1. Technical Field
The present invention is directed to broadcast transmission and communication systems in general, and is particularly related to improving the efficiency of radio frequency power amplifiers. The present invention relates to broadcasting RF signals and, more particularly, to improvements permitting both analog and digital components to be transmitted employing a common amplifier. Applications would include FM+HD Radio transmitters for the amplification of DAB, IBOC, (HD Radio) signals.
2. Description of the Prior Art
The introduction of HD Radio broadcasting at higher power levels has increased demand for high power VHF transmitters capable of simultaneous, common, amplification of digital, HD Radio signals with the analog FM signal. Improving the efficiency of the high power RF amplifier is important for reducing power consumption and the cooling requirements of the transmitter providing both economic and environmental benefits.
The introduction of digital audio broadcasting (DAB) and other forms of vector modulation require simultaneous amplitude and phase modulation of the RF carrier. Conventional FM broadcast transmitters utilize nonlinear RF power amplifiers that cannot convey the amplitude variations needed to accurately replicate the vector modulation.
In the prior art, it is known to employ separate amplification of the vector modulation signal and of the analog FM signal. An example of this is disclosed in
Because the outputs V1 and V2 are combined only after they have reached a high level of amplitude (because they have already been amplified by separate amplifiers) this is referred to in the art as “high-level combining” or “separate amplification”. This type of combining results in high losses because the two signals are not correlated. This may be viewed as the penalty paid for the simplicity involved. In a 10 dB coupler, some of the problems noted include the following: the main FM transmitter needs to have enough headroom in order to increase its output power to overcome the combiner insertion loss. This can be very problematic in specific installations without additional headroom to spare. Major hardware upgrade could be necessary to overcome this issue, such as by replacing the existing main FM transmitter with a more powerful transmitter. A second problem with this type of system is that the overall dissipation increases. Besides the power dissipated by digital transmitter 12, additional energy is wasted at this reject load RL where up to 10% of the main transmitter FM output and up to 90% of the output of the digital transmitter will be dissipated. This inefficiency creates additional heat load for the air-conditioning equipment.
Other prior art examples include the U.S. patents to Murphy et al. U.S. Pat. No. 5,315,583 and Papadopoulos et al. U.S. Pat. No. 6,144,705. It will be noted that the example in
It is desired to add the vector modulation amplitude and phase components to the same quasi-linear amplifier used to simultaneously amplify the constant amplitude, analog FM signal and the non-constant digital HD radio signal. This is the subject of the invention herein to be described below. This invention will allow the existing FM broadcast transmitter to add vector modulation to the existing FM signal without the need for a second transmitter and inefficient RF combining equipment.
In accordance with the present invention, an apparatus is provided for broadcasting an RF signal. This apparatus includes a signal amplifier having a first input and a second input. A sampler receives a composite RF signal and provides therefrom a sample signal and a driver signal with each signal having digital and analog components. An envelope extractor receives the sample signal and provides therefrom an amplitude modulated baseband signal for application to the second input of the amplifier. Circuitry also supplies the drive signal to the second input of the amplifier.
In accordance with the more limited aspect of the present invention, the second input is a screen grid and the first input is a control grid wherein the amplifier includes a vacuum tube or the gate terminal wherein the amplifier includes a MOS-FET device.
The foregoing and other features of the present invention will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, wherein:
Existing high power FM broadcast transmitters normally employ a vacuum tube in the final RF power amplifier that is operated in a saturated Class-C mode. It is not possible to add the second vector modulated signal to the input of this nonlinear amplifier without first partially linearizing the amplifier to reproduce the crest factor of the combined FM+vector modulated signal. There is a unique combination of screen voltage and output circuit loading for each power output operating level. The average power output of the combined FM+HD Radio signal is several dB lower than the peak power output required to pass the peaks of the HD Radio component. If the combination of screen voltage and output loading is optimized to pass these peaks, the amplifier will operate with lower efficiency when these peaks are not present. This invention changes the ratio of screen voltage to output loading as required to follow the amplitude requirements of the HD Radio signal component and maintain the optimum ratio. It is proposed that the amplitude information representing the envelope variations of the vector modulated signal be applied to the screen grid of the vacuum tube amplifier or the gate terminal of a MOS-FET device. This is achieved by superimposing a wide bandwidth, analog, baseband, voltage representing the instantaneous amplitude of the vector modulation on top of the DC bias normally applied to the screen grid of the vacuum tube (see
Screen Grid Power Supply AC Impedance: The method of injecting the analog baseband signal representing the amplitude modulation must maintain a low AC impedance for the screen grid DC bias supply 106 and from the screen grid to ground. A wide bandwidth (>1 MHz) analog operational power amplifier in supply 106 is inserted in series with the ground return of the screen grid bias supply. The instantaneous analog voltage adds to and subtracts from the DC screen grid voltage, thereby changing the operating point of the amplifier tube in proportion to the amplitude of the vector modulated signal.
Pre-correction for non-linearities: Varying the voltage on the screen grid of the power amplifier does not. change the operating point exactly proportional to this voltage variation. Pre-correction of the modulating signal is required to compensate for this system nonlinearity.
The composite drive signal which contains both the envelope and phase components of the combined digital and analog signals is applied to the control grid of the power amplifier.
Reference is now made to
Although the invention has been described in conjunction with preferred embodiments, it is to be appreciated that various modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.
This is a continuation-in-part of U.S. application Ser. No. 11/890,573, filed Aug. 7, 2007.
Number | Date | Country | |
---|---|---|---|
Parent | 11890573 | Aug 2007 | US |
Child | 12217262 | US |