplifier apparatus and an ET circuit therein.


BACKGROUND

Mobile communication devices have become increasingly common in current society for providing wireless communication services. The prevalence of these mobile communication devices is driven in part by the many functions that are now enabled on such devices. Increased processing capabilities in such devices means that mobile communication devices have evolved from being pure communication tools into sophisticated mobile multimedia centers that enable enhanced user experiences.


The redefined user experience requires higher data rates offered by wireless communication technologies, such as fifth-generation new-radio (5G-NR) technology configured to communicate a millimeter wave (mmWave) radio frequency (RF) signal(s) in an mmWave spectrum located above 12 GHz frequency. To achieve the higher data rates, a mobile communication device may employ a power amplifier(s) to increase output power of the mmWave RF signal(s) (e.g., maintaining sufficient energy per bit). However, the increased output power of mmWave RF signal(s) can lead to increased power consumption and thermal dissipation in the mobile communication device, thus compromising overall performance and user experiences.


Envelope tracking (ET) is a power management technology designed to improve efficiency levels of the power amplifier(s) to help reduce power consumption and thermal dissipation in the mobile communication device. As the name suggests, an ET circuit(s) can be configured to keep track of a time-variant power envelope(s) of the mmWave RF signal(s) communicated by the mobile communication device. As such, the ET circuit(s) can constantly adjusts a voltage(s) supplied to the power amplifier(s) based on instantaneous power level of the mmWave RF signal(s) to improve linearity and efficiency of the power amplifier(s).


Notably, the mmWave RF signal(s) can be susceptible to attenuation and interference resulting from various sources. As such, the mobile communication device may employ multiple transmitters/antennas to simultaneously transmit a number of mmWave RF signals via a technique known as RF beamforming. Given that the mmWave RF signals may be associated with different time-variant power envelopes, it may be necessary to multiple power amplifiers for amplifying simultaneously the multiple mmWave RF signals. Accordingly, it may also be necessary to employ multiple ET circuits to supply simultaneously multiple voltages to the multiple power amplifiers. As a result, the mobile communication device may require a larger footprint for accommodating the multiple ET circuits. Furthermore, the increased number of ET circuits may also lead to increased complexity and heat dissipation in the mobile communication device. Hence, it may be desired to support RF beamforming in the mobile communication device without increasing number of the ET circuits.


SUMMARY

Embodiments of the disclosure relate to an envelope tracking (ET) circuit and related power amplifier apparatus. In one aspect, an ET power amplifier apparatus includes an ET circuit and a number of amplifier circuits. The ET circuit is configured to provide a number of ET modulated voltages to the amplifier circuits for amplifying concurrently a number of radio frequency (RF) signals to respective power levels. In another aspect, the ET circuit is configured to include a target voltage circuit, a supply voltage circuit, and an ET voltage circuit. The target voltage circuit is configured to generate a number of ET target voltages adapted to the respective power levels of the RF signals and/or respective impedances seen by the amplifier circuits. The supply voltage circuit is configured to generate a number of constant voltages. The ET voltage circuit is configured to generate the ET modulated voltages based on the ET target voltages and a selected one of the constant voltages. As such, it may be possible to adapt the ET modulated voltages to the respective power levels of the RF signals and/or respective impedances seen by the amplifier circuits, thus helping to improve linearity and efficiency of the amplifier circuits. Further, by providing the ET modulated voltages from a single ET circuit, it may be possible to reduce the footprint and improve heat dissipation of the ET power amplifier apparatus.


In one aspect, an ET voltage circuit is provided. The ET voltage circuit includes a number of voltage selection circuits each configured to receive a number of constant voltages. The ET voltage circuit also includes a number of voltage controllers coupled to the voltage selection circuits, respectively. The voltage controllers are configured to receive a number of ET target voltages, respectively. The voltage controllers are also configured to control the voltage selection circuits to output a number of selected constant voltages based on the ET target voltages, respectively. The voltage controllers are also configured to cause a number of ET modulated voltages to be generated based on the ET target voltages and the selected constant voltages, respectively.


In another aspect, a target voltage circuit is provided. The target voltage circuit is configured to receive a reference target voltage corresponding to a dynamic voltage range. The target voltage circuit is also configured to offset the reference target voltage to a baseline reference voltage corresponding to the dynamic voltage range. The target voltage circuit is also configured to determine a number of slope factors. The target voltage circuit is also configured to multiply the slope factors with the dynamic voltage range to generate a number of ET target voltages, respectively. The target voltage circuit is also configured to adjust the ET target voltages based on a number of offset factors, respectively.


In another aspect, a supply voltage circuit is provided. The supply voltage circuit includes an inductor-based voltage circuit configured to generate a direct current (DC) voltage based on a battery voltage. The supply voltage circuit also includes a number of output ports configured to output a number of constant voltages, respectively. A first selected output port among the output ports is coupled to the inductor-based voltage circuit to output the DC voltage as a first selected constant voltage among the constant voltages. One or more second selected output ports among the output ports are configured to output one or more second selected constant voltages among the constant voltages different from the first selected constant voltage. The supply voltage circuit also includes a capacitor-based voltage circuit coupled to the inductor-based voltage circuit. The capacitor-based voltage circuit is configured to generate the one or more second selected constant voltages at the one or more second selected output ports, respectively. The supply voltage circuit also includes a controller. The controller is configured to receive a feedback signal indicative of a preselected constant voltage among the constant voltages. The controller is also configured to control the inductor-based voltage circuit to adjust the DC voltage based on the preselected constant voltage.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 is a schematic diagram of an exemplary envelope tracking (ET) power amplifier apparatus configured according to an embodiment of the present disclosure to support a number of amplifier circuits based on a single ET circuit;



