Envelope tracking integrated circuit supporting multiple types of power amplifiers

Information

  • Patent Grant
  • 11539330
  • Patent Number
    11,539,330
  • Date Filed
    Wednesday, January 13, 2021
    3 years ago
  • Date Issued
    Tuesday, December 27, 2022
    2 years ago
Abstract
An envelope tracking (ET) integrated circuit (ETIC) supporting multiple types of power amplifiers. The ETIC includes a pair of tracker circuits configured to generate a pair of low-frequency currents at a pair of output nodes, respectively. The ETIC also includes a pair of ET voltage circuits configured to generate a pair of ET voltages at the output nodes, respectively. In various embodiments disclosed herein, the ETIC can be configured to generate the low-frequency currents independent of what type of power amplifier is coupled to the output nodes. Concurrently, the ETIC can also generate the ET voltages in accordance with the type of power amplifier coupled to the output nodes. As such, it is possible to support multiple types of power amplifiers based on a single ETIC, thus helping to reduce footprint, power consumption, and heat dissipation in an electronic device employing the ETIC and the multiple types of power amplifiers.
Description
FIELD OF THE DISCLOSURE

The technology of the disclosure relates generally to an envelope tracking (ET) integrated circuit (ETIC) capable of supporting multiple types of power amplifiers.


BACKGROUND

Mobile communication devices have become increasingly common in current society for providing wireless communication services. The prevalence of these mobile communication devices is driven in part by the many functions that are now enabled on such devices. Increased processing capabilities in such devices means that mobile communication devices have evolved from being pure communication tools into sophisticated mobile multimedia centers that enable enhanced user experiences.


A fifth-generation new radio (5G-NR) wireless communication system is widely regarded as a technological advancement that can achieve significantly higher data throughput, improved coverage range, enhanced signaling efficiency, and reduced latency compared to the existing third-generation (3G) and fourth-generation (4G) communication systems. A 5G-NR mobile communication device usually transmits and receives a radio frequency (RF) signal(s) in a millimeter wave (mmWave) RF spectrum that is typically above 6 GHz. Notably, the RF signal(s) transmitted in the mmWave RF spectrum may be more susceptible to propagation attenuation and interference that can result in substantial reduction in data throughput. To help mitigate propagation attenuation and maintain desirable data throughput, the 5G-NR mobile communication device may be configured to transmit the RF signal(s) based on such spatial multiplexing/diversity schemes as multiple-input multiple-output (MIMO) and RF beamforming. As such, the 5G-NR mobile communication device typically employs a power management circuit(s) to drive a power amplifier(s) for amplifying the RF signal(s) before feeding the RF signal(s) to an antenna(s).


Notably, the 5G-NR mobile communication device may include multiple types of power amplifiers (e.g., differential power amplifier, single-stage power amplifier, multi-stage power amplifier, balanced power amplifier, etc.), each adapted to and/or optimized for a specific type of application and/or transmission scheme. For example, a differential power amplifier or a multi-stage power amplifier is more efficient for amplifying a same RF signal for transmission based on a spatial diversity scheme, while a balanced power amplifier will be better suited for amplifying different RF signals for transmission based on a spatial multiplexing scheme. In this regard, it is desirable to configure the 5G-NR mobile communication device to efficiently support a variety of power amplifiers based on as lesser number of power management circuits as possible.


SUMMARY

Embodiments of the disclosure relate to an envelope tracking (ET) integrated circuit (ETIC) supporting multiple types of power amplifiers. The ETIC includes a pair of tracker circuits configured to generate a pair of low-frequency currents at a pair of output nodes, respectively. The ETIC also includes a pair of ET voltage circuits configured to generate a pair of ET voltages at the output nodes, respectively. In various embodiments disclosed herein, the ETIC can be configured to generate the low-frequency currents independent of what type of power amplifier is coupled to the output nodes. In the meantime, the ETIC can also be configured to generate the ET voltages in accordance with the type of power amplifier that is coupled to the output nodes. As such, it is possible to support multiple types of power amplifiers based on a single ETIC, thus helping to reduce footprint, power consumption, and heat dissipation in an electronic device employing the ETIC and the multiple types of power amplifiers.


In one aspect, an ETIC is provided. The ETIC includes a first output node and a second output node coupled to a power amplifier. The ETIC also includes a first tracker circuit configured to generate a first low-frequency current at the first output node. The ETIC also includes a second tracker circuit configured to generate a second low-frequency current at the second output node. The ETIC also includes a first ET voltage circuit configured to generate a first ET voltage at the first output node based on a first ET target voltage. The ETIC also includes a second ET voltage circuit configured to generate a second ET voltage at the second output node based on a second ET target voltage. The ETIC also includes a control circuit. The control circuit is configured to determine a type of the power amplifier. The control circuit is also configured to cause the first tracker circuit and the second tracker circuit to generate the first low-frequency current and the second low-frequency current, respectively, independent of the type of the power amplifier. The control circuit is also configured to cause the first ET voltage circuit and the second ET voltage circuit to generate the first ET voltage and the second ET voltage, respectively, in accordance with the type of the power amplifier.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 is a schematic diagram of an exemplary envelope tracking (ET) integrated circuit (ETIC) that can be configured according to various embodiments of the present disclosure to support different types of power amplifiers;



FIGS. 2A-2D are schematic diagrams providing exemplary illustrations of various types of power amplifiers that can be coupled to the ETIC in FIG. 1 to receive the ET voltages; and



FIGS. 3A and 3B are schematic diagram providing exemplary illustrations of different configurations of a tracker circuit in the ETIC of FIG. 1.





DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Embodiments of the disclosure relate to an envelope tracking (ET) integrated circuit (ETIC) supporting multiple types of power amplifiers. The ETIC includes a pair of tracker circuits configured to generate a pair of low-frequency currents at a pair of output nodes, respectively. The ETIC also includes a pair of ET voltage circuits configured to generate a pair of ET voltages at the output nodes, respectively. In various embodiments disclosed herein, the ETIC can be configured to generate the low-frequency currents independent of what type of power amplifier is coupled to the output nodes. In the meantime, the ETIC can also be configured to generate the ET voltages in accordance with the type of power amplifier that is coupled to the output nodes. As such, it is possible to support multiple types of power amplifiers based on a single ETIC, thus helping to reduce footprint, power consumption, and heat dissipation in an electronic device employing the ETIC and the multiple types of power amplifiers.


