The disclosure relates to collecting environmental samples with various types of aircraft including unmanned aerial vehicles.
An unmanned aerial vehicle (UAV) is an aircraft that flies without a human crew on board the aircraft. A UAV can be used for various purposes, such as reconnaissance, observation, thermal imaging, and the like. A micro air vehicle (MAV) is one type of UAV, which, due to its relatively small size, can be useful for operating in complex topologies, such as mountainous terrain, urban areas, and confined spaces. The structural and control components of a MAV are constructed to be relatively lightweight and compact.
In general, this disclosure is directed to devices, systems, and techniques for collecting fluid samples with an unmanned aerial vehicle (UAV) in flight, as well as collecting samples of materials on the ground above which the UAV flies including samples of dust and other solid materials. In some examples described herein, a fluid sample device is configured such that it engages fluid sample(s) and/or ground sample(s) and then delivers quality characteristic information of the sample to another location.
In one example, a UAV includes a rotor fan, an engine, an annular duct, an avionics pod, and a fluid sample device. The engine is operatively connected to and configured to cause rotation of the rotor fan. The annular duct surrounds the fan. The rotation of the rotor fan causes a working fluid to be drawn through the duct to generate thrust to propel the UAV. The avionics pod is attached to an outer section of the annular duct. The fluid sample device is attached to the avionics pod and the fluid sample device further includes a sensor configured to detect a quality characteristic of a fluid that engages the sensor. The fluid sample device is arranged such that the working fluid drawn by the rotor fan through the duct engages the sensor.
In another example, the disclosure includes a method comprising flying a UAV to a location. The UAV in this method includes a rotor fan, an engine operatively connected to and configured to cause rotation of the rotor fan, an annular duct surrounding the fan, and an avionics pod attached to an outer section of the annular duct. The rotation of the rotor fan causes a working fluid to be drawn through the duct to generate thrust to propel the UAV. The method also includes collecting a sample of working fluid on a fluid sample device that is attached to the avionics pod. The fluid sample device includes a sensor that is configured to detect a quality characteristic of the fluid that engages the sensor. The fluid sample device is arranged such that the working fluid drawn by the rotor fan through the duct engages the sensor. The method includes flying the UAV to another location.
In another example, the disclosure includes a method comprising flying a UAV to a location. The UAV in this method includes a rotor fan, an engine operatively connected to and configured to cause rotation of the rotor fan, an annular duct surrounding the fan, an avionics pod attached to an outer section of the annular duct, and a fluid sample device that is attached to the avionics pod. The rotation of the rotor fan causes a working fluid to be drawn through the duct to generate thrust to propel the UAV. The fluid sample device comprises a sensor that is configured to detect a quality characteristic of a ground material that engages the sensor. The method also includes flying the UAV adjacent the ground and operating the UAV such that the working fluid flowing through the duct agitates the ground material. The method also includes collecting a sample of the ground material on the sensor through a flexible tube attached to an outer surface of the avionics pod. The tube is connected to an inlet of the fluid sampling device and configured such that the working fluid drawn by the rotor fan through the duct generates a pressure differential that causes the ground material to be drawn from a distal end of the tube into the fluid sampling device through the inlet and engage the sensor. The method includes flying the UAV to another location.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosed examples will be apparent from the description and drawings, and from the claims.
While MAVs are primarily referred to herein, the devices, systems, and techniques for collecting fluid samples and samples of materials from the ground are applicable to any suitable UAV. A fluid sample, as used in this disclosure, may refer to any sample of gas, liquid, vapor, or particulate matter that has a quality characteristic detectable by a sensor and that may be present in the environment in which a MAV operates. A ground sample, as used in this disclosure, may refer to any gas, liquid, vapor, or particulate matter that is collected by a MAV according to this disclosure from the ground over which the MAV flies and that has a quality characteristic detectable by a sensor.
It can be useful to collect fluid samples and ground samples with a MAV because the samples may be located in remote locations and elevations that are problematic for collectors to reach. For example, such remote locations and elevations may be unreachable by humans, land vehicles, and water vehicles. Furthermore, the location of the fluid samples and ground samples may put the collector at risk of exposure to the potentially dangerous particulates or agents, which may lead to injury or death of the collector or the operator of the vehicle or device used to collect the samples.
