The technology of the disclosure relates generally to an envelope tracking (ET) integrated circuit (ETIC) capable of supporting multiple types of power amplifiers.
Mobile communication devices have become increasingly common in current society for providing wireless communication services. The prevalence of these mobile communication devices is driven in part by the many functions that are now enabled on such devices. Increased processing capabilities in such devices means that mobile communication devices have evolved from being pure communication tools into sophisticated mobile multimedia centers that enable enhanced user experiences.
A fifth-generation new radio (5G-NR) wireless communication system is widely regarded as a technological advancement that can achieve significantly higher data throughput, improved coverage range, enhanced signaling efficiency, and reduced latency compared to the existing third-generation (3G) and fourth-generation (4G) communication systems. A 5G-NR mobile communication device usually transmits and receives a radio frequency (RF) signal(s) in a millimeter wave (mmWave) RF spectrum that is typically above 6 GHz. Notably, the RF signal(s) transmitted in the mmWave RF spectrum may be more susceptible to propagation attenuation and interference that can result in substantial reduction in data throughput. To help mitigate propagation attenuation and maintain desirable data throughput, the 5G-NR mobile communication device may be configured to transmit the RF signal(s) based on such spatial multiplexing/diversity schemes as multiple-input multiple-output (MIMO) and RF beamforming. As such, the 5G-NR mobile communication device typically employs a power management circuit(s) to drive a power amplifier(s) for amplifying the RF signal(s) before feeding the RF signal(s) to an antenna(s).
Notably, the 5G-NR mobile communication device may include multiple types of power amplifiers (e.g., differential power amplifier, single-stage power amplifier, multi-stage power amplifier, balanced power amplifier, Doherty power amplifier, etc.), each adapted to and/or optimized for a specific type of application and/or transmission scheme. For example, a differential power amplifier or a multi-stage power amplifier is more efficient for amplifying a same RF signal for transmission based on a spatial diversity scheme, a balanced power amplifier will be better suited for amplifying different RF signals for transmission based on a spatial multiplexing scheme, and a Doherty power amplifier is more desirable for different load modulations. In this regard, it is desirable to flexibly configure the power management circuit(s) to efficiently support a variety of power amplifiers.
Embodiments of the disclosure relate to an envelope tracking (ET) integrated circuit (ETIC) operable with multiple types of power amplifiers. The ETIC is configured to provide one or more ET voltages to a power amplifier(s) for amplifying a radio frequency (RF) signal. In embodiments disclosed herein, the ETIC can be configured to generate the ET voltages at same or different voltage levels based on specific types of the power amplifier(s), such as multi-stage power amplifier and Doherty power amplifier, and for a wider modulation bandwidth of the RF signal. As such, the ETIC can be flexibly adapted to enable a variety of power management scenarios and/or topologies.
In one aspect, an ETIC is provided. The ETIC includes a first voltage output and a second voltage output each coupled to a power amplifier configured to amplify an RF signal to an output power. The ETIC also includes a first voltage circuit configured to generate a first ET voltage at the first voltage output. The ETIC also includes a second voltage circuit configured to generate a second ET voltage at the second voltage output. The ETIC also includes a control circuit. The control circuit is configured to determine whether the power amplifier is one of a selected set of power amplifiers. The control circuit is also configured to cause the second voltage circuit to generate the second ET voltage lower than or equal to the first ET voltage in response to determining that the power amplifier is one of the selected set of power amplifiers.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Embodiments of the disclosure relate to an envelope tracking (ET) integrated circuit (ETIC) operable with multiple types of power amplifiers. The ETIC is configured to provide one or more ET voltages to a power amplifier(s) for amplifying a radio frequency (RF) signal. In embodiments disclosed herein, the ETIC can be configured to generate the ET voltages at same or different voltage levels based on specific types of the power amplifier(s), such as multi-stage power amplifier and Doherty power amplifier, and for a wider modulation bandwidth of the RF signal. As such, the ETIC can be flexibly adapted to enable a variety of power management scenarios and/or topologies.
In this regard,
The ETIC 10 includes a first voltage circuit 14A and a second voltage circuit 14B. The first voltage circuit 14A can be configured to generate a first ET voltage VCCA(t) at a first voltage output 16A and the second voltage circuit 14B can be configured to generate a second ET voltage VCCB(t) at a second voltage output 16B. The power amplifier(s) 12 is coupled to the first voltage output 16A and the second voltage output 16B and configured to amplify an RF signal 18 from an input power PIN(t) to an output power POUT(t) based on one or more of the first ET voltage VCCA(t) and the second ET voltage VCCB(t).
The ETIC 10 further includes a control circuit 20, which can be a field-programmable gate array (FPGA), as an example. The control circuit 20 may cause the first voltage circuit 14A and/or the second voltage circuit 14B to adapt the first ET voltage VCCA(t) and/or the second ET voltage VCCB(t) base on specific types of the power amplifier(s) 12. As discussed in detail below, the control circuit 20 determines whether the power amplifier(s) 12 is one of a selected set of power amplifiers. If the power amplifier(s) 12 is one of the selected set of power amplifiers, the control circuit 20 can cause the second ET voltage VCCB(t) to be generated lower than or equal to the first ET voltage VCCA(t). In contrast, if the power amplifier(s) 12 is not among the selected set of power amplifiers, the control circuit 20 can further cause the ETIC 10 to generate the first ET voltage VCCA(t) and/or the second ET voltage VCCB(t) accordingly. As such, it is possible to flexibly configure the ETIC 10 to enable a variety of power management scenarios and/or topologies.