In this regard, FIG. 1 is a schematic diagram of an exemplary ETIC 10 that can be configured according to various embodiments of the present disclosure to support a power amplifier 12 (denoted as “PA1”) of different types. Although FIG. 1 shows only one power amplifier 12, it should be appreciated that the ETIC 10 can support more than one power amplifier 12, either concurrently or independently. The ETIC 10 can be configured to include at least a first tracker circuit 14A and a second tracker circuit 14B. The first tracker circuit 14A is configured to generate a first low-frequency current IDCA (e.g., a constant current) at a first output node 16A. The second tracker circuit 14B is configured to generate a second low-frequency current IDCB (e.g., a constant current) at a second output node 16B. In a non-limiting example, both the first output node 16A and the second output node 16B are coupled to the power amplifier 12.


The ETIC 10 also includes at least a first ET voltage circuit 18A and a second ET voltage circuit 18B. The first ET voltage circuit 18A is configured to generate a first ET voltage VCCA at the first output node 16A based on a first ET target voltage VTGTA. The second ET voltage circuit 18B is configured to generate a second ET voltage VCCB at the second output node 16B based on a second ET target voltage VTGTB.


The ETIC 10 further includes a control circuit 20, which can be any type of microcontroller, microprocessor, and field-programmable gate array (FPGA), as an example. The control circuit 20 can be configured to determine a type of the power amplifier 12 being coupled to the first output node 16A and the second output node 16B (e.g., based on stored configuration information). Accordingly, the control circuit 20 can control the ETIC 10 to generate the first low-frequency current IDCA, the second low-frequency current IDCB, the first ET voltage VCCA, and the second ET voltage VCCB that are appropriate for the determined type of the power amplifier 12.


Specifically, the control circuit 20 controls the first tracker circuit 14A and the second tracker circuit 14B (e.g., via a control signal 22) to generate the first low-frequency current IDCA and the second low-frequency current IDCB, respectively, independent of the type of the power amplifier 12. In a non-limiting example, the first tracker circuit 14A and the second tracker circuit 14B each generates one-half (½) of a total low-frequency current required by the power amplifier 12. In other words, the first low-frequency current IDCA is identical to the second low-frequency current IDCB (IDCA=IDCB).


In contrast, the control circuit 20 controls the first ET voltage circuit 18A and the second ET voltage circuit 18B (e.g., via the control signal 22) to generate the first ET voltage VCCA and the second ET voltage VCCB, respectively, in accordance with the determined type of the power amplifier 12. In addition, the control circuit 20 may further cause the first ET voltage circuit 18A and the second ET voltage circuit 18B (e.g., via the control signal 22) to source a first high-frequency current IACA (e.g., an alternating current) and a second high-frequency current IACB (e.g., an alternating current), respectively, in accordance with the determined type of the power amplifier 12. As such, it is possible to support the power amplifier 12 of different types based on a single one of the ETIC 10, thus helping to reduce footprint, power consumption, and heat dissipation in an electronic device (e.g., a wireless communication device) employing the ETIC 10 and the power amplifier 12.


The first tracker circuit 14A includes a first multi-level charge pump (MCP) 24A configured to generate a first low-frequency voltage VDCA (e.g., a constant voltage) at multiple levels. The first tracker circuit 14A also includes a first power inductor 26A coupled between the first MCP 24A and the first output node 16A. The first power inductor 26A is configured to induce the first low-frequency current IDCA based on the first low-frequency voltage VDCA.


Likewise, the second tracker circuit 14B includes a second MCP 24B configured to generate a second low-frequency voltage VDCB (e.g., a constant voltage) at multiple levels. The second tracker circuit 14B also includes a second power inductor 26B coupled between the second MCP 24B and the second output node 16B. The second power inductor 26B is configured to induce the second low-frequency current IDCB based on the second low-frequency voltage VDCB. Notably, since the first power inductor 26A and the second power inductor 26B each induces ½ of the total low-frequency current required by the power amplifier 12, each of the first power inductor 26A and the second power inductor 26B can be significantly smaller (e.g., 2.2 μH) than a power inductor required to induce the total low-frequency current required by the power amplifier 12.


The first ET voltage circuit 18A includes a first voltage amplifier 28A. The first voltage amplifier 28A is biased by one of a lower supply voltage VSUPL and a higher supply voltage VSUPH and configured to generate a first initial ET voltage V′CCA that tracks (rises and falls) the first ET target voltage VTGTA. The first ET voltage circuit 18A also includes a first offset capacitor 30A coupled between the first voltage amplifier 28A and the first output node 16A. The first offset capacitor 30A is configured to raise the first initial ET voltage V′CCA by a first offset voltage VOFFA to generate the first ET voltage VCCA (VCCA=V′CCA+VOFFA) at the first output node 16A. The first ET voltage circuit 18A further includes a first feedback loop 32A configured to provide a feedback of the first ET voltage VCCA to the first voltage amplifier 28A, thus making the first ET voltage circuit 18A a closed-loop ET voltage circuit.


Similarly, the second ET voltage circuit 18B includes a second voltage amplifier 28B. The second voltage amplifier 28B is biased by one of the lower supply voltage VSUPL and the higher supply voltage VSUPH and configured to generate a second initial ET voltage V′CCB that tracks (rises and falls) the second ET target voltage VTGTB. The second ET voltage circuit 18B also includes a second offset capacitor 30B coupled between the second voltage amplifier 28B and the second output node 16B. The second offset capacitor 30B is configured to raise the second initial ET voltage V′CCB by a second offset voltage VOFFB to generate the second ET voltage VCCB (VCCB=V′CCB+VOFFB) at the second output node 16B. The second ET voltage circuit 18B further includes a second feedback loop 32B configured to provide a feedback of the second ET voltage VCCB to the second voltage amplifier 28B, thus making the second ET voltage circuit 18B a closed-loop ET voltage circuit.


