Environmental Arsenic in the Subtype Specification of Breast Cancer

Information

  • Research Project
  • 10252934
  • ApplicationId
    10252934
  • Core Project Number
    R01ES028149
  • Full Project Number
    5R01ES028149-04
  • Serial Number
    028149
  • FOA Number
    PA-16-160
  • Sub Project Id
  • Project Start Date
    6/30/2020 - 4 years ago
  • Project End Date
    8/31/2023 - a year ago
  • Program Officer Name
    REINLIB, LESLIE J
  • Budget Start Date
    9/1/2021 - 3 years ago
  • Budget End Date
    8/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    9/14/2021 - 3 years ago
Organizations

Environmental Arsenic in the Subtype Specification of Breast Cancer

ABSTRACT Environmental inorganic arsenic (iAs) is a class I human carcinogen with established roles in promoting skin, colon, bladder and kidney cancers. The role of iAs as a breast carcinogen is less established although numerous studies have indicated that in cell cultures iAs promotes the specification of breast cancer cells towards phenotypes that are estrogen receptor negative which are more lethal as well as more challenging to treat. The molecular mechanisms involved remain unknown. Our laboratory found that iAs promotes alterations in the metabolism of mitochondrial reactive oxygen species (ROS) via inhibiting the tumor suppressor Sirtuin 3 which leads to the accumulation of manganese superoxide dismutase (MnSOD) in an acetylated form (MnSOD-Ac), increased reactive oxygen species (ROS) and the activation of hypoxia induced factor 2? (HIF2?). The activation of HIF2? is a well-established mechanism of stem cell reprogramming that has also been implicated in metastatic recurrence as well as treatment failure in women with breast cancer. Hence, we propose that chronic iAs exposure is a risk factor for the development of ER(-) breast cancer via a mechanism that involves MnSOD acetylation and mitochondrial ROS. By extension, we propose that the MnSOD-Ac/HIF2? molecular signature may identify women with breast cancer that have been exposed to iAs and required personalized care for they are at increased risk of failing standard therapeutics. Also, that the MnSOD-Ac/HIF2? may be targeted to improve therapy in these women. Our aims are as follows: (1) determine if MnSOD-Ac reprograms tumor cell to stem-like (more aggressive) phenotypes associated with chemoresistance and if targeting MnSOD-Ac reverses this effect. (2) determine if low level iAs exposure in the drinking water transforms ER+ in situ xenograph tumors developing in mice towards more pervasive phenotypes. (3) determine if there is an association between exposure to iAs and breast cancer with a MnSOD-Ac, or MnSOD-ROS- HIF2? molecular signature as well as if iAs exposure promotes chemoresistance or a prevalence of aggressive ER(-) phenotypes.

IC Name
NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES
  • Activity
    R01
  • Administering IC
    ES
  • Application Type
    5
  • Direct Cost Amount
    234651
  • Indirect Cost Amount
    119546
  • Total Cost
    354197
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    113
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIEHS:354197\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NORTHWESTERN UNIVERSITY AT CHICAGO
  • Organization Department
    RADIATION-DIAGNOSTIC/ONCOLOGY
  • Organization DUNS
    005436803
  • Organization City
    CHICAGO
  • Organization State
    IL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    606114579
  • Organization District
    UNITED STATES