It may be possible to equip a MAV with various types of devices, such as additional pumps or fans that are designed to generate flow of fluid samples to a fluid sample device included in the MAV. However, MAVs are designed to be lightweight and easily maneuverable, so it is important to avoid incorporation of any unnecessary components, which may diminish the MAV's performance. If a MAV were equipped with unnecessary components it may result in poor flying performance, which may result in inefficient and/or expensive operation, or other untoward consequences.
In other examples, a collector might collect fluid samples and ground samples under unregulated flow and pressure conditions. For example, a fluid sample device on a MAV may be configured to gather samples as the MAV is in motion through the air. However, some quality characteristics of fluid samples may be best detected under regulated flow and pressure conditions. As such, samples collected under unregulated flow and pressure conditions may lead to a false positive or negative of dangerous agents. The false indication may put other living and non-living collectors in danger or lead to unnecessary precautions and expense being taken to evacuate or secure the area. As such, it may also be useful to collect a metered amount of fluid samples and ground samples using a regulated flow and pressure of working fluid from a MAV. Additionally, it may be inconvenient or impossible to collect samples only while the MAV is propelled through the air. For example, for certain samples, such as ground samples, the MAV may be required to hover during collection.
In examples according to this disclosure, therefore, MAV's or other type of UAV's are equipped with a fluid sample device that includes a sensor configured to detect a quality characteristic of a fluid that engages the sensor and that is arranged such that a working fluid drawn by the rotor fan of the MAV through the duct engages the sensor. Thus, no additional equipment is required on the MAV to generate regulated flow of environmental fluids for sampling by the onboard sensor and the MAV can collect samples any time the rotor of the ducted fan of the MAV is operating, including in a hover flight mode.
A fluid sample device for a MAV that detects a quality characteristic of a fluid sample and/or ground sample is described with respect to
In some examples, the MAV includes a flexible tube that is configured to hang from the MAV during flight. The flexible tube is configured to connect to an outer section of the avionics pod and attach to an inlet on the fluid sample device such that the working fluid drawn by the rotor fan through the duct generates a pressure differential that causes a fluid to be drawn from a distal end of the tube into the fluid sample device through the inlet and engage the sensor before being drawn out of the outlet of the fluid sample device.
The example MAV fluid sample device and methods described herein for detecting the quality characteristic of a fluid sample may result in safer detection of the presence of hazardous agents in fluid samples and ground samples. For example, the ability to detect the presence of hazardous agents with a MAV may require little to no interaction with such agents from people in the actual collection of the sample. Because samples may be located in remote or elevated locations, and the location of the sample may put the collector at risk of exposure to potentially dangerous particulates or agents, the limited interaction of people will promote the wellbeing and safety of those involved in the potentially dangerous task of retrieving samples. Furthermore, limiting the additional equipment to a fluid sample device, and, in some examples, a flexible tube, may help to minimize cost. In addition, limiting the additional equipment may minimize weight, which in turn may promote better operation of the MAV.
Engine 14 is operatively connected to and configured to drive ducted fan 12. In the example shown in
Ducted fan 12 includes duct 28, a rotor fan (not shown in
Although MAV 10 depicted in
Pods 16 and 18 of MAV 10 may include, e.g., payload and avionics pods. In one example, pod 16 may be configured to transport various types of payloads for any number of missions for MAV 10, including, e.g., objects to be dropped or placed by the MAV. In the example of
Landing gear 20 of MAV 10 are formed as elongated rods with curved feet configured to engage a landing surface and may be fabricated from a variety of materials including metals, plastics, and composites. In some examples, landing gear 20 may be fabricated from one or more materials that exhibit some inherent resiliency to cushioning the MAV during landings. Other example MAVs may include fewer or more landing gear 20, which may be connected to different components of the vehicle than shown in the example of
In the example of
Handle 26 is attached to, coupled to, or formed integral with central console 24 that includes engine 14. Handle 26 may generally be used to move MAV 10 off of a starter after engine 14 of the aircraft is running. Handle 26 may also be configured to assist with capture of MAV 10, for example, by being engaged by a non-depicted capture device. In the example depicted in
Pods 16 and 18 further include vents, which are not shown in
In the example shown in
In one example, one or both of avionics pod 18 and payload pod 16 include a fluid sample device. In yet another example, a plurality of fluid sample devices is attached to various places on MAV 10 such that working fluid drawn by the rotor fan of ducted fan 12 through duct 28 engages fluid sample devices.