The ETIC 10 includes a supply voltage circuit 34 configured to generate the lower supply voltage VSUPL and the higher supply voltage VSUPH based on a battery voltage VBAT. In a non-limiting example, the supply voltage circuit 34 is configured to generate the lower supply voltage VSUPL that equals the battery voltage VBAT (VSUPL=VBAT) and the higher supply voltage VSUPH that equals two times the battery voltage VBAT (VSUPH=2*VBAT). The ETIC 10 also includes a target voltage circuit 36 configured to generate the first ET target voltage VTGTA and the second ET target voltage VTGTB.


The ETIC 10 may include an auxiliary node 38 configured to output an auxiliary ET voltage VCCAUX to a second power amplifier 40 (denoted as “PA2”), which may be a different type of power amplifier from the power amplifier 12. Although FIG. 1 shows only one of the second power amplifier 40, it should be appreciated that the ETIC 10 can support more than one of the second power amplifier 40, either concurrently or independently. The ETIC 10 may include a switch circuit 42, which can be controlled by the control circuit 20 via the control signal 22. In a non-limiting example, the switch circuit 42 includes switches S1, S2, and S3, which can be any type of switch as appropriate. The switch S1 is provided between the first output node 16A and a coupling node 44. The switch S2 is provided between the second output node 16B and the coupling node 44. The switch S3 is provided between the auxiliary node 38 and the coupling node 44.


The ETIC 10 may also include a first hybrid circuit 46A (denoted as “SW/LDO”) and a second hybrid circuit 46B (denoted as “SW/LDO”). Each of the first hybrid circuit 46A and the second hybrid circuit 46B can be controlled to operate in a switch mode as a switch or a low-dropout (LDO) mode as an LDO regulator. The first hybrid circuit 46A is provided between the first ET voltage circuit 18A and the first output node 16A. The second hybrid circuit 46B is provided between the second ET voltage circuit 18B and the second output node 16B. Accordingly, the switch S1 is coupled to the first output node 16A via the first hybrid circuit 46A and the switch S2 is coupled to the second output node 16B via the second hybrid circuit 46B.


The ETIC 10 can be configured to support a variety of types of power amplifiers via the first output node 16A, the second output node 16B, and/or the auxiliary node 38. In this regard, FIGS. 2A-2D are schematic diagrams providing exemplary illustrations of various types of power amplifiers that can be supported by the ETIC 10 in FIG. 1. Common elements between FIGS. 1 and 2A-2D are shown therein with common element numbers and will not be re-described herein.



FIG. 2A is a schematic diagram of an exemplary differential power amplifier 48 (also referred to as “first type power amplifier”), which can be coupled to the first output node 16A and the second output node 16B as the power amplifier 12 in FIG. 1. The differential power amplifier 48 includes a first voltage input 50 and a second voltage input 52. The first voltage input 50 is coupled to the first output node 16A in FIG. 1 to receive the first ET voltage VCCA, the first low-frequency current IDCA, and the first high-frequency current IACA. The second voltage input 52 is coupled to the second output node 16B in FIG. 1 to receive the second ET voltage VCCB, the second low-frequency current IDCB, and the second high-frequency current IACB. The differential power amplifier 48 receives a radio frequency (RF) signal 54 and converts the RF signal 54 into a pair of differential RF signals 56M, 56P. Accordingly, the differential power amplifier 48 amplifies the differential RF signals 56M, 56P based on the first ET voltage VCCA and the second ET voltage VCCB, respectively.


With reference back to FIG. 1, when the control circuit 20 determines (e.g., based on stored configuration information) that the power amplifier 12 is the differential power amplifier 48 in FIG. 2A, the control circuit 20 can cause the first ET voltage circuit 18A and the second ET voltage circuit 18B (e.g., via the control signal 22) to generate the first ET voltage VCCA and the second ET voltage VCCB having substantially equal instantaneous amplitudes. Herein, the first ET voltage VCCA and the second ET voltage VCCB are said to have substantially equal instantaneous amplitudes when a difference between instantaneous amplitudes of the first ET voltage VCCA and the second ET voltage VCCB is less than ten percent (<10%). The control circuit 20 may further cause the first voltage amplifier 28A and the second voltage amplifier 28B to source the first high-frequency current IACA and the second high-frequency current IACB having substantially equal instantaneous peak amounts. Herein, the first high-frequency current IACA and the second high-frequency current IACB are said to have substantially equal instantaneous peak amounts when a difference between the first high-frequency current IACA and the second high-frequency current IACB is less than 10%.



FIG. 2B is a schematic diagram of an exemplary sigma-delta power amplifier 58 (also referred to as “second type power amplifier”), which can be coupled to the first output node 16A and the second output node 16B as the power amplifier 12 in FIG. 1. The sigma-delta power amplifier 58 includes a first signal output 60A and a second signal output 60B each coupled to a respective antenna(s) (not shown). The sigma-delta power amplifier 58 is configured to receive a pair of RF signals 62, 64 having different time-variant amplitudes A1(t), A2(t) and amplify the RF signals 62, 64 for concurrent radiation via the antennas coupled to the first signal output 60A and the second signal output 60B. In this regard, the sigma-delta power amplifier 58 may be employed to enable multiple-input multiple-output (MIMO) diversity and/or MIMO spatial multiplexing.


The sigma-delta power amplifier 58 can be configured to include an input circuit 66, a sigma voltage amplifier 68, a delta voltage amplifier 70, and an output circuit 72. The input circuit 66 is configured to receive the RF signals 62, 64 and generate a summed RF signal 74 and a differential RF signal 76 having an identical average amplitude √{square root over (A1(t)2+A2(t)2)}. The sigma voltage amplifier 68 is coupled to the first output node 16A in FIG. 1 to receive the first ET voltage VCCA, the first low-frequency current IDCA, and the first high-frequency current IACA. The delta voltage amplifier 70 is coupled to the second output node 16B in FIG. 1 to receive the second ET voltage VCCB, the second low-frequency current IDCB, and the second high-frequency current IACB. Accordingly, the sigma voltage amplifier 68 and the delta voltage amplifier 70 concurrently amplify the summed RF signal 74 and the differential RF signal 76, respectively. The output circuit 72 is configured to regenerate the RF signals 62, 64 from the summed RF signal 74 and the differential RF signal 76.