The first voltage circuit 14A includes a first voltage amplifier 22A and a first offset capacitor 24A. The first voltage amplifier 22A is configured to generate a first initial ET voltage VAMPA(t) based on a first supply voltage VSUPA. The first offset capacitor 24A is coupled between the first voltage amplifier 22A and the first voltage output 16A. The first offset capacitor 24A is configured to raise the first initial ET voltage VAMPA(t) by a first offset voltage VOFFA (e.g., 0.8 V) to generate the first ET voltage VCCA(t) at the first voltage output 16A. The first voltage circuit 14A also includes a first feedback loop 26A (denoted as “FB”) that provides a feedback of the first ET voltage VCCA(t) to the first voltage amplifier 22A and thereby makes the first voltage circuit 14A a closed-loop ET voltage circuit. Notably, the first voltage amplifier 22A is configured to generate the first initial ET voltage VAMPA(t) that tracks (e.g., rises and falls) a first ET target voltage VTGTA(t) over time. In this regard, it is possible to increase or decrease the first initial ET voltage VAMPA(t), and therefore the first ET voltage VCCA(t), by increasing or decreasing the first ET target voltage VTGTA(t).
The second voltage circuit 14B includes a second voltage amplifier 22B and a second offset capacitor 24B. In a non-limiting example, the second offset capacitor 24B has a smaller capacitance than the first offset capacitor 24A. The second voltage amplifier 22B is configured to generate a second initial ET voltage VAMPB(t) based on a second supply voltage VSUPB. The second offset capacitor 24B is coupled between the second voltage amplifier 22B and the second voltage output 16B. The second offset capacitor 24B is configured to raise the second initial ET voltage VAMPB(t) by a second offset voltage VOFFB (e.g., 0.8 V) to generate the second ET voltage VCCB(t) at the second voltage output 16B. The second voltage circuit 14B also includes a second feedback loop 26B (denoted as “FB”) that provides a feedback of the second ET voltage VCCB(t) to the second voltage amplifier 22B and thereby makes the second voltage circuit 14B a closed-loop ET voltage circuit. Notably, the second voltage amplifier 22B is configured to generate the second initial ET voltage VAMPB(t) that tracks (e.g., rises and falls) a second ET target voltage VTGTB(t) over time. In this regard, it is possible to increase or decrease the second initial ET voltage VAMPB(t), and therefore the second ET voltage VCCB(t), by increasing or decreasing the second ET target voltage VTGTB(t).
The ETIC 10 may include a supply voltage circuit 28. The supply voltage circuit 28 can be configured to generate the first supply voltage VSUPA and the second supply voltage VSUPB.
The control circuit 20 may receive a time-variant ET target voltage VTGT(t) from a transceiver circuit (not shown) that generates the RF signal 18. The time-variant ET target voltage VTGT(t) is so generated to track a time-variant power envelope ENVP(t) of the RF signal 18. In embodiments disclosed herein, the control circuit 20 may be configured to generate both the first ET target voltage VTGTA(t) and the second ET target voltage VTGTB(t) from the time-variant ET target voltage VTGT(t).
In a non-limiting example, the control circuit 20 can generate the first ET target voltage VTGTA(t) based on a first analog lookup table (LUT) that correlates the time-variant ET target voltage VTGT(t) with the first ET target voltage VTGTA(t). Likewise, the control circuit 20 may generate the second ET target voltage VTGTB(t) based on a first LUT that correlates the time-variant ET target voltage VTGT(t) with the second ET target voltage VTGTB(t). Notably, the first analog LUT may be the same as or different from the second analog LUT. As a result, the control circuit 20 can have more flexibility with respect to adapting the first ET target voltage VCCA(t) and/or the second ET target voltage VCCB(t) based on the output power POUT(t) of the RF signal 18.
The ETIC 10 further includes a tracker circuit 30 that includes a multi-level charge pump 32 (denoted as “MCP”) and a power inductor 34. The multi-level charge pump 32 is configured to generate a low-frequency voltage VDC based on a battery voltage VBAT. The power inductor 34 is coupled between the multi-level charge pump 32 and the first voltage output 16A. The power inductor 34 is configured to induce a low-frequency current IDC based on the low-frequency voltage VDC and provide the low-frequency current IDC to the first voltage output 16A.
The ETIC 10 further includes a hybrid circuit 36 that is coupled between the first voltage output 16A and the second voltage output 16B. In embodiments disclosed herein, the hybrid circuit 36 may be controlled by the control circuit 20 to operate as a closed switch, an open switch, or a low dropout (LDO) regulator. When operating as the closed switch, the hybrid circuit 36 passes the low-frequency current IDC from the first voltage output 16A to the second voltage output 16B. When operating as the open switch, the hybrid circuit 36 blocks the low-frequency current IDC from the second voltage output 16B. When operating as the LDO regulator, the hybrid circuit 36 regulates (e.g., reduces) the low-frequency current IDC at the second voltage output 16B.