FIG. 2 is a schematic diagram providing an exemplary illustration of a target voltage circuit in the ET circuit of FIG. 1 configured according to an embodiment of the present disclosure to generate a number of ET target voltages;



FIG. 3 is a schematic diagram providing an exemplary illustration of a supply voltage circuit in the ET circuit of FIG. 1 configured according to an embodiment of the present disclosure to generate a number of constant voltages;



FIG. 4A is a schematic diagram of an exemplary ET voltage circuit, which can be configured according to one embodiment of the present disclosure to function as an ET voltage circuit in the ET circuit of FIG. 1 to generate a number of ET modulated voltages based on the ET target voltages of FIG. 2 and the constant voltages of FIG. 3;



FIG. 4B is a schematic diagram of an exemplary ET voltage circuit, which can be configured according to another embodiment of the present disclosure to function as an ET voltage circuit in the ET circuit of FIG. 1 to generate a number of ET modulated voltages based on the ET target voltages of FIG. 2 and the constant voltages of FIG. 3; and



FIG. 4C is a schematic diagram of an exemplary ET voltage circuit, which can be configured according to another embodiment of the present disclosure to function as an ET voltage circuit in the ET circuit of FIG. 1 to generate a number of ET modulated voltages based on the ET target voltages of FIG. 2 and the constant voltages of FIG. 3.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Embodiments of the disclosure relate to an envelope tracking (ET) circuit and related power amplifier apparatus. In one aspect, an ET power amplifier apparatus includes an ET circuit and a number of amplifier circuits. The ET circuit is configured to provide a number of ET modulated voltages to the amplifier circuits for amplifying concurrently a number of radio frequency (RF) signals to respective power levels. In another aspect, the ET circuit is configured to include a target voltage circuit, a supply voltage circuit, and an ET voltage circuit. The target voltage circuit is configured to generate a number of ET target voltages adapted to the respective power levels of the RF signals and/or respective impedances seen by the amplifier circuits. The supply voltage circuit is configured to generate a number of constant voltages. The ET voltage circuit is configured to generate the ET modulated voltages based on the ET target voltages and a selected one of the constant voltages. As such, it may be possible to adapt the ET modulated voltages to the respective power levels of the RF signals and/or respective impedances seen by the amplifier circuits, thus helping to improve linearity and efficiency of the amplifier circuits. Further, by providing the ET modulated voltages from a single ET circuit, it may be possible to reduce a footprint and improve heat dissipation of the ET power amplifier apparatus.


In this regard, FIG. 1 is a schematic diagram of an exemplary ET power amplifier apparatus 10 configured according to an embodiment of the present disclosure to support a number of amplifier circuits 12(1)-12(N) based on an ET circuit 14. The amplifier circuits 12(1)-12(N) may be configured to amplify a number of RF signals 16(1)-16(N) from input powers PIN-1-PIN-N to output powers POUT-1-POUT-N, respectively. In a non-limiting example, the amplifier circuits 12(1)-12(N) are coupled to a signal processing circuit 18. The signal processing circuit 18 may be configured to receive a digital signal 20, which may include a digital in-phase (I) signal 20I and a digital quadrature (Q) signal 20Q. Accordingly, the digital signal 20 corresponds to a time-variant signal envelope √{square root over (I2+Q2)}, wherein I and Q represent time-variant in-phase amplitude and quadrature amplitude of the digital signal 20, respectively.


The signal processing circuit 18 is configured to convert the digital signal 20 into the RF signals 16(1)-16(N). More specifically, the signal processing circuit 18 may be configured to pre-process the RF signal 16(1)-16(N) to the input powers PIN-1-PIN-N and/or phase angles θ1N, respectively, such that the RF signals 16(1)-16(N) can be transmitted coherently via RF beamforming.


The ET circuit 14 is configured to generate and provide a number of ET modulated voltages VCC-1-VCC-N to the amplifier circuits 12(1)-12(N), respectively. In examples discussed herein, the ET modulated voltages VCC-1-VCC-N may be generated in accordance to the input powers PIN-1-PIN-N of the RF signals 16(1)-16(N) and/or load impedances ZLOAD-1-ZLOAD-N as seen from the amplifier circuits 12(1)-12(N) into the ET circuit 14. As such, it may be possible to improve linearity and efficiency of the amplifier circuits 12(1)-12(N). Further, by employing only the ET circuit 14 for generating the ET modulated voltages VCC-1-VCC-N, as opposed to employing multiple ET circuits, it may be possible to reduce footprint and heat dissipation in the ET power amplifier apparatus 10.


The ET circuit includes a target voltage circuit 22, a supply voltage circuit 24, and an ET voltage circuit 26. The target voltage circuit 22 is configured to receive a reference target voltage VTARGET and generate a number of ET target voltages VTARGET-1-VTARGET-N based on the reference target voltage VTARGET. The target voltage circuit 22 will be further discussed in detail in reference to FIG. 2 below.


The supply voltage circuit 24 is configured to generate a number of constant voltages VDC1-VDC-M. The supply voltage circuit 24 will be further discussed in detail in reference to FIG. 3 below.


The ET voltage circuit 26 is coupled to the target voltage circuit 22 and the supply voltage circuit 24. The ET voltage circuit 26 is configured to receive the ET target voltages VTARGET-1-VTARGET-N from the target voltage circuit 22 and the constant voltages VDC-1-VDC-N from the supply voltage circuit 24. As discussed in detail in FIGS. 4A-4C, the ET voltage circuit 26 can be configured according to various embodiments of the present disclosure to generate the ET modulated voltages VCC-1-VCC-N based on the ET target voltages VTARGET-1-VTARGET-N and a selected constant voltage among the constant voltages VDC-1-VDC-N.