With reference back to FIG. 1, when the control circuit 20 determines (e.g., based on stored configuration information) that the power amplifier 12 is the sigma-delta power amplifier 58 in FIG. 2B, the control circuit 20 can cause the first ET voltage circuit 18A and the second ET voltage circuit 18B (e.g., via the control signal 22) to generate the first ET voltage VCCA and the second ET voltage VCCB having a substantially equal average amplitude √{square root over (A1(t)2+A2(t)2)}. Herein, the first ET voltage VCCA and the second ET voltage VCCB are said to have substantially equal average amplitudes when a difference between average amplitudes of the first ET voltage VCCA and the second ET voltage VCCB is less than 10%. The control circuit 20 may further cause the first voltage amplifier 28A and the second voltage amplifier 28B to source the first high-frequency current IACA and the second high-frequency current IACB having substantially equal average peak amounts. Herein, the first high-frequency current IACA and the second high-frequency current IACB are said to have substantially equal average peak amounts when a difference between the first high-frequency current IACA and the second high-frequency current IACB is less than 10%.



FIG. 2C is a schematic diagram of an exemplary multi-stage power amplifier 78 (also referred to as “third type power amplifier”), which can be coupled to the first output node 16A and the second output node 16B as the power amplifier 12 in FIG. 1. The multi-stage power amplifier 78 includes a driver stage amplifier 80 and one or more output stage amplifiers 82. The driver stage amplifier 80 is coupled to the first output node 16A to receive the first ET voltage VCCA, the first low-frequency current IDCA, and the first high-frequency current IACA. The output stage amplifiers 82 are all coupled to the second output node 16B to receive the second ET voltage VCCB, the second low-frequency current IDCB, and the second high-frequency current IACB.


With reference back to FIG. 1, when the control circuit 20 determines (e.g., based on stored configuration information) that the power amplifier 12 is the multi-stage power amplifier 78 in FIG. 2C, the control circuit 20 can close switches S1 and S2, while keeping switch S3 open, to couple the first output node 16A with the second output node 16B. In addition, the control circuit 20 can configure one of the first hybrid circuit 46A and the second hybrid circuit 46B to operate in the switch mode, and another one of the first hybrid circuit 46A and the second hybrid circuit 46B to operate in the LDO mode. For example, the control circuit 20 can configure (via the control signal 22) the first hybrid circuit 46A to operate in the switch mode and the second hybrid circuit 46B to operate in the LDO mode.



FIG. 2D is a schematic diagram of an exemplary power amplifier 84, which can be coupled to the auxiliary node 38 as the second power amplifier 40 in FIG. 1. The power amplifier 84 includes a voltage input 86 coupled to the auxiliary node 38 in FIG. 1 to receive the auxiliary ET voltage VCCAUX, a sum of the first low-frequency current IDCA and the second low-frequency current IDCB, as well as a sum of the first high-frequency current IACA and the second high-frequency current IACB. The power amplifier 84 receives the RF signal 54 and converts the RF signal 54 into the differential RF signals 56M, 56P. Accordingly, the power amplifier 84 amplifies the differential RF signals 56M, 56P based on the auxiliary ET voltage VCCAUX.


With reference back to FIG. 1, when the control circuit 20 determines (e.g., based on stored configuration information) that the second power amplifier 40 is the power amplifier 84 in FIG. 2D, the control circuit 20 can close switches S1, S2, and S3 (e.g., via the control signal 22). In this regard, the first tracker circuit 14A and the second tracker circuit 14B are coupled to the auxiliary node 38 to provide the sum of the first low-frequency current IDCA and the second low-frequency current IDCB to the second power amplifier 40. Additionally, the first ET voltage circuit 18A and the second ET voltage circuit 18B are also coupled to the auxiliary node 38 to provide the sum of the first high-frequency current IACA and the second high-frequency current IACB to the second power amplifier 40. By coupling the first ET voltage circuit 18A and the second ET voltage circuit 18B to the auxiliary node 38, the auxiliary ET voltage VCCAUX is equal to the first ET voltage VCCA and the second ET voltage VCCB (VCCAUX=VCCA=VCCB).


The ETIC 10 can be further configured to operate in an average power tracking (APT) mode. In this regard, the control circuit 20 can deactivate the first ET voltage circuit 18A and the second ET voltage circuit 18B. Instead, the control circuit 20 can control the first tracker circuit 14A and the second tracker circuit 14B to output any one of the first low-frequency voltage VDCA and the second low-frequency voltage VDCB as an APT voltage via any of the first output node 16A, the second output node 16B, and the auxiliary node 38.



FIG. 3A is a schematic diagram of an exemplary tracker circuit 88, which can replace the first tracker circuit 14A and the second tracker circuit 14B in the ETIC 10 of FIG. 1 to continuously supply an APT voltage VAPT. Common elements between FIGS. 1 and 3A are shown therein with common element numbers and will not be re-described herein.


The tracker circuit 88 may be configured to include a switch network 90 that includes switches S1, S2, and S3. The switch S1 is provided between the first tracker circuit 14A and the second tracker circuit 14B. The switch S2 is provided between the first MCP 24A and the first power inductor 26A. The switch S3 is provided between the second MCP 24B and the second power inductor 26B.


The control circuit 20 can control the switch network 90 (e.g., via the control signal 22) to alternately couple the first MCP 24A and the second MCP 24B to a selected one of the first power inductor 26A and the second power inductor 26B. For example, if the first tracker circuit 14A is configured to output the APT voltage VAPT via the first output node 16A in FIG. 1, the control circuit 20 will alternately couple the first MCP 24A (by closing S2 and opening S1, S3) and the second MCP 24B (by closing S1, S2 and opening S3) to the first power inductor 26A. In this regard, the second MCP 24B can be charged when the first MCP 24A is coupled to the first power inductor 26A and the first MCP 24A can be charged when the second MCP 24B is coupled to the first power inductor 26A. As a result, the ETIC 10 is able to continuously supply the APT voltage VAPT in the APT mode.