In a non-limiting example, the second voltage circuit 14B may generate a sense current ISENSE to indicate a current surplus or deficit at the second voltage output 16B. Accordingly, the control circuit 20 can determine how much of the low-frequency current IDC needs to be forwarded to the second voltage output 16B based on the sense current ISENSE generated by the second voltage circuit 14B.
In one embodiment, the selected set of power amplifiers includes a multi-stage power amplifier. In this regard,
In a non-limiting example, the multi-stage power amplifier 38 includes a driver stage amplifier 40 and an output stage amplifier 42 that collectively amplify the RF signal 18 from the input power PIN(t) to the output power POUT(t). The driver stage amplifier 40 operates based on a driver voltage VD(t) and the output stage amplifier 42 operates based on an output voltage VO(t) that is typically higher than the driver voltage VD(t). Given that the driver stage amplifier 40 is placed in front of the output stage amplifier 42, the RF signal 18 received by the output stage amplifier 42 will be delayed by a temporal delay ΔT relative to the RF signal 18 received by the driver stage amplifier 40.
In one embodiment, the output stage amplifier 42 is coupled to the first voltage output 16A and the driver stage amplifier 40 is coupled to the second voltage output 16B. In this regard, the output stage amplifier 42 receives the first ET voltage VCCA(t) as the output voltage VO(t) and the driver stage amplifier 40 receives the second ET voltage VCCB(t) as the driver voltage VD(t).
As mentioned earlier, the output voltage VO(t) is typically higher than the driver voltage VD(t). As such, the control circuit 20 is configured to generate the first ET target voltage VTGTA(t) and the second ET target voltage VTGTB(t) to thereby cause the first ET voltage VCCA(t) to always be generated higher than the second ET voltage VCCB(t). In a non-limiting example, the control circuit 20 can cause the first ET voltage VCCA(t) to always be generated higher than the second ET voltage VCCB(t) when the RF signal 18 is modulated to a wide modulation bandwidth (e.g., ≥200 MHz).
Notably, by generating the first ET voltage VCCA(t) to always be higher than the second ET voltage VCCB(t), it is possible to drive the low-frequency current IDC from the first voltage output 16A toward the second voltage output 16B. As such, the control circuit 20 may control the hybrid circuit 36 to operate as the LDO regulator to regulate the low-frequency current IDC that flows from the first voltage output 16A toward the second voltage output 16B.
As discussed in
In another embodiment, the selected set of power amplifiers includes a Doherty power amplifier. In this regard,
The Doherty power amplifier 44 includes a carrier amplifier 46 and a peaking amplifier 48. In a non-limiting example, the carrier amplifier 46 is coupled to a load RL (e.g., an antenna port) via an impedance inverter 50 (denoted as “Ka”). The carrier amplifier 46 is associated with a carrier current IM and configured to amplify the RF signal 18 based on a carrier voltage VM(t). The peaking amplifier 48 is associated with a peaking current j*IP and configured to amplify the RF signal 18 based on a peaking voltage VP(t).
As shown in
Assuming now that the RF signal 18 has a PAR of 8 dB, the output power POUT(t) is higher than the peak power PPEAK in a region 52. In this regard, the carrier volage VM(t) and the peaking voltage VP(t) will be increased concurrently and equally toward a higher maximum voltage VMAX1. Accordingly, the carrier amplifier 46 and the peaking amplifier 48 are both activated to amplify the RF signal 18.
Several operating principles of the Doherty power amplifier 44 can be observed from
In this regard,
In this embodiment, the carrier amplifier 46 is coupled to the first voltage output 16A to receive the first ET target voltage VTGTA(t). The peak amplifier 48 is coupled to the second voltage output 16B via a voltage feeder circuit 54 (denoted as “VCC feed”). The voltage feeder circuit 54 is configured to introduce a 90° phase shift in the second ET target voltage VTGTB(t).
In accordance with the operating principles observed in
When the control circuit 20 determines that the output power POUT(t) is higher than or equal to the average power PAVG of the RF signal 18, the control circuit 20 activates the second voltage circuit 14B. More specifically, if the control circuit 20 determines that the output power POUT(t) is lower than or equal to the peak power PPEAK (e.g., 6 dB PAR), the control circuit 20 controls the first voltage circuit 14A to maintain the first ET voltage VCCA(t) at a peak ET voltage level VCC-MAX (e.g., 5.5 V). Concurrently, the control circuit 20 controls the second voltage circuit 14B to generate the second ET voltage VCCB(t) lower than the ET voltage VCCA(t). By keeping the first ET voltage VCCA(t) higher than the second ET voltage VCCB(t), the low-frequency current IDC can flow from the first voltage output 16A toward the second voltage output 16B. The control circuit 20 may control the hybrid circuit 36 to operate as the LDO regulator to regulate the low-frequency current IDC that flows from the first voltage output 16A toward the second voltage output 16B. In a non-limiting example, the control circuit 20 can increase or decrease the low-frequency current IDC based on the sense current ISENSE generated by the second voltage circuit 14B.
The first ET voltage VCCA(t) and the second ET voltage VCCB(t) will become equal when the output power POUT(t) reaches the peak power PPEAK. As a result, the carrier amplifier 46 and the peaking amplifier 48 each produces ½ of the peak power PPEAK.