FIG. 2 is a schematic diagram providing an exemplary illustration of the target voltage circuit 22 of FIG. 1 configured according to an embodiment of the present disclosure to generate the ET target voltages VTARGET-1-VTARGET-N. Common elements between FIGS. 1 and 2 are shown therein with common element numbers and will not be re-described herein.


The target voltage circuit 22 may be coupled to a voltage processing circuit 28, which is further coupled to the signal processing circuit 18. In this regard, the voltage processing circuit 28 receives the digital signal 20 that corresponds to the time-variant amplitude envelope √{square root over (I2+Q2)}. The voltage processing circuit 28 includes an ET look-up table (LUT) 30 configured to store predetermined correlations between the time-variant amplitude envelope √{square root over (I2+Q2)} and a time-variant voltage envelope 32 associated with a digital target voltage signal 34. The voltage processing circuit 28 may include a digital-to-analog converter (DAC) 36 for converting the digital target voltage signal 34 into the reference target voltage VTARGET, which corresponds to a time-variant target voltage envelope 38 that tracks (e.g., rises and falls) the time-variant voltage envelope 32 as well as the time-variant amplitude envelope √{square root over (I2+Q2)}. In this regard, the reference target voltage VTARGET corresponds to a dynamic voltage range defined by a maximum level target voltage VMAX-TARGET and a minimum level target voltage VMIN-TARGET (dynamic voltage range=VMAX-TARGET-VMIN-TARGET) of the time-variant voltage envelope 32.


In a non-limiting example, the reference target voltage VTARGET can be a differential voltage signal. As such, the target voltage circuit 22 may include a voltage converter 40 for converting the differential target voltage signal to the reference target voltage VTARGET. The target voltage circuit 22 may also include an anti-alias filter (AAF) 42 for aliasing the reference target voltage VTARGET.


The target voltage circuit 22 includes a first offset converter 44 configured to convert the reference target voltage VTARGET to a baseline reference voltage V′TARGET (e.g., 0 V) corresponding to the dynamic voltage range (VMAX-TARGET-VMIN-TARGET). The target voltage circuit 22 includes a number of multipliers 46(1)-46(N) coupled in parallel to the first offset converter 44 to receive the baseline reference voltage V′TARGET. The multipliers 46(1)-46(N) can be configured to multiply a dynamic voltage range with a number of slope factors S1-SN to generate the ET target voltages VTARGET-1-VTARGET-N, respectively. In a non-limiting example, the slope factors S1-SN can be determined based on the equation (Eq. 1) below.

Si=(VMAX-TARGET-i-VMIN-TARGET-i)/(VMAX-TARGET-VMIN-TARGET) (1≤i≤N)  (Eq. 1)


In the equation above, VMAX-TARGET-i and VMIN-TARGET-i represent a maximum level and a minimum level of the ET target voltage VTARGET-i (1≤i≤N) as defined in the ET LUT 30, respectively. (VMAX-TARGET-VMIN-TARGET) represents the dynamic voltage range of the reference target voltage VTARGET. The target voltage circuit 22 includes a number of second offset converters 48(1)-48(N) coupled to the multipliers 46(1)-46(N), respectively. The second offset converters 48(1)-48(N) are configured to adjust the ET target voltages VTARGET-1-VTARGET-N based on a number of offset factors f1-fN, respectively. In this regard, each of the ET target voltages VTARGET-1-VTARGET-N may be generated based on the equation (Eq. 2) below.

VTARGET-i=Si*(VMAX-TARGET-VMIN-TARGET)+fi (1≤i≤N)  (Eq. 2)



FIG. 3 is a schematic diagram providing an exemplary illustration of the supply voltage circuit 24 of FIG. 1 configured according to an embodiment of the present disclosure to generate the constant voltages VDC-1-VDC-M. Common elements between FIGS. 1 and 3 are shown therein with common element numbers and will not be re-described herein.


The supply voltage circuit 24 includes an inductor-based voltage circuit 50 (denoted as “μLBB”), which is configured to generate a direct current (DC) voltage VDC based on a battery voltage VBAT. The inductor-based voltage circuit 50 is coupled to an inductor 52, which is configured to induce a DC current IDC based on the DC voltage VDC. In a non-limiting example, the inductor-based voltage circuit 50 can be a buck-boost circuit configured to operate in a buck mode to generate the DC voltage VDC as being less than or equal to the battery voltage VBAT or in a boost mode to generate the DC voltage VDC as being greater than the battery voltage VBAT. In this regard, the supply voltage circuit 24 may include a controller 54, which can be a pulse width modulation (PWM) controller for example, configured to control the inductor-based voltage circuit 50. Specifically, the controller 54 may control the inductor-based voltage circuit 50 to operate in the buck mode and the boost mode based on a first control signal 56 and a second control signal 58, respectively.


The inductor-based voltage circuit 50 is coupled to a capacitor-based voltage circuit 60 (denoted as “μCBB”). A capacitor 62 may be provided in between the inductor-based voltage circuit 50 and the capacitor-based voltage circuit 60. The capacitor 62 has one end coupled to a ground GND and another end coupled in between the inductor-based voltage circuit 50 and the capacitor-based voltage circuit 60.