Fluid sample device 22 may be electrically connected to battery 46. In doing so, fluid sample device 22 may draw any power necessary for operation of the device from battery 46, e.g., to power a sensor of the device and/or to operate one or more motors configured to open and close inlet and outlet doors of the fluid sample device. Furthermore, fluid sample device 22 may also be electrically connected to avionics 44. In this manner, avionics 44 may receive fluid quality characteristics detected by a sensor included in fluid sample device 22. Avionics 44 may then store the detected quality characteristics in memory 48 and/or wirelessly transmit the quality characteristics to another location.
In other examples, fluid sample device 22 may be arranged in a number of different locations other than the one illustrated in
For example,
Referring again to
Fluid sample device 22 may be constructed from a number of different kinds of plastic, which has the ability to be easily cleaned and is robust enough for multiple uses. In another example, fluid sample device 22 is a metallic structure that may be selected specifically for exposure to certain fluid samples. In another example, fluid sample device 22 is made of any of a number of different types of corrosion resistant material.
In
Motor 52 is electrically connected to avionics 44. The electrical connection of motor 52 to avionics 44 is configured so that motor 52 receives electrical signals from processor 58 and/or an input/output card that control motor 52 to actuate the opening and closing of inlet door 54 and outlet door 56. Motor 52 is also connected to battery 46, directly or indirectly through avionics 44, so that motor 52 may draw any necessary power, to actuate the opening and closing of inlet door 54 and outlet door 56. Aside from motor 52, battery 46 may also power other components, including those components shown in the schematic of
One aspect of inlet door 54 and outlet door 56 is that the doors may be able to be actuated autonomously, e.g. via a wireless ground station command or a pre-programmed set of instructions. The doors may also be configured to operate independently of each other. Additionally, the independent actuation of inlet door 54 and outlet door 56 may also allow fluid flow 42 (see
In one example, sensor 50 and motor 52 communicate wirelessly with avionics 44, via telemetry or any other wireless device. In this manner, there is no wired electrical connection from sensor 50 and motor 52 to avionics 44. In this scenario, fluid sample device 22 may contain its own independent power source (e.g. a battery); either located within fluid sample device 22 or somewhere else within pod 18. As such, in some examples, fluid sample device 22 may not require any power from battery 46.
In another example, fluid sample device 22 may not contain an independent power source, and may wirelessly draw power from battery 46 or another power source. In one example, fluid sample device 22 may not have any electrical connections from sensor 50 and motor 52 to avionics 44, and command signals and power may be transmitted wirelessly between fluid sample device 22 and avionics 44.
In another example, fluid sample device 22 does not have any electrical connections with avionics 44 and does not receive any wireless command signals and power from avionics 44. For example, fluid sample device 22 may receive power and transmit and receive command signals from another component of MAV 10 or from a remote operator and/or device.
In
The example in
In the example of
Processor 58 may also execute instructions related to the operation of sensor 50. For example, processor 58 may instruct sensor to detect a specific quality characteristic of a certain fluid sample. Processor 58 may also instruct sensor 50 to detect quality characteristics of the fluid sample for a target amount of time or level of exposure of sensor 50 to a fluid sample. In this manner, processor 58 may instruct sensor 50 to be active or inactive at different times. Processor 58 may also be configured to receive electrical signals from sensor 50 that represent levels and types of quality characteristics of the fluid sample that engage sensor 50. Upon receipt of these electrical signals, processor 58 may then instruct sensor to remain active and continue measuring quality characteristics of the fluid sample, or, depending on the electrical signal from sensor 50, processor 58 may instruct sensor to stop collecting samples and effectively become inactive.