When the control circuit 20 determines that the output power POUT(t) is higher than the peak power PPEAK (e.g., 8 dB PAR), the control circuit 20 may control the first voltage circuit 14A and the second voltage circuit 14B to increase the first ET voltage VCCA(t) and the second ET voltage VCCB(t), respectively, to a higher peak ET voltage level VCC-MAX1 (VCC-MAX1>VCC-MAX). Accordingly, the control circuit 20 may control the hybrid circuit 36 to operate as the closed switch.
The control circuit 20 may further determine whether there exists the temporal delay ΔT between the carrier amplifier 46 and the peaking amplifier 48. If the control circuit 20 determines that such temporal delay ΔT exists, for example in the peaking amplifier 48, the control circuit 20 may generate the second ET target voltage VTGTB(t) with the determined temporal delay ΔT relative to the first ET target voltage VTGTA(t) to thereby cause the second ET voltage VCCB(t) to be delayed by the determined temporal delay ΔT.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5510753 | French | Apr 1996 | A |
5838732 | Carney | Nov 1998 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6141377 | Sharper et al. | Oct 2000 | A |
6141541 | Midya et al. | Oct 2000 | A |
6411531 | Nork et al. | Jun 2002 | B1 |
6985033 | Shirali et al. | Jan 2006 | B1 |
7043213 | Robinson et al. | May 2006 | B2 |
7193467 | Garlepp et al. | Mar 2007 | B2 |
7471155 | Levesque | Dec 2008 | B1 |
7570931 | McCallister et al. | Aug 2009 | B2 |
7994862 | Pukhovski | Aug 2011 | B1 |
8461928 | Yahav et al. | Jun 2013 | B2 |
8493141 | Khlat et al. | Jul 2013 | B2 |
8519788 | Khlat | Aug 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8718188 | Balteanu et al. | May 2014 | B2 |
8723492 | Korzeniowski | May 2014 | B2 |
8725218 | Brown et al. | May 2014 | B2 |
8774065 | Khlat et al. | Jul 2014 | B2 |
8803603 | Wimpenny | Aug 2014 | B2 |
8818305 | Schwent et al. | Aug 2014 | B1 |
8854129 | Wilson | Oct 2014 | B2 |
8879665 | Xia et al. | Nov 2014 | B2 |
8913690 | Onishi | Dec 2014 | B2 |
8942651 | Jones | Jan 2015 | B2 |
8947161 | Khlat et al. | Feb 2015 | B2 |
8989682 | Ripley et al. | Mar 2015 | B2 |
9018921 | Gurlahosur | Apr 2015 | B2 |
9020451 | Khlat | Apr 2015 | B2 |
9041364 | Khlat | May 2015 | B2 |
9041365 | Kay et al. | May 2015 | B2 |
9055529 | Shih | Jun 2015 | B2 |
9065509 | Yan et al. | Jun 2015 | B1 |
9069365 | Brown et al. | Jun 2015 | B2 |
9098099 | Park et al. | Aug 2015 | B2 |
9166538 | Hong et al. | Oct 2015 | B2 |
9166830 | Camuffo et al. | Oct 2015 | B2 |
9167514 | Dakshinamurthy et al. | Oct 2015 | B2 |
9197182 | Baxter et al. | Nov 2015 | B2 |
9225362 | Drogi et al. | Dec 2015 | B2 |
9247496 | Khlat | Jan 2016 | B2 |
9263997 | Vinayak | Feb 2016 | B2 |
9270230 | Henshaw et al. | Feb 2016 | B2 |
9270239 | Drogi et al. | Feb 2016 | B2 |
9271236 | Drogi | Feb 2016 | B2 |
9280163 | Kay et al. | Mar 2016 | B2 |
9288098 | Yan et al. | Mar 2016 | B2 |
9298198 | Kay et al. | Mar 2016 | B2 |
9344304 | Cohen | May 2016 | B1 |
9356512 | Chowdhury et al. | May 2016 | B2 |
9362868 | Al-Qaq et al. | Jun 2016 | B2 |
9377797 | Kay et al. | Jun 2016 | B2 |
9379667 | Khlat et al. | Jun 2016 | B2 |
9445371 | Khesbak et al. | Sep 2016 | B2 |
9515622 | Nentwig et al. | Dec 2016 | B2 |
9520907 | Peng et al. | Dec 2016 | B2 |
9584071 | Khlat | Feb 2017 | B2 |
9595869 | Lerdworatawee | Mar 2017 | B2 |
9595981 | Khlat | Mar 2017 | B2 |
9596110 | Jiang et al. | Mar 2017 | B2 |
9614477 | Rozenblit et al. | Apr 2017 | B1 |
9634666 | Krug | Apr 2017 | B2 |
9705451 | Takenaka et al. | Jul 2017 | B2 |
9748845 | Kotikalapoodi | Aug 2017 | B1 |
9806676 | Balteanu et al. | Oct 2017 | B2 |
9831834 | Balteanu et al. | Nov 2017 | B2 |
9837962 | Mathe et al. | Dec 2017 | B2 |
9900204 | Levesque et al. | Feb 2018 | B2 |
9923520 | Abdelfattah et al. | Mar 2018 | B1 |
10003416 | Lloyd | Jun 2018 | B1 |
10090808 | Henzler et al. | Oct 2018 | B1 |
10090809 | Khlat | Oct 2018 | B1 |
10097145 | Khlat et al. | Oct 2018 | B1 |
10103693 | Zhu et al. | Oct 2018 | B2 |
10110169 | Khesbak et al. | Oct 2018 | B2 |
10116470 | Gu et al. | Oct 2018 | B2 |
10158329 | Khlat | Dec 2018 | B1 |
10158330 | Khlat | Dec 2018 | B1 |
10170989 | Balteanu et al. | Jan 2019 | B2 |
10291181 | Kim et al. | May 2019 | B2 |