The supply voltage circuit 24 includes a number of output ports 64(1)-64(M) configured to output the constant voltages VDC-1-VDC-M, respectively. In one exemplary embodiment, a first selected output port 64(M) is coupled to the inductor-based voltage circuit 50 via a conductive line 66 directly. Accordingly, the first selected output port 64(M) outputs the DC voltage VDC as a first selected constant voltage VDC-M among the constant voltages VDC-1-VDC-M. According to the exemplary embodiment, one or more second selected output ports 64(1)-64(M−1) are coupled to the capacitor-based voltage circuit 60. Accordingly, the second selected output ports 64(1)-64(M−1) are configured to output one or more second selected constant voltages VDC-1-VDC-M-1, respectively.


In this regard, the capacitor-based voltage circuit 60 is configured to generate the second selected constant voltages VDC-1-VDC-M-1 based on the DC voltage VDC. In a non-limiting example, the capacitor-based voltage circuit 60 can generate the second selected constant voltages VDC-1-VDC-M-1 by multiplying the DC voltage VDC with one or more predefined scaling factors fS-1-fS-M-1, respectively. In this regard, each of the second selected constant voltages VDC-1-VDC-M-1 can be determined based on the equation (Eq. 3) below.

VDC-i=VDC*fS-i (1≤i≤M-1)  (Eq. 3)


In one embodiment, each of the predefined scaling factors fS-1-fS-M-1 can be a fractional scaling factor lesser than one (1). In this regard, each of the second selected constant voltages VDC-1-VDC-M-1 is lesser than the first selected constant voltage VDC-M. Accordingly, the capacitor-based voltage circuit 60 can be configured to operate exclusively in the buck mode. In a non-limiting example, the constant voltages VDC-1-VDC-M can be outputted from the output ports 64(1)-64(M) based on ascending voltage values (VDC-1≤VDC-2 . . . VDC-M-1≤VDC-M).


In one embodiment, each of the predefined scaling factors fS-1-fS-M-1 can be greater than 1. In this regard, each of the second selected constant voltages VDC-1-VDC-M-1 is greater than the first selected constant voltage VDC-M. Accordingly, the capacitor-based voltage circuit 60 can be configured to operate exclusively in the boost mode.


In one embodiment, each of the predefined scaling factors fS-1-fS-M-1 can be either greater than 1 or lesser than 1. In this regard, each of the second selected constant voltages VDC-1-VDC-M-1 can be greater than the first selected constant voltage VDC-M or lesser than the first selected constant voltage VDC-M. Accordingly, the capacitor-based voltage circuit 60 can be configured to operate in both the buck mode and the boost mode (buck-boost mode).


The supply voltage circuit 24 includes a voltage feedback line 68 coupled from one of the second selected output ports 64(1)-64(M−1) to the controller 54. The voltage feedback line 68 is configured to carry a voltage feedback signal 70 indicative of a preselected constant voltage among the second selected constant voltages VDC-1-VDC-M-1. In a non-limiting example, the voltage feedback line 68 can be coupled from the output port 64(1) to the controller 54. The voltage feedback line 68 is configured to carry the voltage feedback signal 70 indicative of the preselected constant voltage VDC-1. Since all of the second selected constant voltages VDC-1-VDC-M are related to the DC voltage VDC, the voltage feedback signal 70 can be used to further indicate all of the second selected constant voltages VDC-1-VDC-M. Accordingly, the controller 54 may control the inductor-based voltage circuit 50 to adjust the DC voltage VDC based on the voltage feedback signal 70.


The supply voltage circuit may include a clock generator 72 configured to generate an operating clock 74 for the capacitor-based voltage circuit 60. In a non-limiting example, the clock generator 72 can generate the operating clock 74 based on a reference clock CLK that is also configured to operate the controller 54.



FIG. 4A is a schematic diagram of an exemplary ET voltage circuit 26A, which can be configured according to one embodiment of the present disclosure to function as the ET voltage circuit 26 in the ET circuit 14 of FIG. 1 to generate the ET modulated voltages VCC-1-VCC-N based on the ET target voltages VTARGET-1-VTARGET-N of FIG. 2 and the constant voltages VDC-1-VDC-M of FIG. 3. Common elements between FIGS. 1 and 4A are shown therein with common element numbers and will not be re-described herein.


The ET voltage circuit 26A includes a number of voltage controllers 76(1)-76(N) coupled to a number of voltage selection circuits 78(1)-78(N), respectively. Each of the voltage controllers 76(1)-76(N) can be a microcontroller or a field programmable gate array (FPGA), for example. Each of the voltage selection circuits 78(1)-78(N) is configured to receive the constant voltages VDC-1-VDC-M from the supply voltage circuit 24. In a non-limiting example, the voltage selection circuits 78(1)-78(N) can be configured to include a number of switching circuits 80(1)-80(N). Each of the switching circuits 80(1)-80(N) can be controlled by a respective voltage controller to output a selected constant voltage among the constant voltages VDC-1-VDC-M as a respective ET modulated voltage among the ET modulated voltages VCC-1-VCC-N. For example, the voltage controller 76(1) can control the switching circuit 80(1) in the voltage selection circuit 78(1) to output a selected one of the constant voltages VDC-1-VDC-M as the ET modulated voltage VCC-1. In this regard, the voltage selection circuits 78(1)-78(N) collectively output a number of selected constant voltages as the ET modulated voltages VCC-1-VCC-N, respectively.


Each of the voltage controllers 76(1)-76(N) can be configured to determine a selected constant voltage VDC-S among the constant voltages VDC-1-VDC-M for a respective voltage selection circuit among the voltage selection circuits 78(1)-78(N) based on the equation (Eq. 4) below.