FIG. 3B is a schematic diagram of an exemplary tracker circuit 92, which can be provided in the ETIC 10 of FIG. 1 to replace the first tracker circuit 14A and the second tracker circuit 14B when the power amplifier 12 is not the second type power amplifier. Common elements between FIGS. 1 and 3B are shown therein with common element numbers and will not be re-described herein.


In a non-limiting example, the first power inductor 26A can be electrically coupled to the second power inductor 26B. As such, the first power inductor 26A and the second power inductor 26B can be integrated into a single package to help reduce footprint of the ETIC 10.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. An envelope tracking (ET) integrated circuit (ETIC) comprising: a first output node and a second output node coupled to a power amplifier;a first tracker circuit configured to generate a first low-frequency current at the first output node;a second tracker circuit configured to generate a second low-frequency current at the second output node;a first ET voltage circuit configured to generate a first ET voltage at the first output node based on a first ET target voltage;a second ET voltage circuit configured to generate a second ET voltage at the second output node based on a second ET target voltage; anda control circuit configured to: determine a type of the power amplifier;cause the first tracker circuit and the second tracker circuit to generate the first low-frequency current and the second low-frequency current, respectively, independent of the type of the power amplifier; andcause the first ET voltage circuit and the second ET voltage circuit to generate the first ET voltage and the second ET voltage, respectively, in accordance with the type of the power amplifier.
  • 2. The ETIC of claim 1 wherein the control circuit is further configured to cause the first tracker circuit and the second tracker circuit to generate the first low-frequency current and the second low-frequency current that are identical.
  • 3. The ETIC of claim 1 wherein the control circuit is further configured to cause the first ET voltage circuit and the second ET voltage circuit to generate the first ET voltage and the second ET voltage having substantially equal instantaneous amplitudes when the power amplifier is determined to be a first type power amplifier.
  • 4. The ETIC of claim 3 wherein the first type power amplifier is a differential power amplifier configured to amplify a radio frequency (RF) signal based on the first ET voltage and the second ET voltage.
  • 5. The ETIC of claim 3 wherein: the first ET voltage circuit is further configured to provide a first high-frequency peak current to the first output node;the second ET voltage circuit is further configured to provide a second high-frequency peak current to the second output node; andthe control circuit is further configured to cause the first ET voltage circuit and the second ET voltage circuit to generate the first high-frequency peak current and the second high-frequency peak current having substantially equal instantaneous peak amounts when the power amplifier is determined to be the first type power amplifier.
  • 6. The ETIC of claim 1 wherein the control circuit is further configured to cause the first ET voltage circuit and the second ET voltage circuit to generate the first ET voltage and the second ET voltage having substantially equal average amplitudes when the power amplifier is determined to be a second type power amplifier.
  • 7. The ETIC of claim 6 wherein the second type power amplifier is a sigma-delta power amplifier configured to concurrently amplify two different radio frequency (RF) signals based on the first ET voltage and the second ET voltage.
  • 8. The ETIC of claim 7 wherein: the first ET voltage circuit is further configured to provide a first high-frequency peak current to the first output node;the second ET voltage circuit is further configured to provide a second high-frequency peak current to the second output node; andthe control circuit is further configured to cause the first ET voltage circuit and the second ET voltage circuit to generate the first high-frequency peak current and the second high-frequency peak current having substantially equal average peak amounts when the power amplifier is determined to be the second type power amplifier.
  • 9. The ETIC of claim 1 further comprising a switch circuit coupled between the first output node and the second output node.
  • 10. The ETIC of claim 9 further comprising: a first hybrid circuit coupled between the first ET voltage circuit and the first output node; anda second hybrid circuit coupled between the second ET voltage circuit and the second output node;wherein the first hybrid circuit and the second hybrid circuit are each configured to operate in a switch mode or a low-dropout (LDO) mode.
  • 11. The ETIC of claim 10 wherein the control circuit is further configured to: control the switch circuit to couple the first output node with the second output node when the power amplifier is a third type power amplifier;control one of the first hybrid circuit and the second hybrid circuit to operate in the switch mode; andcontrol another one of the first hybrid circuit and the second hybrid circuit to operate in the LDO mode.
  • 12. The ETIC of claim 11 wherein the third type power amplifier is a multi-stage power amplifier comprising: a driver stage amplifier coupled to the first output node to receive the first ET voltage; andone or more output stage amplifiers each coupled to the second output node to receive the second ET voltage;wherein the driver stage amplifier and the one or more output stage amplifiers are configured to collectively amplify a radio frequency (RF) signal.