10326408 | Khlat et al. | Jun 2019 | B2 |
10361744 | Khlat | Jul 2019 | B1 |
10382071 | Rozek et al. | Aug 2019 | B2 |
10476437 | Nag et al. | Nov 2019 | B2 |
10756675 | Leipold et al. | Aug 2020 | B2 |
10862431 | Khlat | Dec 2020 | B1 |
10879804 | Kim et al. | Dec 2020 | B2 |
11050433 | Melanson et al. | Jun 2021 | B1 |
11121684 | Henzler et al. | Sep 2021 | B2 |
11128261 | Ranta et al. | Sep 2021 | B2 |
20020167827 | Umeda et al. | Nov 2002 | A1 |
20030107428 | Khouri et al. | Jun 2003 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20050090209 | Behzad | Apr 2005 | A1 |
20050227646 | Yamazaki et al. | Oct 2005 | A1 |
20050232385 | Yoshikawa et al. | Oct 2005 | A1 |
20060028271 | Wilson | Feb 2006 | A1 |
20060240786 | Liu | Oct 2006 | A1 |
20070036212 | Leung et al. | Feb 2007 | A1 |
20070052474 | Saito | Mar 2007 | A1 |
20070258602 | Vepsalainen et al. | Nov 2007 | A1 |
20070290748 | Woo et al. | Dec 2007 | A1 |
20080116960 | Nakamura | May 2008 | A1 |
20080231358 | Maemura | Sep 2008 | A1 |
20090016085 | Rader et al. | Jan 2009 | A1 |
20090045872 | Kenington | Feb 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20100283534 | Pierdomenico | Nov 2010 | A1 |
20100308919 | Adamski et al. | Dec 2010 | A1 |
20110074373 | Lin | Mar 2011 | A1 |
20110136452 | Pratt et al. | Jun 2011 | A1 |
20110148705 | Kenington | Jun 2011 | A1 |
20110175681 | Inamori et al. | Jul 2011 | A1 |
20110279179 | Vice | Nov 2011 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200435 | Ngo et al. | Aug 2012 | A1 |
20120281597 | Khlat et al. | Nov 2012 | A1 |
20120299645 | Southcombe et al. | Nov 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130021827 | Ye | Jan 2013 | A1 |
20130072139 | Kang et al. | Mar 2013 | A1 |
20130100991 | Woo | Apr 2013 | A1 |
20130127548 | Popplewell et al. | May 2013 | A1 |
20130130724 | Kumar Reddy et al. | May 2013 | A1 |
20130141064 | Kay et al. | Jun 2013 | A1 |
20130162233 | Marty | Jun 2013 | A1 |
20130187711 | Goedken et al. | Jul 2013 | A1 |
20130200865 | Wimpenny | Aug 2013 | A1 |
20130271221 | Levesque et al. | Oct 2013 | A1 |
20140009226 | Severson | Jan 2014 | A1 |
20140028370 | Wimpenny | Jan 2014 | A1 |
20140028390 | Davis | Jan 2014 | A1 |
20140055197 | Khlat et al. | Feb 2014 | A1 |
20140057684 | Khlat | Feb 2014 | A1 |
20140103995 | Langer | Apr 2014 | A1 |
20140155002 | Dakshinamurthy et al. | Jun 2014 | A1 |
20140169427 | Asenio et al. | Jun 2014 | A1 |
20140184335 | Nobbe et al. | Jul 2014 | A1 |
20140199949 | Nagode et al. | Jul 2014 | A1 |
20140203869 | Khlat et al. | Jul 2014 | A1 |
20140210550 | Mathe et al. | Jul 2014 | A1 |
20140213196 | Langer et al. | Jul 2014 | A1 |
20140218109 | Wimpenny | Aug 2014 | A1 |
20140235185 | Drogi | Aug 2014 | A1 |
20140266423 | Drogi et al. | Sep 2014 | A1 |
20140266428 | Chiron et al. | Sep 2014 | A1 |
20140315504 | Sakai et al. | Oct 2014 | A1 |
20140361830 | Mathe et al. | Dec 2014 | A1 |
20140361837 | Strange et al. | Dec 2014 | A1 |
20150048883 | Vinayak | Feb 2015 | A1 |
20150071382 | Wu et al. | Mar 2015 | A1 |
20150098523 | Lim et al. | Apr 2015 | A1 |
20150139358 | Asuri et al. | May 2015 | A1 |
20150155836 | Midya et al. | Jun 2015 | A1 |
20150188432 | Vannorsdel et al. | Jul 2015 | A1 |
20150234402 | Kay et al. | Aug 2015 | A1 |
20150236652 | Yang et al. | Aug 2015 | A1 |
20150236654 | Jiang et al. | Aug 2015 | A1 |
20150236729 | Peng et al. | Aug 2015 | A1 |
20150236877 | Peng et al. | Aug 2015 | A1 |
20150280652 | Cohen | Oct 2015 | A1 |
20150333781 | Alon et al. | Nov 2015 | A1 |
20160050629 | Khesbak et al. | Feb 2016 | A1 |
20160065137 | Khlat | Mar 2016 | A1 |
20160065139 | Lee et al. | Mar 2016 | A1 |
20160099686 | Perreault et al. | Apr 2016 | A1 |
20160099687 | Khlat | Apr 2016 | A1 |
20160105151 | Langer | Apr 2016 | A1 |
20160118941 | Wang | Apr 2016 | A1 |
20160126900 | Shute | May 2016 | A1 |
20160164550 | Pilgram | Jun 2016 | A1 |
20160164551 | Khlat et al. | Jun 2016 | A1 |
20160173031 | Langer | Jun 2016 | A1 |
20160181995 | Nentwig et al. | Jun 2016 | A1 |
20160187627 | Abe | Jun 2016 | A1 |
20160197627 | Qin et al. | Jul 2016 | A1 |
20160226448 | Wimpenny | Aug 2016 | A1 |
20160249300 | Tsai et al. | Aug 2016 | A1 |
20160294587 | Jiang et al. | Oct 2016 | A1 |
20170005619 | Khlat | Jan 2017 | A1 |
