1. Field of Invention This invention relates to methods and apparatus for environmental control, such as heating and/or cooling, of an environment in an electronic device enclosure or cocoon.
2. Description of Related Art
It is often desirable to use electronic devices, such as computers, data storage devices, etc., in harsh environments. For example, it may be desirable to use such electronic devices in a vehicle, such as an airplane, tank or other, where environmental conditions, e.g., the temperature, humidity, air pressure, vibration, dust or other contaminants, or other conditions, may not be suitable for the proper operation of the devices. The use of commercial off-the-shelf (COTS) devices in military aircraft or other applications may be precluded without providing a proper operating environment for the devices. In some cases, a cocoon or enclosure is provided in which the electronics may be housed and protected, at least in part, from environmental conditions outside the enclosure. Some such enclosures are described, for example in U.S. Pat. No. 6,330,152 and in U.S. Patent Publication 2004/0190229. Such devices protect electronic equipment inside the enclosure from dust, humidity and other environmental factors, while providing heating and/or cooling of the components.
In one aspect of the invention, an electronic device enclosure has walls that define a chamber within which at least one electronic device is located. Thermal conditions within the chamber may be controlled, at least in part, by a heat exchanger that carries a liquid material to transfer heat between the chamber and an environment outside of the enclosure. The liquid material may be circulated through the heat exchanger via an inlet port at which the liquid material flows into the heat exchanger and an outlet port through which the liquid material flows out from the heat exchanger. The liquid material may be provided from a source that is external to and physically separate from the enclosure. By transferring heat (whether cooling or heating) between the chamber and an exterior environment by a liquid material, a volume required to transfer a specific amount of heat may be reduced, e.g., as compared to heating/cooling by air exchange. A high heat capacity/volume ratio may be useful, for example, in environments requiring a compact heating/cooling apparatus. Further, use of a liquid material may allow for more quiet operation (by reducing noise generated by moving air and/or fans), limited or no air exchange with the chamber (such as in pressurized compartments where high volume air exchange may be undesirable), or other.
In one illustrative embodiment, an enclosure for housing electronic devices includes one or more walls, including at least one sidewall, that define a chamber within which electronic devices are located. The chamber may define an environment suitable for the operation of the electronic devices that is different from an environment outside of the chamber. A heat exchanger may be at least partially located in the chamber at a sidewall of the chamber, and use a liquid material to transfer heat between the chamber and an area outside of the chamber. Heat generated by the electronic devices may be transferred by air to the heat exchanger.
In another illustrative embodiment, an enclosure for housing electronic devices includes one or more walls that define a chamber within which electronic devices are located. The chamber may define an environment suitable for the operation of the electronic devices that is different from an environment outside of the chamber. A heat exchanger may be incorporated into at least one wall of the chamber, and use a liquid material to transfer heat between the chamber and an area outside of the chamber. Heat generated by the electronic devices may be transferred by air to the heat exchanger. This arrangement may allow any condensate that forms when cooling the chamber to form at the heat exchanger on the wall or walls, thereby reducing a likelihood that condensate forms at or near electronic components housed in the chamber.
In one embodiment, the chamber may be constructed and arranged so that a fan included with at least one electronic device moves air to cool at least a portion of the electronic device and causes air to move near the heat exchanger. Thus, additional air circulation devices need not be provided for the enclosure since air movement devices that are part of the electronic devices housed in the chamber may provide suitable air movement for cooling purposes.
In another aspect of the invention, a method for providing a suitable environment for electronic devices includes providing an enclosure having walls that define a chamber isolated from external environmental conditions and within which one or more electronic devices are housed. Heat may be transferred from air in the chamber, that is heated by one or more electronic devices, to a liquid material located in a heat exchanger that is incorporated into at least one of the walls of the enclosure.
In one aspect of the invention, a chamber of an electronic device enclosure may be heated and/or cooled without the need for supplying electrical or other power to the enclosure. Instead, the chamber may be heated and/or cooled by passive devices, such as a heat exchanger, without the use of powered pumps, compressors, or other devices at or in the enclosure. Such powered devices, if needed, to cool and/or heat the chamber may be located physically separate from the enclosure, e.g., be part of a vehicle or aircraft in which the enclosure is used.