VDC-S=minimize[VDC-j≥(VTARGET-i+VHeadroom)] (1≤i≤N) (1≤j≤M)  (Eq. 4)


In the equation above, VDC-j represents any of the constant voltages VDC-1-VDC-M, VTARGET-i represents a respective ET target voltage among the ET target voltages VTARGET-1-VTARGET-N, and VHeadroom represents a predefined headroom voltage (e.g., 0.9 V). In this regard, each of the voltage controllers 76(1)-76(N) can be configured to control the respective voltage selection circuit to output the selected constant voltage as being a smallest constant voltage among the constant voltages VDC-1-VDC-M that is greater than or equal to the respective ET target voltage among the ET target voltages VTARGET-1-VTARGET-N. For example, the voltage controller 76(1) can control the voltage selection circuit 78(1) to output the smallest constant voltage among the constant voltages VDC-1-VDC-M that is greater than or equal to the ET voltage VTARGET-1 as the ET modulated voltage VCC-1. Notably, the ET voltage circuit 26A is configured to generate the ET modulated voltages VCC-1-VCC-N corresponding to a number of non-continuous voltage envelopes 82(1)-82(N), respectively.



FIG. 4B is a schematic diagram of an exemplary ET voltage circuit 26B, which can be configured according to one embodiment of the present disclosure to function as the ET voltage circuit 26 in the ET circuit 14 of FIG. 1 to generate the ET modulated voltages VCC-1-VCC-N based on the ET target voltages VTARGET-1-VTARGET-N of FIG. 2 and the constant voltages VDC-1-VDC-M of FIG. 3. Common elements between FIGS. 1 and 4B are shown therein with common element numbers and will not be re-described herein.


The ET voltage circuit 26B includes a number of voltage controllers 84(1)-84(N) coupled to a number of voltage selection circuits 86(1)-86(N), respectively. Each of the voltage controllers 84(1)-84(N) can be a microcontroller or a field programmable gate array (FPGA), for example. The ET voltage circuit 26B includes a number of voltage amplifiers 88(1)-88(N) configured to output the ET modulated voltages VCC-1-VCC-N based on the ET target voltages VTARGET-1-VTARGET-N and a number of supply voltages VSUP-1-VSUP-N.


Each of the voltage selection circuits 86(1)-86(N) includes a number of field-effect transistors (FETs) 90(1)-90(M) provided in a serial arrangement. The FETs 90(1)-90(M) in each of the voltage selection circuits 86(1)-86(N) include a number of gate electrodes 92(1)-92(M) coupled to a respective voltage controller among the voltage controllers 84(1)-84(N). The FETs 90(1)-90(M) in each of the voltage selection circuits 86(1)-86(N) include a number of drain electrodes 94(1)-94(M) coupled to the supply voltage circuit 24 to receive the constant voltages VDC-1-VDC-M, respectively. The FETs 90(1)-90(M) in each of the voltage selection circuits 86(1)-86(N) include a number of source electrodes 96(1)-96(M) coupled to a respective voltage amplifier among the voltage amplifiers 88(1)-88(N) to provide a respective supply voltage among the supply voltages VSUP-1-VSUP-N. The ET voltage circuit 26B includes a number of second FETs 98(1)-98(N) coupled respectively between the voltage selection circuits 86(1)-86(N) and the ground GND.


Each of the voltage controllers 84(1)-84(N) is configured to control a respective voltage selection circuit among the voltage selection circuits 86(1)-86(N) to output a selected constant voltage among the constant voltages VDC-1-VDC-M to a respective voltage amplifier among the voltage amplifiers 88(1)-88(N) as a respective supply voltage among the supply voltages VSUP-1-VSUP-N. For example, the voltage controller 84(1) is configured to control the voltage selection circuit 86(1) to output any of the constant voltages VDC-1-VDC-M to the voltage amplifier 88(1) as the supply voltage VSUP-1. In this regard, the voltage selection circuits 86(1)-86(N) collectively output a number of selected constant voltages as the supply voltages VSUP-1-VSUP-N, respectively. Each of the voltage controllers 84(1)-84(N) may determine the respective constant voltage to be outputted from the respective voltage selection circuit based on the equation (Eq. 4) above.


By determining the supply voltages VSUP-1-VSUP-N based on the ET target voltages VTARGET-1-VTARGET-N, it may be possible to cause the voltage amplifiers 88(1)-88(N) to operate with improved efficiency. Notably, the ET voltage circuit 26B is configured to generate the ET modulated voltages VCC-1-VCC-N corresponding to a number of continuous voltage envelopes 100(1)-100(N), respectively.



FIG. 4C is a schematic diagram of an exemplary ET voltage circuit 26C, which can be configured according to one embodiment of the present disclosure to function as the ET voltage circuit 26 in the ET circuit 14 of FIG. 1 to generate the ET modulated voltages VCC-1-VCC-N based on the ET target voltages VTARGET-1-VTARGET-N of FIG. 2 and the constant voltages VDC-1-VDC-M of FIG. 3. Common elements between FIGS. 1, 4B, and 4C are shown therein with common element numbers and will not be re-described herein.


