The printing unit 18 includes an operator console 24 where job tickets may be reviewed and/or modified for print jobs performed by the machine 10. The pages to be printed during a print job may be scanned by the printing machine 10 or received over an electrical communication link. The page images are used to generate bit data that are provided to a raster output scanner (ROS) 30 for forming a latent image on the photoreceptor 28. Photoreceptor 28 continuously travels the circuit depicted in the figure in the direction indicated by the arrow. The development station 100 develops toner on the photoreceptor 28. At the transfer station 22, the toner conforming to the latent image is transferred to the substrate by electric fields generated by the transfer station. The substrate bearing the toner image travels to the fuser station 26 where the toner image is fixed to the substrate. The substrate is then carried to the output unit 20. This description is provided to generally describe the environment in which a double magnetic roll development system for developer having semi-conductive carrier particles may be used and is not intended to limit the use of such a development subsystem to this particular printing machine environment.
The overall function of development station 100, which is shown in
Among the elements of the developer station 100, which is shown in
As can be seen in this embodiment, the upper magnetic roll 36 and the lower magnetic roll 38 form a development zone that is approximately as long as the two diameters of the magnetic rolls 36 and 38. A motor, not shown, is coupled to the rolls 36 and 38 to cause rotation of the various augers, magnetic rolls, and any other rotatable members within the developer station 100 at various relative velocities. There may be provided any number of such motors. The magnetic rolls 36 and 38 may be rotated in a direction that is opposite to the direction in which the photoreceptor moves past the developer station 100. That is, the two magnetic rolls are operated in the against mode for development of toner, although the magnetic rolls may also be operated in the with mode as well. In one embodiment of the developer station 100, the motor rotates the magnetic rolls at a speed in the range of about 1 to about 1.5 times the rotational speed of the photoreceptor 28. This rotational speed is lower than the rotational speed of magnetic rolls in developer systems that rotate in the same direction as the photoreceptor. That is, the magnetic rolls operated in the against mode may be rotated at lower speeds than magnetic rolls operated in the with mode. These slower speeds increase the life of the magnetic rolls over the life of magnetic rolls that are operated in the with mode to develop toner carried on semi-conductive carrier particles.
As may be observed from
The development of toner by the development station 100 is discussed in more detail with reference to
The layer remaining after the trim blade 170 is transported by the roll 36 to a position where the developer on the roll 36 is between the roll 36 and the photoreceptor 28. Some of the toner particles are attracted to latent image areas on the photoreceptor 28. The carrier and toner particles remaining on the roll 36 continue to be transported by the roll 36 until they are transferred to the magnetic roll 38. As shown in
In previously known development stations, a square wave having a peak-to-peak amplitude of approximately 1000 volts and a frequency of 9 KHz was applied to the magnetic rolls. This waveform increased the efficiency of development by preventing development field collapse caused by countercharge left in the magnetic brush by the developed toner. This waveform controls both the toner movement and the electric fields in the development zone. In the vertical architecture shown in
In the development station 100 shown in
The pre-transfer corotron 202 (
The control circuit 200 may be comprised of a microprocessor or microcontroller with supporting memory, input/output (I/O) interfaces, and communication busses. The memory may contain stored instructions for the processor or controller to evaluate the environmental condition signal received from the environmental sensor 190 and to generate the reference voltage signal for setting the output level of the variable voltage supply 180. The control circuit may alternatively be comprised of hardwired logic circuits to perform these functions. In another embodiment, the control circuit 200 may be implemented with an application specific integrated chip (ASIC). The ASIC implementation may also include the environmental sensor 190 and the variable voltage supply 180.
The environmental sensor 190 may include one or more sensors for generating one or more environmental signals. For example, the environmental sensor 190 may include a thermistor that changes its resistance in response to temperature fluctuations. Monitoring the voltage across a thermistor provides the control circuit 200 with a signal indicative of a continuous range of temperature for the development station environment. Temperature thresholds may be determined empirically to identify temperatures at which control signals may be generated for modifying or adjusting operational parameters for the development station 100. Other known methods and devices for monitoring temperature may also be used. The environmental sensor 190 may include a relative humidity sensor. Such a device provides the control circuit 200 with a signal indicative of the water saturation level in the air about the development station 100.