20170005676 | Yan et al. | Jan 2017 | A1 |
20170006543 | Khlat | Jan 2017 | A1 |
20170012675 | Frederick | Jan 2017 | A1 |
20170141736 | Pratt et al. | May 2017 | A1 |
20170302183 | Young | Oct 2017 | A1 |
20170317913 | Kim et al. | Nov 2017 | A1 |
20170338773 | Balteanu et al. | Nov 2017 | A1 |
20180013465 | Chiron et al. | Jan 2018 | A1 |
20180048265 | Nentwig | Feb 2018 | A1 |
20180048276 | Khlat et al. | Feb 2018 | A1 |
20180076772 | Khesbak et al. | Mar 2018 | A1 |
20180123453 | Puggelli et al. | May 2018 | A1 |
20180152144 | Choo et al. | May 2018 | A1 |
20180254530 | Wigney | Sep 2018 | A1 |
20180288697 | Camuffo et al. | Oct 2018 | A1 |
20180302042 | Zhang et al. | Oct 2018 | A1 |
20180309414 | Khlat et al. | Oct 2018 | A1 |
20180367101 | Chen et al. | Dec 2018 | A1 |
20180375476 | Balteanu et al. | Dec 2018 | A1 |
20180375483 | Balteanu et al. | Dec 2018 | A1 |
20190028060 | Jo et al. | Jan 2019 | A1 |
20190044480 | Khlat | Feb 2019 | A1 |
20190068234 | Khlat et al. | Feb 2019 | A1 |
20190097277 | Fukae | Mar 2019 | A1 |
20190109566 | Folkmann et al. | Apr 2019 | A1 |
20190109613 | Khlat et al. | Apr 2019 | A1 |
20190181804 | Khlat | Jun 2019 | A1 |
20190222178 | Khlat et al. | Jul 2019 | A1 |
20190229623 | Tsuda et al. | Jul 2019 | A1 |
20190238095 | Khlat | Aug 2019 | A1 |
20190253023 | Yang et al. | Aug 2019 | A1 |
20190267956 | Granger-Jones et al. | Aug 2019 | A1 |
20190222175 | Khlat et al. | Oct 2019 | A1 |
20190319584 | Khlat et al. | Oct 2019 | A1 |
20190386565 | Rosolowski et al. | Dec 2019 | A1 |
20200007090 | Khlat et al. | Jan 2020 | A1 |
20200036337 | Khlat | Jan 2020 | A1 |
20200106392 | Khlat et al. | Apr 2020 | A1 |
20200127608 | Khlat | Apr 2020 | A1 |
20200127625 | Khlat | Apr 2020 | A1 |
20200136561 | Khlat et al. | Apr 2020 | A1 |
20200136563 | Khlat | Apr 2020 | A1 |
20200136575 | Khlat et al. | Apr 2020 | A1 |
20200144966 | Khlat | May 2020 | A1 |
20200153394 | Khlat et al. | May 2020 | A1 |
20200177131 | Khlat | Jun 2020 | A1 |
20200204116 | Khlat | Jun 2020 | A1 |
20200228063 | Khlat | Jul 2020 | A1 |
20200259456 | Khlat | Aug 2020 | A1 |
20200259685 | Khlat | Aug 2020 | A1 |
20200266766 | Khlat et al. | Aug 2020 | A1 |
20200313622 | Eichler et al. | Oct 2020 | A1 |
20200321848 | Khlat | Oct 2020 | A1 |
20200321917 | Nomiyama et al. | Oct 2020 | A1 |
20200328720 | Khlat | Oct 2020 | A1 |
20200336105 | Khlat | Oct 2020 | A1 |
20200336111 | Khlat | Oct 2020 | A1 |
20200350865 | Khlat | Nov 2020 | A1 |
20200350878 | Drogi | Nov 2020 | A1 |
20200382061 | Khlat | Dec 2020 | A1 |
20200382066 | Khlat | Dec 2020 | A1 |
20210036604 | Khlat et al. | Feb 2021 | A1 |
20210099137 | Drogi | Apr 2021 | A1 |
20210159590 | Na et al. | May 2021 | A1 |
20210175896 | Melanson et al. | Jun 2021 | A1 |
20210184708 | Khlat | Jun 2021 | A1 |
20210194515 | Go et al. | Jun 2021 | A1 |
20210194517 | Mirea et al. | Jun 2021 | A1 |
20210194522 | Stockert et al. | Jun 2021 | A1 |
20210211108 | Khlat | Jul 2021 | A1 |
20210226585 | Khlat | Jul 2021 | A1 |
20210234513 | Khlat | Jul 2021 | A1 |
20210265953 | Khlat | Aug 2021 | A1 |
20210281228 | Khlat | Sep 2021 | A1 |
20210288615 | Khlat | Sep 2021 | A1 |
20210305944 | Scott et al. | Sep 2021 | A1 |
20210356299 | Park | Nov 2021 | A1 |
20220021348 | Philpott | Jan 2022 | A1 |
20220103137 | Khlat et al. | Mar 2022 | A1 |
20220123698 | Goto et al. | Apr 2022 | A1 |
20220123744 | Khlat | Apr 2022 | A1 |
20220224294 | Khlat et al. | Jul 2022 | A1 |
20220263474 | Khlat | Aug 2022 | A1 |
20220278651 | Khlat | Sep 2022 | A1 |
20220286094 | Granger-Jones et al. | Sep 2022 | A1 |
20220385239 | Khlat | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
103916093 | Jul 2014 | CN |
105322894 | Feb 2016 | CN |
105680807 | Jun 2016 | CN |
106208974 | Dec 2016 | CN |
106209270 | Dec 2016 | CN |
106877824 | Jun 2017 | CN |
107093987 | Aug 2017 | CN |
108141184 | Jun 2018 | CN |
109150212 | Jan 2019 | CN |
3174199 | May 2012 | EP |
2909928 | Aug 2015 | EP |
H03104422 | May 1991 | JP |
2018182778 | Oct 2018 | WO |
2020206246 | Oct 2020 | WO |
2021016350 | Jan 2021 | WO |
2021046453 | Mar 2021 | WO |
2022103493 | May 2022 | WO |
Entry |
---|
First Office Action for Chinese Patent Application No. 202010083654.0, dated May 12, 2023, 17 pages. |