The ET voltage circuit 26C further includes a number of linear FETs 102(1)-102(N), which can be p-type FETs (PFETs) for example. The linear FETs 102(1)-102(N) include a number of gate terminals 104(1)-104(N) coupled to the voltage amplifiers 88(1)-88(N), respectively. The linear FETs 102(1)-102(N) include a number of source terminals 106(1)-106(N) coupled to the voltage selection circuits 86(1)-86(N), respectively. The linear FETs 102(1)-102(N) include a number of drain terminals 108(1)-108(N) coupled to the second FETs 98(1)-98(N), respectively. The linear FETs 102(1)-102(N) are configured to output the ET modulated voltages VCC-1-VCC-N respectively from the drain terminals 108(1)-108(N) with improved linearity.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A target voltage circuit configured to: receive a reference target voltage corresponding to a dynamic voltage range;offset the reference target voltage to a baseline reference voltage corresponding to the dynamic voltage range;dynamic voltage range;determine a plurality of slope factors;multiply the plurality of slope factors with the dynamic voltage range to generate a plurality of Envelope Tracking (ET) target voltages, respectively; andadjust the plurality of ET target voltages based on a plurality of offset factors, respectively.
  • 2. The target voltage circuit of claim 1 comprising: a first offset converter configured to offset the reference target voltage to the baseline reference voltage;a plurality of multipliers coupled in parallel to the first offset converter and configured to: receive the plurality of slope factors, respectively; andmultiply the plurality of slope factors with the dynamic voltage range to generate the plurality of ET target voltages, respectively; anda plurality of second offset converters coupled to the plurality of multipliers and configured to: receive the plurality of offset factors, respectively; andadjust the plurality of ET target voltages based on the plurality of offset factors, respectively.
  • 3. The target voltage circuit of claim 1 wherein the plurality of slope factors is determined as being equal to (VMAX-TARGET-i−VMIN-TARGET-i)/(VMAX-TARGET−VMIN-TARGET) (1≤i≤ N), wherein: N is an integer and i is an integer;VMAX-TARGET-i and VMIN-TARGET-i represent a maximum level and a minimum level of a respective ET target voltage among the plurality of ET target voltages; and(VMAX-TARGET−VMIN-TARGET) represents the dynamic voltage range of the reference target voltage.
  • 4. The target voltage circuit of claim 3 wherein the plurality of ET target voltages is determined as being equal to Si*(VMAX-TARGET−VMIN-TARGET)+fi (1≤i≤N), wherein: Si represents a respective scaling factor among the plurality of slope factors; andfi represents a respective offset factor among the plurality of offset factors.
  • 5. A supply voltage circuit comprising: an inductor-based voltage circuit configured to generate a direct current (DC) voltage based on a battery voltage;a plurality of output ports configured to output a plurality of constant voltages, respectively, wherein: a first selected output port among the plurality of output ports is coupled to the inductor-based voltage circuit to output the DC voltage as a first selected constant voltage among the plurality of constant voltages; andone or more second selected output ports among the plurality of output ports are configured to output one or more second selected constant voltages among the plurality of constant voltages different from the first selected constant voltage;a capacitor-based voltage circuit coupled to the inductor-based voltage circuit and configured to multiply the DC voltage with one or more predefined scaling factors to generate the one or more second selected constant voltages at the one or more second selected output ports, respectively; anda controller configured to: receive a feedback signal indicative of a preselected constant voltage among the plurality of constant voltages; andcontrol the inductor-based voltage circuit to adjust the DC voltage based on the preselected constant voltage.
  • 6. The supply voltage circuit of claim 5 wherein the one or more predefined scaling factors are one or more fractional scaling factors.
  • 7. The supply voltage circuit of claim 6 wherein the one or more second selected output ports are further configured to output the one or more second selected constant voltages in ascending voltage values.
  • 8. The supply voltage circuit of claim 5 further comprising a clock generator configured to generate an operating clock for the capacitor-based voltage circuit based on a reference clock configured to operate the controller.
  • 9. The supply voltage circuit of claim 5 wherein the controller is a pulse width modulation (PWM) controller.
  • 10. The supply voltage circuit of claim 5 wherein the capacitor-based voltage circuit is configured to operate exclusively in a buck mode.
  • 11. The supply voltage circuit of claim 5 wherein the capacitor-based voltage circuit is configured to operate exclusively in a boost mode.