Avionics 44 also includes memory 48. Memory 48 is electrically connected to processor 58, input device 60, output device 62, battery 46, and fluid sample device 22. Memory 48 may be implemented as Flash memory, random access memory (RAM), or any other type of volatile or non-volatile memory that stores data. In one example, memory 48 is configured to store one or more quality characteristics of a fluid sample collected by sensor 50. Memory 48 may also store programs and/or sequences of instructions for execution by processor and/or for controlling sensor 50, motor 52, inlet door 54, and outlet door 56. In one example, memory 48 contains programs and/or sequences of instructions that instruct processor 58 to perform various operations. Memory 48 may be pre-loaded with programs and/or instructions before the MAV begins its flight. Memory 48 may also be configured to wirelessly transmit and receive programs and/or instructions to/from a remote location, e.g. from a ground station. In this manner, memory 48 may be updated with new programs and/or instructions after MAV 10 has begun its flight.
The example shown in
In the example of
Sensor 50 is attached to an interior portion of fluid sample device 22. Particularly, sensor 50 may be attached to fluid sample device 22 by any mechanical means, such as friction fit, adhesive mount, screw fastener, or any other type of permanent or non-permanent mounting option. The purpose of sensor 50 is to detect a quality characteristic of a fluid sample that engages sensor 50. As such, in the example illustrated in
Motor 52 also resides in an interior portion of fluid sample device 22.
Inlet door 54 is located on a first side of fluid sample device 22 and outlet door 56 is located on a second side of fluid sample device 22, wherein the second side generally opposes the first side. Inlet door 54 and outlet door 56 may be configured in a variety of different types and shapes. In the example of
Inlet door 54 and outlet door 56 may be constructed from a number of different kinds of plastic, which may be easily cleaned and robust enough for multiple uses. In another example, inlet door 54 and outlet door 56 are metallic or another type of generally rigid material that is resistant to corrosion.
The example shown in
Sensor 50 may take a number of different forms. In one example, sensor 50 is one or more single-use collection membranes that detect quality characteristic and change colors based on the presence or absence of a particular quality characteristic. In one example, sensor 50 includes a collection membrane that is all white when MAV 10 departs on its mission, and once the collection membrane has detected a certain quality characteristic, for example an acid, the collection membrane may become all purple. The change in color notifies personnel that the collection membrane was exposed to a particular acid. This is just one of the many examples of how sensor 50 may include a collection membrane that detects and subsequently indicates the presence of a certain quality characteristic. In the foregoing examples, the collection membrane is a single-use device, so once the membrane has been contaminated or exposed to any fluid sample, the membrane will be disposed of and may be replaced with a different sensor, e.g., another collection membrane.
In another example, sensor 50 may include a collection membrane only a portion of which changes colors when exposed to a certain quality characteristic of the fluid sample. In this manner, personnel will not have to remember what color the collection membrane was when it was installed in fluid sample device 22. For example, personnel might forget if white or purple represents no exposure or contamination, which may create confusion. In this example, personnel will only have to know that if the collection membrane shows two or more colors on the collection membrane to determine that detection of a quality characteristic has occurred. This may avoid mistakes with regard to what different colors represent.
In another example, sensor 50 includes a collection membrane that displays characters, such as letters or numbers, to indicate whether the collection membrane has detected a quality characteristic. For example, the collection membrane may have the word “GOOD” displayed, and upon detection of a certain quality characteristic of a fluid sample, the collection membrane then displays “BAD.” A variety of additional indication methods may be employed to notify personnel whether the collection membrane has been exposed to a certain quality characteristic.
Sensor 50 including one or more collection membrane(s) may also be attached to fluid sample device 22 in a number of different ways. In one example, the collection membrane is attached to fluid sample device 22 by a hook-and-loop fastening system. In another example, the collection membrane is adhesively attached, using a non-permanent tape, glue, or epoxy. In yet another example, the collection membrane is attached magnetically.