The control circuit 200 uses the signal(s) from the environmental sensor 190 for temperature and relative humidity and converts these measurements to grains of water. The grains of moisture (GOM) per pound of dry air may be determined using a psychrometric chart in combination with the measurements obtained from the environmental sensors and altitude data stored in non-volatile memory. A psychrometric chart describes the possible combinations of temperature, moisture content, density and heat content properties of air for a range of values for these parameters. A psychrometric chart used in one embodiment is shown in
The control circuit 200 uses the signal(s) from the environmental sensor 190 to classify the environmental conditions about the development station 100. In response to this evaluation of the environmental conditions, the control circuit 200 generates a signal for adjusting the variable voltage supply coupled to the magnetic rolls 36 and 38. In previously known development stations, the voltage coupled to the magnetic rolls was not adjusted. In one embodiment, the control circuit 200 generates a signal provided to the variable voltage supply that causes the supply 180 to decrease the peak-to-peak voltage to 700 volts for the cold zone, 600 volts for the temperate zone, and 500 volts for the hot zone. These peak-to-peak levels have been empirically determined as promoting electric field stabilization for the corresponding environmental conditions.
In addition to the adjustments that may be made to the variable voltage supply 180 that have already been noted, the control circuit 200 may also adjust the duty cycle of the output voltage signal coupled to the magnetic rolls 36 and 38. As shown in
The control circuit 200 also maintains the frequency of the output voltage signal coupled to the magnetic rolls 36 and 38 above the frequency used in previously known development stations. Specifically, the control circuit 200 maintains the frequency of the output voltage in the range of approximately 12 KHz. The control circuit 200 performs the frequency monitoring and adjusting function using known frequency centering methods.
By implementing a control circuit 200 using the parameters discussed above and coupling the control circuit 200 to an environmental sensor 190, the variable voltage supply 180, and the pre-transfer corotron 202, a method of development station control may achieved. The method enables an environmental condition to be sensed, electric field fluctuation in the development gap between a magnetic roller 36 or 38 and the photoreceptor 28 to be reduced, and the development station sensitivity to electric field fluctuation to be reduced. The electric field fluctuation may be reduced by adjusting the peak-to-peak voltage to correspond to the environmental conditions sensed by the environmental sensor. This adjustment may be a reduction in the peak-to-peak voltage as the sensed relative humidity increases. The method implemented by the control circuit 200 may also maintain the cleaning field voltage in the range of about 120 to about 140 volts, operate a pre-transfer corotron in a current range of about 17 μA to about 32 μA, and regulate the output frequency of the variable voltage supply to 12 KHz. The method may also maintain the duty cycle of the output waveform for the variable voltage supply in the range of about 65% to about 75%.
The embodiments described above have been discussed with regard to an arrangement for adjusting and regulating operation of a two magnetic roller development station in order to stabilize toner development over a wide range of environmental conditions. The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others.
Reference is made to commonly-assigned co-pending U.S. patent application Ser. No. 11/262,575, entitled “Xerographic Developer Unit Having Multiple Magnetic Brush Rolls Rotating Against The Photoreceptor,” which was filed on Oct. 31, 2005; U.S. patent application Ser. No. 11/262,577 entitled “Xerographic Developer Unit Having Multiple Magnetic Brush Rolls With A Grooved Surface,” which was filed on Oct. 31, 2005; U.S. patent application Ser. No. 11/262,576 entitled “Xerographic Developer Unit Having Multiple Magnetic Brush Rolls Rotating With The Photoreceptor,” which was filed on Oct. 31, 2005; U.S. patent application Ser. No. 11/263,370 entitled “Variable Pitch Auger To Improve Pickup Latitude In Developer Housing”, which was filed on Oct. 31, 2005, and U.S. patent application Ser. No. 11/263,371 entitled “Developer Housing Design With Improved Sump Mass Variation Latitude,” which was filed on Oct. 31, 2005, the disclosures of which are incorporated herein.