  • 12. The supply voltage circuit of claim 5 wherein the capacitor-based voltage circuit is configured to operate in a buck-boost mode.
RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 16/250,298, filed Jan. 17, 2019, which claims the benefit of provisional patent application Ser. No. 62/726,572, filed Sep. 4, 2018, the disclosures of which are hereby incorporated herein by reference in their entireties. U.S. patent application Ser. No. 16/250,298 is related to U.S. patent application Ser. No. 16/250,229, now U.S. Pat. No. 10,951,175, entitled “ENVELOPE TRACKING CIRCUIT AND RELATED POWER AMPLIFIER APPARATUS,” the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (170)
Number Name Date Kind
6529716 Eidson et al. Mar 2003 B1
6788151 Shvarts et al. Sep 2004 B2
7859338 Bajdechi et al. Dec 2010 B2
8019289 Gorbachov Sep 2011 B2
8290453 Yoshihara Oct 2012 B2
8385859 Hamano Feb 2013 B2
8476976 Wimpenny Jul 2013 B2
8598950 Khesbak Dec 2013 B2
8600321 Nambu et al. Dec 2013 B2
8611402 Chiron Dec 2013 B2
8665016 Chowdhury et al. Mar 2014 B2
8665931 Afsahi et al. Mar 2014 B2
8803603 Wimpenny Aug 2014 B2
8816272 Brown et al. Aug 2014 B1
8816768 Tseng et al. Aug 2014 B2
8818305 Schwent et al. Aug 2014 B1
8921774 Brown et al. Dec 2014 B1
8942651 Jones Jan 2015 B2
8989682 Ripley et al. Mar 2015 B2
9002303 Brobston Apr 2015 B2
9065509 Yan et al. Jun 2015 B1
9197162 Chiron et al. Nov 2015 B2
9197256 Khlat Nov 2015 B2
9246460 Khlat et al. Jan 2016 B2
9247496 Khlat Jan 2016 B2
9270230 Henshaw et al. Feb 2016 B2
9287829 Nobbe et al. Mar 2016 B2
9288098 Yan et al. Mar 2016 B2
9294043 Ripley et al. Mar 2016 B2
9356760 Larsson et al. May 2016 B2
9374005 Rozek et al. Jun 2016 B2
9379667 Khlat et al. Jun 2016 B2
9438172 Cohen Sep 2016 B2
9515621 Hietala et al. Dec 2016 B2
9515622 Nentwig et al. Dec 2016 B2
9516693 Khlat et al. Dec 2016 B2
9560595 Dakshinamurthy et al. Jan 2017 B2
9571152 Ripley et al. Feb 2017 B2
9596110 Jiang et al. Mar 2017 B2
9614476 Khlat Apr 2017 B2
9614477 Rozenblit et al. Apr 2017 B1
9641206 Pratt et al. May 2017 B2
9671801 Bhattad et al. Jun 2017 B2
9743357 Tabe Aug 2017 B2
9831834 Balteanu et al. Nov 2017 B2
9831934 Kotecha et al. Nov 2017 B2
9843294 Khlat Dec 2017 B2
9859845 Sarbishaei et al. Jan 2018 B2
9912296 Cheng et al. Mar 2018 B1
9912297 Khlat Mar 2018 B2
9912301 Xue et al. Mar 2018 B2
9941844 Khlat Apr 2018 B2
9948240 Khlat et al. Apr 2018 B2
9954436 Khlat Apr 2018 B2
9960737 Kovac May 2018 B1
9974050 Wiser et al. May 2018 B2
9991851 Dinur et al. Jun 2018 B1
9991856 Khesbak et al. Jun 2018 B2
9991913 Dinur et al. Jun 2018 B1
10003303 Afsahi et al. Jun 2018 B2
10069470 Khlat et al. Sep 2018 B2
10090809 Khlat Oct 2018 B1
10097145 Khlat et al. Oct 2018 B1
10097387 Wiser et al. Oct 2018 B1
10103926 Khlat Oct 2018 B1
10110169 Khesbak et al. Oct 2018 B2
10141891 Gomez et al. Nov 2018 B2
10158330 Khlat Dec 2018 B1
10171037 Khlat Jan 2019 B2
10171038 Chen et al. Jan 2019 B1
10181826 Khlat et al. Jan 2019 B2
10204775 Brown et al. Feb 2019 B2
10305429 Choo et al. May 2019 B2
10326408 Khlat et al. Jun 2019 B2
10355646 Lee et al. Jul 2019 B2
10361660 Khlat Jul 2019 B2
10382147 Ripley et al. Aug 2019 B2
10396716 Afsahi et al. Aug 2019 B2
10419255 Wiser et al. Sep 2019 B2
10432145 Khlat Oct 2019 B2
10439557 Khlat et al. Oct 2019 B2
10439789 Brunel et al. Oct 2019 B2
10454428 Khesbak et al. Oct 2019 B2
10476437 Nag et al. Nov 2019 B2
10951175 Khlat Mar 2021 B2
11088660 Lin et al. Aug 2021 B2
11387789 Khlat et al. Jul 2022 B2
11424719 Khlat et al. Aug 2022 B2
11569783 Nomiyama et al. Jan 2023 B2
20040100323 Khanifer et al. May 2004 A1
20090128236 Wilson May 2009 A1
20090253389 Ma et al. Oct 2009 A1
20110223875 Hamano Sep 2011 A1
20120142304 Degani et al. Jun 2012 A1
20120146731 Khesbak Jun 2012 A1
20120194274 Fowers et al. Aug 2012 A1
20120302179 Brobston Nov 2012 A1
20120309333 Nambu et al. Dec 2012 A1
20130141159 Strange et al. Jun 2013 A1
20130207731 Balteanu Aug 2013 A1
20130285750 Chowdhury et al. Oct 2013 A1
20140057684 Khlat Feb 2014 A1
20140111279 Brobston Apr 2014 A1
20140218109 Wimpenny Aug 2014 A1
20140273897 Drogi et al. Sep 2014 A1
20140306763 Hong et al. Oct 2014 A1
20140306769 Khlat et al. Oct 2014 A1
20140315504 Sakai et al. Oct 2014 A1
20140354251 Williams Dec 2014 A1
20140361837 Strange et al. Dec 2014 A1
20150009980 Modi et al. Jan 2015 A1
20150091645 Park et al. Apr 2015 A1
20150123628 Bhattad et al. May 2015 A1
20150194988 Yan et al. Jul 2015 A1
20150236729 Peng et al. Aug 2015 A1
20160036389 Balteanu et al. Feb 2016 A1
20160050629 Khesbak et al. Feb 2016 A1
20160094185 Shute Mar 2016 A1
20160094186 Cohen Mar 2016 A1
20160099686 Perreault et al. Apr 2016 A1
20160105151 Langer Apr 2016 A1
20160181995 Nentwig et al. Jun 2016 A1
20160204809 Pratt et al. Jul 2016 A1
20160226448 Wimpenny Aug 2016 A1
20160294587 Jiang et al. Oct 2016 A1
20170070199 Anderson et al. Mar 2017 A1
20170077877 Anderson Mar 2017 A1
20170093340 Khesbak Mar 2017 A1
20170207802 Pratt et al. Jul 2017 A1
20170230924 Wolberg et al. Aug 2017 A1
20170279412 Afsahi et al. Sep 2017 A1
20170353287 Onaka et al. Dec 2017 A1