  • 13. The ETIC of claim 9 further comprising: an auxiliary node coupled to the switch circuit and a second power amplifier;wherein the control circuit is further configured to control the switch circuit to couple the first tracker circuit and the second tracker circuit to the auxiliary node such that the second power amplifier receives a sum of the first low-frequency current and the second low-frequency current.
  • 14. The ETIC of claim 13 wherein the second power amplifier is a multi-stage power amplifier comprising a driver stage amplifier and an output stage amplifier each coupled to the auxiliary node and configured to collectively amplify a radio frequency (RF) signal.
  • 15. The ETIC of claim 1 wherein each of the first tracker circuit and the second tracker circuit comprises: a multi-level charge pump (MCP) configured to generate a low-frequency voltage; anda power inductor coupled to the MCP and configured to induce a respective one of the first low-frequency current and the second low-frequency current based on the low-frequency voltage.
  • 16. The ETIC of claim 15 further comprising a switch network coupled to the first tracker circuit and the second tracker circuit, wherein the control circuit is further configured to control the switch network to alternately couple the MCP in the first tracker circuit and the MCP in the second tracker circuit to the power inductor in a selected one of the first tracker circuit and the second tracker circuit.
  • 17. The ETIC of claim 15 wherein the control circuit is further configured to deactivate the first ET voltage circuit and the second ET voltage circuit.
  • 18. The ETIC of claim 15 wherein the power inductor in the first tracker circuit is electrically coupled to the power inductor in the second tracker circuit.
  • 19. The ETIC of claim 1 wherein each of the first ET voltage circuit and the second ET voltage circuit comprises: a voltage amplifier configured to generate an initial ET voltage based on a respective one of the first ET target voltage and the second ET target voltage and a respective one of a lower supply voltage and a higher supply voltage; andan offset capacitor configured to raise the initial ET voltage by an offset voltage to generate a respective one of the first ET voltage and the second ET voltage.
  • 20. The ETIC of claim 19 further comprising: a target voltage circuit configured to generate the first ET target voltage and the second ET target voltage; anda supply voltage circuit configured to generate the lower supply voltage and the higher supply voltage.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 62/962,616, filed Jan. 17, 2020, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (232)
Number Name Date Kind
5510753 French Apr 1996 A
5838732 Carney Nov 1998 A
6107862 Mukainakano et al. Aug 2000 A
6141377 Sharper et al. Oct 2000 A
6141541 Midya et al. Oct 2000 A
6411531 Nork et al. Jun 2002 B1
6985033 Shirali et al. Jan 2006 B1
7043213 Robinson et al. May 2006 B2
7471155 Levesque Dec 2008 B1
7570931 McCallister et al. Aug 2009 B2
7994862 Pukhovski Aug 2011 B1
8461928 Yahav et al. Jun 2013 B2
8493141 Khlat et al. Jul 2013 B2
8519788 Khlat Aug 2013 B2
8588713 Khlat Nov 2013 B2
8718188 Balteanu et al. May 2014 B2
8723492 Korzeniowski May 2014 B2
8725218 Brown et al. May 2014 B2
8774065 Khlat et al. Jul 2014 B2
8803603 Wimpenny Aug 2014 B2
8818305 Schwent et al. Aug 2014 B1
8854129 Wilson Oct 2014 B2
8879665 Xia et al. Nov 2014 B2
8913690 Onishi Dec 2014 B2
8942651 Jones Jan 2015 B2
8947161 Khlat et al. Feb 2015 B2
8989682 Ripley et al. Mar 2015 B2
9018921 Gurlahosur Apr 2015 B2
9020451 Khlat Apr 2015 B2
9041364 Khlat May 2015 B2
9041365 Kay et al. May 2015 B2
9055529 Shih Jun 2015 B2
9065509 Yan et al. Jun 2015 B1
9069365 Brown et al. Jun 2015 B2
9098099 Park et al. Aug 2015 B2
9166538 Hong et al. Oct 2015 B2
9166830 Camuffo et al. Oct 2015 B2
9167514 Dakshinamurthy et al. Oct 2015 B2
9197182 Baxter et al. Nov 2015 B2
9225362 Drogi et al. Dec 2015 B2
9247496 Khlat Jan 2016 B2
9263997 Vinayak Feb 2016 B2
9270230 Henshaw et al. Feb 2016 B2
9270239 Drogi et al. Feb 2016 B2
9271236 Drogi Feb 2016 B2
9280163 Kay et al. Mar 2016 B2
9288098 Yan et al. Mar 2016 B2
9298198 Kay et al. Mar 2016 B2
9344304 Cohen May 2016 B1
9356512 Chowdhury et al. May 2016 B2
9362868 Al-Qaq et al. Jun 2016 B2
9377797 Kay et al. Jun 2016 B2
9379667 Khlat et al. Jun 2016 B2
9445371 Khesbak et al. Sep 2016 B2
9515622 Nentwig et al. Dec 2016 B2
9520907 Peng et al. Dec 2016 B2
9584071 Khlat Feb 2017 B2
9595869 Lerdworatawee Mar 2017 B2
9595981 Khlat Mar 2017 B2
9596110 Jiang et al. Mar 2017 B2
9614477 Rozenblit et al. Apr 2017 B1
9634666 Krug Apr 2017 B2
9748845 Kotikalapoodi Aug 2017 B1
9806676 Balteanu et al. Oct 2017 B2
9831834 Balteanu et al. Nov 2017 B2
9837962 Mathe et al. Dec 2017 B2
9900204 Levesque et al. Feb 2018 B2
9923520 Abdelfattah et al. Mar 2018 B1
10003416 Lloyd Jun 2018 B1
10090808 Henzler et al. Oct 2018 B1
10097145 Khlat et al. Oct 2018 B1
10103693 Zhu et al. Oct 2018 B2
10110169 Khesbak et al. Oct 2018 B2
10158329 Khlat Dec 2018 B1
10158330 Khlat Dec 2018 B1
10170989 Balteanu et al. Jan 2019 B2
10291181 Kim et al. May 2019 B2
10326408 Khlat et al. Jun 2019 B2
10382071 Rozek et al. Aug 2019 B2
10476437 Nag et al. Nov 2019 B2
10680556 Khlat Jun 2020 B2
10756675 Leipold Aug 2020 B2
10862431 Khlat Dec 2020 B1
10879804 Kim et al. Dec 2020 B2
11050433 Melanson et al. Jun 2021 B1
11121684 Henzler et al. Sep 2021 B2
11128261 Ranta et al. Sep 2021 B2
20020167827 Umeda et al. Nov 2002 A1
20030107428 Khouri et al. Jun 2003 A1
20040266366 Robinson et al. Dec 2004 A1
20050090209 Behzad Apr 2005 A1
20050227646 Yamazaki et al. Oct 2005 A1
20050232385 Yoshikawa et al. Oct 2005 A1
20060028271 Wilson Feb 2006 A1
20060240786 Liu Oct 2006 A1
20070052474 Saito Mar 2007 A1