In other examples, sensor 50 may also be a multiple-use electronic sensor that detects specific types of chemical, biological, radiological, nuclear, and/or explosive quality characteristics. In one example, sensor 50 may be one of a chemical, biological, radiological, nuclear, or explosive sensor. For example, sensor 50 may be an electronic sensor that only detects chemical quality characteristics. In another example, sensor 50 is an electronic sensor that only detects biological quality characteristics. In another example, sensor 50 is an electronic sensor that only detects radiological quality characteristics. In another example, sensor 50 is an electronic sensor that only detects nuclear quality characteristics. In yet another example, sensor 50 is an electronic sensor that only detects explosive quality characteristics. Having fluid sample devices that are configured to detect specific quality characteristics may reduce the size and cost of fluid sample devices in accordance with this disclosure.
The sensor may be a multiple-use electronic sensor that is configured to detect changes in electric or magnetic signals based on a fluid sample and/or ground sample. In one example, the electronic sensor may generate its own voltage through a chemical reaction between a fluid sample and/or ground sample and a catalyst contained in the electronic sensor. The electronic sensor may indicate a quality characteristic of the fluid and/or ground sample that is associated with an electric or magnetic signal. In another example, the electronic sensor may produce a current in response to the concentration of a quality characteristic of a fluid sample and/or ground sample that engages the electronic sensor. For example, in detecting carbon monoxide, the electronic sensor may contain a plurality of electrodes that are immersed in an electrolyte solution. Carbon monoxide may be oxidized to carbon dioxide at one electrode while oxygen is collected at another electrode. The presence of these elements on the two electrodes may create an electric circuit, which indicates the presence of the quality characteristic of carbon monoxide.
In one example, sensor 50 is a spectrometer. In this example, sensor 50 is configured to measure a spectrum of light that is reflected off specific chemicals, in a gas, vapor or liquid phase. Sensor 50 may be further configured to determine the type, concentration, and/or quantity of the specific chemical based on the spectrum of light reflected off of the chemical in the sample.
In another example, sensor 50 is able to detect multiple of chemical, biological, radiological, nuclear, and/or explosive quality characteristics. In yet another example, sensor 50 is a chemical, biological, radiological, nuclear, and explosive (CBRNE) sensor, wherein sensor 50 is able to detect any of the chemical, biological, radiological, nuclear, and explosive quality characteristics.
In one example, the quality characteristic detected by sensor 50 is sulphur dioxide, any oxide of nitrogen, ozone, carbon monoxide, carbon dioxide, hydrogen sulphide, non-methane hydrocarbon, benzene, toluene, xylene, lead, ammonia, methane, solar radiation, suspended particulate matter, or any respirable particulate matter.
Sensor 50 may also transmit and receive signals via telemetry or any other wireless method. In this manner, the electronic sensor may able to wirelessly communicate quality characteristic data to a third party or to another component located within avionics pod 18. Furthermore, electronic sensor may also be able to receive instructions or programs from a third party, or any other avionics component.
Sensor 50 may be attached to fluid sample device 22 by any permanent or non-permanent mechanism. In one example, if electronic sensor 50 is permanently attached, then this configuration may result in a specific fluid sample device for each quality characteristic application. For example, there may be a chemical fluid sample device, a biological fluid sample device, a radiological fluid sample device, etc. In this manner, MAV 10 may be equipped with the specific fluid sample device that is required to detect the necessary quality characteristic. For example, in the event of a malfunction at a nuclear power plant, MAV 10 may be equipped with a nuclear fluid sample device. In this scenario, MAV 10 will be able to detect quality characteristics related to nuclear radiation, such as, but not limited to, alpha particles, beta particles, and/or gamma rays. Additionally, the fluid sample device, e.g., fluid sample device 22 as a whole versus just sensor 50, may be configured to be removed and swapped out of MAV 10 depending on the mission.
Sensor 50 may also be attached to fluid sample device 22 by any non-permanent mechanism, such as hook-and-loop fastening, adhesive tape, or a friction fit with fluid sample device 22. In this manner, fluid sample device 22 may be used to detect multiple quality characteristics, by swapping different sensors out for one another. For example, using the non-permanent attachment method, if after MAV 10 returns from the malfunctioning nuclear power plant and is then going to be deployed to a suspected biological warfare area, fluid sample device 22 may be equipped with an electronic sensor that detects biological quality characteristics. In this manner, MAV 10 is equipped with the same fluid sample device 22, but MAV 10 is now able to detect biological quality characteristics, instead of nuclear.