These and other aspects of the invention will be apparent and/or obvious from the following description. Aspects of the invention may be used separately or in any suitable combination with other aspects of the invention.
Various aspects of the invention are described with reference to the following drawings, wherein like numerals reference like elements, and wherein:
As shown in
In one aspect of the invention, a temperature within a chamber of the enclosure may be controlled via heat transfer using a liquid material. This is in contrast to conventional enclosures in which heat is transferred between an enclosure chamber and an exterior environment by air or other gaseous medium (such as an evaporated refrigerant). In the
The air temperature in the chamber may be controlled in any suitable way, such as by a sensor in the chamber that provides temperature information to the heating/cooling device 2. Based on this information, the heating/cooling device 2 may control operation of various components to adjust or maintain the temperature in the chamber, e.g., by activating a circulation pump, heater, cooling device, fans, etc.
In one aspect of the invention, the chamber of an enclosure may be heated and/or cooled by means of a passive device at the enclosure. That is, power need not be supplied to the enclosure to heat and/or cool the chamber. Rather, a passive device, such as a passive heat exchanger, may be used. As shown in
In another aspect of the invention, a heat exchanger used to heat and/or cool a chamber of an enclosure may be incorporated into at least a part of a wall, such as a sidewall, that forms the chamber. Such an arrangement may reduce the weight of the enclosure by allowing at least a part of the heat exchanger to form part of the structure of the enclosure. Such an arrangement may also reduce the size of the enclosure and/or reduce its complexity, such as when assembling the enclosure. In addition, locating a heat exchanger at a wall of a chamber may provide a more suitable location for condensation to occur, particularly when cooling a chamber. For example, when cooling electronic components by supplying cool air into the enclosure, condensation may occur at or near electronic components, possibly forming unwanted pools of water near the components. By cooling the chamber via heat exchangers at the walls of the chamber, condensation may form at the walls, away from the electronic devices. With a heat exchanger incorporated into one of the sidewalls of the enclosure, i.e., one of the walls that has a vertically oriented portion, condensate can be channeled to drain to a suitable collection point and/or away from the electronic devices, such as near the bottom of the enclosure.
In another aspect of the invention, a chamber of an enclosure may be cooled by air circulation within the chamber in conjunction with a passive heat exchanger. For example, as shown in
Thus, in one aspect of the invention, heating and/or cooling of electronic devices may be performed using air moving devices that are pre-existing in the electronic devices and without having to provide additional air moving devices in the enclosure 1. Accordingly, the enclosure 1 may have a passive heating and/or cooling system such that no powered devices need be provided with the enclosure 1 to perform heating and/or cooling of the electronic devices. Instead, the electronic devices may be powered as normally required and the fans or other air moving devices that are part of the electronic devices may be used to perform the desired air circulation within the chamber. As a result, the enclosure 1 need not be specially equipped to provide certain air volume flow rates, air flow speeds or other requirements specific to the electronic devices in the enclosure 1. Instead, the fans, or other air moving devices that are incorporated into the electronic devices may be relied upon to provide the needed airflow or other cooling/heating characteristics for the specific electronic device.
Aspects of the invention are particularly suitable for employing electronic devices, such as COTS devices, in vehicles, e.g., military or other aircraft, wheeled or tracked vehicles, boats and ships, rail cars, etc. The electronic device enclosures can be arranged to work with existing heating/cooling systems in a vehicle and to protect electronic or other devices from environments encountered in or on a vehicle.
While aspects of the invention have been described with reference to various illustrative embodiments, the invention is not limited to the embodiments described. Thus, it is evident that many alternatives, modifications, and variations of the embodiments described will be apparent to those skilled in the art. Accordingly, embodiments of the invention as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the invention.
Number | Date | Country | |
---|---|---|---|
60556181 | Mar 2004 | US |