20070258602 Vepsalainen et al. Nov 2007 A1
20080116960 Nakamura May 2008 A1
20080231358 Maemura Sep 2008 A1
20090016085 Rader et al. Jan 2009 A1
20090045872 Kenington Feb 2009 A1
20090191826 Takinami et al. Jul 2009 A1
20100283534 Pierdomenico Nov 2010 A1
20100308919 Adamski et al. Dec 2010 A1
20110074373 Lin Mar 2011 A1
20110136452 Pratt et al. Jun 2011 A1
20110175681 Inamori et al. Jul 2011 A1
20110279179 Vice Nov 2011 A1
20120194274 Fowers et al. Aug 2012 A1
20120200435 Ngo et al. Aug 2012 A1
20120281597 Khlat et al. Nov 2012 A1
20120299645 Southcombe et al. Nov 2012 A1
20120299647 Honjo et al. Nov 2012 A1
20130021827 Ye Jan 2013 A1
20130100991 Woo Apr 2013 A1
20130127548 Popplewell et al. May 2013 A1
20130130724 Kumar Reddy et al. May 2013 A1
20130141064 Kay et al. Jun 2013 A1
20130162233 Marty Jun 2013 A1
20130187711 Goedken et al. Jul 2013 A1
20130200865 Wimpenny Aug 2013 A1
20130271221 Levesque et al. Oct 2013 A1
20140009226 Severson Jan 2014 A1
20140028370 Wimpenny Jan 2014 A1
20140028390 Davis Jan 2014 A1
20140055197 Khlat et al. Feb 2014 A1
20140057684 Khlat Feb 2014 A1
20140103995 Langer Apr 2014 A1
20140155002 Dakshinamurthy et al. Jun 2014 A1
20140184335 Nobbe et al. Jul 2014 A1
20140199949 Nagode et al. Jul 2014 A1
20140203869 Khlat et al. Jul 2014 A1
20140210550 Mathe et al. Jul 2014 A1
20140218109 Wimpenny Aug 2014 A1
20140235185 Drogi Aug 2014 A1
20140266423 Drogi et al. Sep 2014 A1
20140266428 Chiron et al. Sep 2014 A1
20140315504 Sakai et al. Oct 2014 A1
20140361830 Mathe et al. Dec 2014 A1
20140361837 Strange et al. Dec 2014 A1
20150048883 Vinayak Feb 2015 A1
20150071382 Wu et al. Mar 2015 A1
20150098523 Lim et al. Apr 2015 A1
20150139358 Asuri et al. May 2015 A1
20150155836 Midya et al. Jun 2015 A1
20150188432 Vannorsdel et al. Jul 2015 A1
20150234402 Kay et al. Aug 2015 A1
20150236652 Yang et al. Aug 2015 A1
20150236654 Jiang et al. Aug 2015 A1
20150236729 Peng et al. Aug 2015 A1
20150280652 Cohen Oct 2015 A1
20150333781 Alon et al. Nov 2015 A1
20160050629 Khesbak et al. Feb 2016 A1
20160065137 Khlat Mar 2016 A1
20160065139 Lee et al. Mar 2016 A1
20160099686 Perreault et al. Apr 2016 A1
20160099687 Khlat Apr 2016 A1
20160105151 Langer Apr 2016 A1
20160118941 Wang Apr 2016 A1
20160126900 Shute May 2016 A1
20160173031 Langer Jun 2016 A1
20160181995 Nentwig et al. Jun 2016 A1
20160187627 Abe Jun 2016 A1
20160197627 Qin et al. Jul 2016 A1
20160226448 Wimpenny Aug 2016 A1
20160294587 Jiang et al. Oct 2016 A1
20170005619 Khlat Jan 2017 A1
20170012675 Frederick Jan 2017 A1
20170141736 Pratt et al. May 2017 A1
20170302183 Young Oct 2017 A1
20170317913 Kim et al. Nov 2017 A1
20170338773 Balteanu et al. Nov 2017 A1
20180013465 Chiron et al. Jan 2018 A1
20180048265 Nentwig Feb 2018 A1
20180048276 Khlat et al. Feb 2018 A1
20180076772 Khesbak et al. Mar 2018 A1
20180123453 Puggelli et al. May 2018 A1
20180152144 Choo et al. May 2018 A1
20180254530 Wigney Sep 2018 A1
20180288697 Camuffo et al. Oct 2018 A1
20180302042 Zhang et al. Oct 2018 A1
20180309414 Khlat et al. Oct 2018 A1
20180367101 Chen et al. Dec 2018 A1
20180375476 Balteanu et al. Dec 2018 A1
20180375483 Balteanu et al. Dec 2018 A1
20190028060 Jo et al. Jan 2019 A1
20190044480 Khlat Feb 2019 A1
20190068234 Khlat et al. Feb 2019 A1
20190097277 Fukae Mar 2019 A1
20190109566 Folkmann et al. Apr 2019 A1
20190109613 Khlat et al. Apr 2019 A1
20190181804 Khlat Jun 2019 A1
20190222178 Khlat et al. Jul 2019 A1
20190229623 Tsuda et al. Jul 2019 A1
20190238095 Khlat Aug 2019 A1
20190253023 Yang et al. Aug 2019 A1
20190267956 Granger-Jones et al. Aug 2019 A1
20190222175 Khlat et al. Oct 2019 A1
20200007090 Khlat et al. Jan 2020 A1
20200036337 Khlat Jan 2020 A1
20200106392 Khlat et al. Apr 2020 A1
20200127608 Khlat Apr 2020 A1
20200127625 Khlat Apr 2020 A1
20200136561 Khlat et al. Apr 2020 A1
20200136563 Khlat Apr 2020 A1
20200136575 Khlat et al. Apr 2020 A1
20200144966 Khlat May 2020 A1
20200153394 Khlat et al. May 2020 A1
20200177131 Khlat Jun 2020 A1
20200204116 Khlat Jun 2020 A1
20200228063 Khlat Jul 2020 A1
20200259456 Khlat Aug 2020 A1
20200259685 Khlat Aug 2020 A1
20200266766 Khlat et al. Aug 2020 A1
20200321848 Khlat Oct 2020 A1
20200321917 Nomiyama et al. Oct 2020 A1
20200328720 Khlat Oct 2020 A1
20200336105 Khlat Oct 2020 A1
20200336111 Khlat Oct 2020 A1
20200350865 Khlat Nov 2020 A1
20200382061 Khlat Dec 2020 A1
20200382066 Khlat Dec 2020 A1
20210036604 Khlat et al. Feb 2021 A1
20210159590 Na et al. May 2021 A1
20210175896 Melanson et al. Jun 2021 A1
20210184708 Khlat Jun 2021 A1
20210194515 Go et al. Jun 2021 A1
20210194522 Stockert et al. Jun 2021 A1
20210211108 Khlat Jul 2021 A1
20210281228 Khlat Sep 2021 A1
20210288615 Khlat Sep 2021 A1
20210305944 Scott et al. Sep 2021 A1
Foreign Referenced Citations (6)
Number Date Country
3174199 May 2012 EP
H03104422 May 1991 JP
2018182778 Oct 2018 WO
2020206246 Oct 2020 WO
2021016350 Jan 2021 WO
2021046453 Mar 2021 WO
Non-Patent Literature Citations (102)
Entry
Chen, S. et al., “A 4.5 μW 2.4 GHz Wake-Up Receiver Based on Complementary Current-Reuse RF Detector,” 2015 IEEE International Symposium on Circuits and Systems (ISCAS), May 24-27, 2015, IEEE, pp. 1214-1217.
Ying, K. et al., “A Wideband Envelope Detector with Low Ripple and High Detection Speed,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), May 27-30, 2018, IEEE, 5 pages.
Notice of Allowance for U.S. Appl. No. 17/011,313, dated Nov. 4, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated Nov. 10, 2021, 9 pages.
Quayle Action for U.S. Appl. No. 16/855,154, mailed Oct. 25, 2021, 6 pages.
Notice of Allowance for U.S. Appl. No. 17/115,982, dated Nov. 12, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 17/126,561, dated Oct. 14, 2021, 6 pages.
Non-Final Office Action for U.S. Appl. No. 17/073,764, dated Dec. 24, 2021, 22 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052151, dated Jan. 4, 2022, 16 pages.