In another example, electronic sensor 50 is able to detect a plurality of chemical, biological, radiological, nuclear, and explosive quality characteristics. In this manner, fluid sample device 22 may require little to no additional retrofitting to measure any of a number of different quality characteristics. For example, in the example described above, MAV 10 may be able to fly to the nuclear power plant where it detects the nuclear quality characteristics, and then immediately fly to the suspected biological warfare area to detect biological quality characteristics.
In the example shown in
MAV 10 collects a fluid sample on sensor 50 (502) and then flies to another location (504). In doing so, MAV 10 may repeat the entire method as illustrated in
In one example, sensor 50 may be configured to wirelessly transmit the quality characteristic of a fluid sample to a remote location. Sensor 50 may perform a self-cleaning operation that enables MAV 10 to collect other quality characteristic(s) of fluid sample(s) during the same flight sequence. For example, sensor 50 may use high frequency vibrations to remove a fluid sample and/or ground sample from a surface of sensor 50. Sensor 50 may implement any number of different self-cleaning operations. In this manner, MAV 10 may fly to multiple other locations to retrieve quality characteristic information from other fluid samples. MAV 10 may also fly to a location where the quality characteristic information of a fluid sample is physically or electronically retrieved from fluid sample device 22.
In the example in
The inlet door and outlet door then actuate to open (602). Inlet door 54 and outlet door 56 may be actuated to open to varying degrees, in other words, the size of the opening formed by the inlet and outlet doors may vary. In such a case, inlet door 54 and outlet door 56 may be configured to control the fluid flow rate and pressure that flows through fluid sample device 22. In another example, inlet door 54 and outlet door 56 are actuated to completely open. Additionally, inlet door 54 and outlet door 56 may be actuated to open, whether to the same or varying degrees, independent of one another.
Next, sensor 50 within fluid sample device collects a fluid sample (604). This is caused by the rotor fan of MAV through duct 28 generating a pressure differential across the two sides of avionics pod 18 including inlet door 54 and outlet door 56, which draws working fluid into the interior of fluid sample device 22 across or otherwise into engagement with sensor 50.
The inlet door and outlet door then actuate to close (606). In this manner, no other fluid samples will engage sensor 50 and MAV then 10 flies to another location (608). In this scenario, MAV 10 may repeat the entire method as illustrated in
Similar to the example illustrated in
Flexible tube 40 is attached to an outer surface of pod 18 and connected to an inlet of fluid sample device 22. Flexible tube 40 is configured such that the working fluid drawn by the rotor fan through duct 28 generates a pressure differential that causes a sample to be drawn from a distal end of the tube into the fluid sampling device through the inlet to engage sensor 50 and then be drawn out of the outlet of the device. Flexible tube 40 extends in a distal direction from fluid sample device 22. When MAV 10 hovers over a target location, the distal end of flexible tube 40 may be located near landing gears 20.
In one example, when MAV 10 flies adjacent to the ground, the working fluid flow that is drawn by the rotor fan through the duct and exits the duct agitates materials located on the ground, including solid particulate material like dust and liquids like pools of water or other liquids. In this manner, operation of MAV 10 above the ground propels material and moisture from the ground into the air. The materials are drawn into the distal end of flexible tube 40 toward fluid sample device 22, which is thereby able to collect ground material and atomized moisture that are airborne near the MAV. The ground material and moisture may be drawn through the distal end of the flexible tube and directed up in to the inlet of fluid sample device 22 to engage sensor 50 arranged within fluid sample device 22.
In another example, the pressure differential generated by the rotor fan of ducted fan 12 of MAV 10 is powerful enough that flexible tube 40 is able engage, or suck, material and moisture directly from the ground. In this manner, there may be no need for the working fluid flow drawn by the rotor fan through duct 28 to agitate the ground material and atomize the moisture.