Notification to Grant for Chinese Patent Application No. 202010097807.7, dated Jul. 11, 2023, 14 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/050892, dated Oct. 24, 2022, 20 pages. |
Advisory Action for U.S. Appl. No. 17/073,764, dated May 26, 2023, 3 pages. |
U.S. Appl. No. 16/834,049, filed Mar. 30, 2020. |
U.S. Appl. No. 17/032,553, filed Sep. 25, 2020. |
U.S. Appl. No. 17/073,764, filed Oct. 19, 2020. |
U.S. Appl. No. 17/363,522, filed Jun. 30, 2021. |
Written Opinion for International Patent Application No. PCT/US2021/052830, dated Nov. 3, 2022, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/964,762, dated Mar. 18, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Dec. 23, 2019, 10 pages. |
Final Office Action for U.S. Appl. No. 16/263,316, dated May 13, 2020, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Jul. 17, 2020, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Nov. 24, 2020, 4 pages. |
Notice of Allowance for U.S. Appl. No. 16/263,316, dated Mar. 30, 2021, 7 pages. |
Final Office Action for U.S. Appl. No. 16/807,575, dated May 4, 2022, 12 pages. |
Quayle Action for U.S. Appl. No. 16/589,940, dated Dec. 4, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Jan. 13, 2021, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/416,812, dated Feb. 16, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/689,236 dated Mar. 2, 2021, 15 pages. |
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/774,060, dated Feb. 3, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/590,790, dated Jan. 27, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/661,061, dated Feb. 10, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Apr. 1, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/582,471, dated Mar. 24, 2021, 11 pages. |
Wan, F. et al., “Negative Group Delay Theory of a Four-Port RC-Network Feedback Operational Amplifier,” IEEE Access, vol. 7, Jun. 13, 2019, IEEE, 13 pages. |
Notice of Allowance for U.S. Appl. No. 16/689,236 dated Jun. 9, 2021, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/775,554, dated Jun. 14, 2021, 5 pages. |
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Jun. 22, 2021, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated May 26, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/834,049, dated Jun. 24, 2021, 8 pages. |
Notice of Allowance for U.S. Appl. No. 17/163,642, dated Mar. 1, 2023, 10 pages. |
Final Office Action for U.S. Appl. No. 17/073,764, dated Mar. 3, 2023, 14 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/052830, dated Feb. 20, 2023, 21 pages. |
Chen, S. et al., “A 4.5 μW 2.4 GHz Wake-Up Receiver Based on Complementary Current-Reuse RF Detector,” 2015 IEEE International Symposium on Circuits and Systems (ISCAS), May 24-27, 2015, IEEE, pp. 1214-1217. |
Ying, K. et al., “A Wideband Envelope Detector with Low Ripple and High Detection Speed,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), May 27-30, 2018, IEEE, 5 pages. |
Notice of Allowance for U.S. Appl. No. 17/011,313, dated Nov. 4, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated Nov. 10, 2021, 9 pages. |
Quayle Action for U.S. Appl. No. 16/855,154, dated Oct. 25, 2021, 6 pages. |
Notice of Allowance for U.S. Appl. No. 17/115,982, dated Nov. 12, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 17/126,561, dated Oct. 14, 2021, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 17/073,764, dated Dec. 24, 2021, 22 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052151, dated Jan. 4, 2022, 16 pages. |
Advisory Action for U.S. Appl. No. 16/807,575, dated Jul. 28, 2022, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/807,575, dated Aug. 19, 2022, 8 pages. |
Notice of Allowance for U.S. Appl. No. 17/148,064, dated Aug. 18, 2022, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 17/163,642, dated Aug. 17, 2022, 9 pages. |
Final Office Action for U.S. Appl. No. 17/032,553, dated Jul. 29, 2022, 6 pages. |
Final Office Action for U.S. Appl. No. 17/073,764, dated Jun. 1, 2022, 22 pages. |
Advisory Action for U.S. Appl. No. 17/073,764, dated Aug. 23, 2022, 3 pages. |
Extended European Search Report for European Patent Application No. 22153526.3, dated Jul. 13, 2022, 9 pages. |
U.S. Appl. No. 17/579,796, filed Jan. 20, 2022. |