Wan, F. et al., “Negative Group Delay Theory of a Four-Port RC-Network Feedback Operational Amplifier,” IEEE Access, vol. 7, Jun. 13, 2019, IEEE, 13 pages.
Notice of Allowance for U.S. Appl. No. 16/834,049, dated Jun. 24, 2021, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/964,762, dated Mar. 18, 2019, 7 pages.
Quayle Action for U.S. Appl. No. 16/589,940, mailed Dec. 4, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Jan. 13, 2021, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/416,812, dated Feb. 16, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/689,236 dated Mar. 2, 2021, 15 pages.
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/774,060, dated Feb. 3, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/590,790, dated Jan. 27, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/661,061, dated Feb. 10, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Apr. 1, 2021, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/582,471, dated Mar. 24, 2021, 11 pages.
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Feb. 1, 2022, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/807,575, dated Jan. 31, 2022, 12 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/050892, dated Jan. 5, 2022, 20 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/054141 dated Jan. 25, 2022, 15 pages.
Non-Final Office Action for U.S. Appl. No. 17/032,553, dated Mar. 21, 2022, 4 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/052830, dated Jan. 24, 2022, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/984,566, dated Mar. 18, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Dec. 23, 2019, 10 pages.
Final Office Action for U.S. Appl. No. 16/263,316, dated May 13, 2020, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Jul. 17, 2020, 4 pages.
Non-Final Office Action for U.S. Appl. No. 16/263,316, dated Nov. 24, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/263,316, dated Mar. 30, 2021, 7 pages.
Final Office Action for U.S. Appl. No. 16/807,575, dated May 4, 2022, 12 pages.
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages.
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/459,449, dated Mar. 28, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/704,131, dated Jul. 17, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages.
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfister.ee.duke.edu/courses/ece485/dtsp.pdf, Mar. 3, 2017, 22 pages.
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages.
Non-Final Office Action for U.S. Appl. No. 15/986,948, dated Mar. 28, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages.
Notice of Allowance for U.S. Appl. No. 15/902,244, dated Feb. 8, 2019, 8 pages.
Advisory Action for U.S. Appl. No. 15/888,300, dated Jun. 5, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages.
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages.
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages.
Advisory Action for U.S. Appl. No. 15/986,948, dated Nov. 8, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/986,948, dated Dec. 13, 2019, 7 pages.
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages.
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages.
Non-Final Office Action for U.S. Appl. No. 16/122,611, dated Mar. 11, 2020, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/174,535, dated Feb. 4, 2020, 7 pages.
Quayle Action for U.S. Appl. No. 16/354,234, mailed Mar. 6, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages.
Final Office Action for U.S. Appl. No. 16/174,535, dated Jul. 1, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages.
Final Office Action for U.S. Appl. No. 15/888,300, dated Feb. 15, 2019, 15 pages.
Final Office Action for U.S. Appl. No. 16/122,611, dated Sep. 18, 2020, 17 pages.
Advisory Action for U.S. Appl. No. 16/174,535, dated Sep. 24, 2020, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/174,535, dated Oct. 29, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages.
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages.
Quayle Action for U.S. Appl. No. 16/421,905, mailed Aug. 25, 2020, 5 pages.
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/514,051, dated Nov. 13, 2020, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages.
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Dec. 1, 2020, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/689,236 dated Jun. 9, 2021, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/775,554, dated Jun. 14, 2021, 5 pages.
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated May 26, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Jun. 22, 2021, 9 pages.
Advisory Action for U.S. Appl. No. 16/807,575, dated Jul. 28, 2022, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/807,575, dated Aug. 19, 2022, 8 pages.
Non-Final Office Action for U.S. Appl. No. 17/163,642, dated Aug. 17, 2022, 9 pages.
Final Office Action for U.S. Appl. No. 17/032,553, dated Jul. 29, 2022, 6 pages.
Final Office Action for U.S. Appl. No. 17/073,764, dated Jun. 1, 2022, 22 pages.
Advisory Action for U.S. Appl. No. 17/073,764, dated Aug. 23, 2022, 3 pages.
Extended European Search Report for European Patent Application No. 22153526.3, dated Jul. 13, 2022, 9 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/052151, dated Oct. 13, 2022, 21 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2021/054141, dated Sep. 29, 2022, 20 pages.
Non-Final Office Action for U.S. Appl. No. 17/146,765, dated Sep. 7, 2022, 10 pages.
Notice of Allowance for U.S. Appl. No. 17/032,553, dated Oct. 11, 2022, 7 pages.
Non-Final Office Action for U.S. Appl. No. 17/073,764, dated Sep. 30, 2022, 13 pages.
Related Publications (1)
Number Date Country
20210226585 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62962616 Jan 2020 US