In the example of
In regards to the size of flexible tube 40, the length of flexible tube 40 may be dependent upon the size of the MAV and the distance over the ground the MAV 10 must operate in order to effectively collect samples. In an example similar to that shown in
In the method of
MAV 10 then flies adjacent to the ground (902) and MAV 10 operates in such a way that materials on the ground are agitated (904). MAV 10 may agitate the ground materials by performing an in-flight maneuver such as hovering adjacent to the ground. This hovering maneuver may be performed at any appropriate distance from the ground. In one example, MAV 10 flies within three to ten feet of the ground to agitate materials and moisture. In another example MAV 10 flies within less than three feet of the ground to agitate materials and moisture. In yet another example, MAV 10 makes contact with the ground via landing gears 20 to agitate materials and moisture.
In addition to flying adjacent to the ground (902), the method of
As MAV 10 agitates ground material and moisture, the agitation propels ground material and moisture airborne. The sensor contained within the fluid sample device then collects the airborne ground material and/or moisture sample via the pressure differential that flows from the distal end of a flexible tube toward the fluid sample device (908). The pressure differential is caused by the fluid flow that is drawn by the rotor fan through the duct, which effectively sucks airborne ground material and/or moisture into the distal end of flexible tube 40 into the inlet of fluid sample device 22 where it engages sensor 50.
Once sensor 50 has engaged ground material and/or moisture, inlet door 54 and outlet door 56 are then actuated to close (910). MAV 10 may then fly to another location (912) where MAV 10 may repeat the entire method illustrated in
Sensor 50 may be configured to wirelessly transmit the quality characteristic(s) of the collected ground material and/or moisture to a remote location. In one example, sensor 50 may perform a self-cleaning operation that enables MAV 10 to collect other quality characteristic(s) of ground material and/or moisture during the same flight sequence. In this manner, MAV 10 may fly to multiple other locations to retrieve quality characteristic information from other samples. MAV 10 may also fly to a location where the quality characteristic information of ground samples is physically or electronically retrieved from fluid sample device 22.
Various examples have been described. These and other examples are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6442997 | Megerle et al. | Sep 2002 | B1 |
6854344 | Cornish et al. | Feb 2005 | B2 |
7073748 | Maurer et al. | Jul 2006 | B2 |
7096749 | Schimmoller et al. | Aug 2006 | B2 |
7841563 | Goossen et al. | Nov 2010 | B2 |
7998731 | Daitch et al. | Aug 2011 | B2 |
20040185554 | Daitch et al. | Sep 2004 | A1 |
20090050750 | Goossen | Feb 2009 | A1 |
20110127421 | Finlay | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2011103165 | Aug 2011 | WO |
Entry |
---|
Gonzalez et al., “Development of an autonomous unmanned aerial system to collect time-stamped samples from the atmosphere and localize potential pathogen sources,” Journal of Field Robotics 28(6): 961-976, Nov./ Dec. 2011 (First published online Oct. 12, 2011). |
Griffin, “Atmospheric Sampling Using an Unmanned Aerial Vehicle (UAV),” found at http://uas.usgs.gov/pdf/ UAV—Equipment.pdf, accessed Feb. 8, 2008, 3 pp. |
McHugh et al., “Update on an Unmanned Aerial Vehicle (UAV) Payload for Detection, Identification and Acquisition of Vapors of Toxic Substances and Their Precursors,” 13th International Conference on Ion Mobility Spectrometry, 2004, 4 pp. |
Ote Systems, Volcan UAV Project, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, downloaded Feb. 8, 2008, 7 pp. |
Pöllänen et al., “Radiation surveillance using an unmanned aerial vehicle,” Applied Radiation and Isotopes 67: 340-344, 2009. |
Valyou et al., “Flight Control, Data Acquisition, and Payload Integration for an Aerosol Sampling Unmanned Aerial Vehicle,” Department of Mechanical and Aeronautical Engineering, Clarkson University, Postdam, New York, 2007, 5 pp. |
Number | Date | Country | |
---|---|---|---|
20130292512 A1 | Nov 2013 | US |