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/459,449, dated Mar. 28, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages. |
Notice of Allowance for U.S. Patent Application No. 15/704, 131, dated Jul. 17, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages. |
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfister.ee.duke.edu/courses/ece485/dtsp.pdf, Mar. 3, 2017, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 15/986,948, dated Mar. 28, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 15/902,244, dated Feb. 8, 2019, 8 pages. |
Advisory Action for U.S. Appl. No. 15/888,300, dated Jun. 5, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages. |
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages. |
Advisory Action for U.S. Appl. No. 15/986,948, dated Nov. 8, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/986,948, dated Dec. 13, 2019, 7 pages. |
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages. |
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/122,611, dated Mar. 11, 2020, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/174,535, dated Feb. 4, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/354,234, dated Mar. 6, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages. |
Final Office Action for U.S. Appl. No. 16/174,535, dated Jul. 1, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages. |
Final Office Action for U.S. Appl. No. 15/888,300, dated Feb. 15, 2019, 15 pages. |
Final Office Action for U.S. Appl. No. 16/122,611, dated Sep. 18, 2020, 17 pages. |
Advisory Action for U.S. Appl. No. 16/174,535, dated Sep. 24, 2020, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/174,535, dated Oct. 29, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages. |
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 16/421,905, dated Aug. 25, 2020, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/514,051, dated Nov. 13, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Dec. 1, 2020, 9 pages. |
Notice of Allowance for U.S. Appl. No. 17/073,764, dated Aug. 23, 2023, 12 pages. |
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Feb. 1, 2022, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/807,575, dated Jan. 31, 2022, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/050892, dated Jan. 5, 2022, 20 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/054141 dated Jan. 25, 2022, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 17/032,553, dated Mar. 21, 2022, 4 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052830, dated Jan. 24, 2022, 13 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/052151, dated Oct. 13, 2022, 21 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/054141, dated Sep. 29, 2022, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 17/146,765, dated Sep. 7, 2022, 10 pages. |
Final Office Action for U.S. Appl. No. 17/163,642, dated Nov. 25, 2022, 13 pages. |
Notice of Allowance for U.S. Appl. No. 17/032,553, dated Oct. 11, 2022, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 17/073,764, dated Sep. 30, 2022, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 17/363,568, dated Nov. 9, 2023, 8 pages. |
Decision to Grant for Chinese Patent Application No. 202010083654.0, dated Sep. 11, 2023, 8 pages. |
Notification to Grant for Chinese Patent Application No. 202010083654.0, dated Nov. 9, 2023, 8 pages. |
Notice of Allowance for U.S. Appl. No. 17/363,568, dated Jan. 3, 2024, 7 pages. |
Quayle Action for U.S. Appl. No. 17/351,560, dated Nov. 24, 2023, 7 pages. |
Notice of Allowance for U.S. Appl. No. 17/351,560, dated Jan. 4, 2024, 7 pages. |
Examination Report for European Patent Application No. 21790723.7, mailed Mar. 7, 2024, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 17/331,996, mailed Feb. 1, 2024, 9 pages. |
Notice of Allowance for U.S. Appl. No. 17/331,996, mailed Mar. 1, 2024, 8 pages. |
Intention to Grant for European Patent Application No. 21806074.7, mailed May 10, 2024, 27 pages. |
Notice of Allowance for U.S. Appl. No. 17/363,568, mailed Apr. 17, 2024, 6 pages. |
Notice of Allowance for U.S. Appl. No. 17/351,560, mailed Apr. 19, 2024, 8 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2023/085103, mailed Apr. 26, 2024, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20220399861 A1 | Dec 2022 | US |