20180048276 Khlat et al. Feb 2018 A1
20180138862 Balteanu et al. May 2018 A1
20180138863 Khlat May 2018 A1
20180159476 Balteanu et al. Jun 2018 A1
20180159566 Dinur et al. Jun 2018 A1
20180287564 Afsahi et al. Oct 2018 A1
20180309409 Khlat Oct 2018 A1
20180309414 Khlat et al. Oct 2018 A1
20180316440 Mita Nov 2018 A1
20180358930 Haine Dec 2018 A1
20190036493 Khlat et al. Jan 2019 A1
20190044480 Khlat Feb 2019 A1
20190089310 Khlat et al. Mar 2019 A1
20190109566 Folkmann et al. Apr 2019 A1
20190109613 Khlat et al. Apr 2019 A1
20190181804 Khlat Jun 2019 A1
20190222176 Khlat Jul 2019 A1
20190222178 Khlat et al. Jul 2019 A1
20190222181 Khlat Jul 2019 A1
20190267947 Khlat et al. Aug 2019 A1
20190356285 Khlat et al. Nov 2019 A1
20200036337 Khlat Jan 2020 A1
20200076375 Khlat Mar 2020 A1
20200076376 Khlat Mar 2020 A1
20200127607 Khlat Apr 2020 A1
20200127608 Khlat Apr 2020 A1
20200127609 Khlat Apr 2020 A1
20200127611 Khlat Apr 2020 A1
20200127612 Khlat et al. Apr 2020 A1
20200127625 Khlat Apr 2020 A1
20200127730 Khlat Apr 2020 A1
20200136575 Khlat et al. Apr 2020 A1
20200228063 Khlat Jul 2020 A1
20200266766 Khlat et al. Aug 2020 A1
20200350878 Drogi et al. Nov 2020 A1
20200382062 Khlat Dec 2020 A1
20210006206 Khlat Jan 2021 A1
20210194517 Mirea et al. Jun 2021 A1
Foreign Referenced Citations (2)
Number Date Country
3644500 Apr 2020 EP
2018182778 Oct 2018 WO
Non-Patent Literature Citations (43)
Entry
Final Office Action for U.S. Appl. No. 17/027,963, dated Jan. 14, 2022, 4 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/669,728, dated Dec. 8, 2021, 8 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/043067, dated Nov. 11, 2020, 19 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052151, dated Jan. 4, 2022, 16 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,368, dated Dec. 26, 2019, 6 pages.
Notice of Allowance for U.S. Appl. No. 16/273,288, dated Dec. 13, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Dec. 23, 2019, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/193,513, dated Mar. 25, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/250,229, dated Apr. 29, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/267,740, dated Apr. 30, 2020, 10 pages.
Final Office Action for U.S. Appl. No. 16/263,316, dated May 13, 2020, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/278,886, dated Apr. 29, 2020, 9 pages.
Quayle Action for U.S. Appl. No. 16/267,779, dated May 1, 2020, 8 pages.
Final Office Action for U.S. Appl. No. 16/263,368, dated May 22, 2020, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/250,229, dated Sep. 22, 2020, 7 pages.
Quayle Action for U.S. Appl. No. 16/267,740, dated Oct. 19, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/267,740, dated Mar. 3, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Jul. 17, 2020, 4 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Nov. 24, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/263,316, dated Mar. 30, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/270,119, dated Jun. 18, 2020, 9 pages.
Non-Final Office Action for U.S. Appl. No. 17/027,963, dated Aug. 13, 2021, 6 pages.
Notice of Allowance for U.S. Appl. No. 16/278,886, dated Sep. 22, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/250,298, dated Aug. 20, 2020, 8 pages.
Quayle Action for U.S. Appl. No. 16/250,298, dated Feb. 3, 2021, 5 pages.
Notice of Allowance for U.S. Appl. No. 16/250,298, dated Apr. 15, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/689,236, dated Mar. 2, 2021, 15 pages.
Notice of Allowance for U.S. Appl. No. 16/689,236, dated Jun. 9, 2021, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,368, dated Aug. 7, 2020, 4 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,368, dated Dec. 17, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/263,368, dated Apr. 29, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/508,704, dated Dec. 30, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/508,768, dated Oct. 27, 2020, 9 pages.
Quayle Action for U.S. Appl. No. 16/514,339, dated Nov. 19, 2020, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/660,900, dated Feb. 18, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/689,417, dated Feb. 24, 2021, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/669,728, dated Jun. 3, 2021, 9 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/052151, dated Oct. 13, 2022, 21 pages.
Notice of Allowance for U.S. Appl. No. 17/027,963, dated Mar. 30, 2022, 8 pages.
Extended European Search Report for European Patent Application No. 22152966.2, dated Jun. 23, 2022, 9 pages.
Non-Final Office Action for U.S. Appl. No. 17/942,472, dated Feb. 16, 2023, 13 pages.
Extended European Search Report for European Patent Application No. 22195683.2, dated Feb. 10, 2023, 12 pages.
Final Office Action for U.S. Appl. No. 17/942,472, dated Jul. 19, 2023, 16 pages.
Related Publications (1)
Number Date Country
20210384869 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
62726572 Sep 2018 US
Divisions (1)
Number Date Country
Parent 16250298 Jan 2019 US
Child 17408651 US