Claims
- 1. A process for disposing of scrap plastic material comprising:
- (1) mixing together the following materials to produce a pumpable slurry having a total solids content of about 30-70 weight % and a minimum HHV of about 4500 BTU/lb. of slurry:
- (a) solid carbonaceous plastic-containing scrap material comprising a form thereof selected from the group consisting of sheets, extruded shapes, moldings, reinforced plastics, and foamed plastics, wherein said solid carbonaceous plastic-containing scrap material comprises at least about 25 weight percent of the pumpable slurry, and is formed into particulate solid carbonaceous plastic-containing scrap material having a maximum particle dimension of about 1/4 inch and contains associated inorganic matter comprising at least one material selected from the group consisting of titania, talc, clays, alumina, glass, barium sulfate, and barium carbonate; compounds of Sn, Co, Mn, Pb, Cd, Cr, Cu, B; and steel, nickel, aluminum, brass and copper metal;
- (b) aluminosilicate-containing material having noncombustible constituents that have an ash fusion temperature in a reducing atmosphere of less than about 2400.degree. F.; wherein said aluminosilicate containing material is selected from the group consisting of coal, coal mine tailings, coal ash, illite clay, volcanic ash, and mixtures thereof; and wherein said aluminosilicate-containing material is characterized by the following:
- A. a maximum particle size of ASTM E11-70 Sieve Designation Standard 1.70 mm;
- B. a weight ratio of noncombustible constituents in said aluminosilicate-containing material to the inorganic matter in said particulate solid carbonaceous plastic-containing scrap material of at least 1 to 1; and
- C. a mole ratio SiO.sub.2 /Al.sub.2 O.sub.3 in the range of about 1.5/1 to 20/1; and
- (c) a liquid slurrying medium selected from the group consisting of water, liquid hydrocarbonaceous fuel, and mixtures thereof; and (2) reacting said pumpable slurry from (1) with a free-oxygen containing gas and with or without a supplemental temperature moderator in free-flow unobstructed downflowing vertical partial oxidation gas generator in a reducing atmosphere at a temperature in the range of about 1800.degree. F. to 3500.degree. F., a weight ratio of H.sub.2 O to carbon in the feed in the range of about 0.2 to 3.0, an atomic ratio of free-oxygen to carbon in the feed in the range of about 0.8 to 1.4, and a dwell time in the range of about 1 to 15 seconds to produce synthesis gas, reducing gas, or fuel gas; and wherein said inorganic matter in said particulate solid carbonaceous plastic-containing scrap material in (1)(a) is safely captured by said noncombustible constituents in said aluminosilicate-containing material from (1)(b) to produce nonhazardous slag.
- 2. The process of claim 1 wherein said noncombustible constituents in (1)(b) comprise the elements Al, Si and at least one element from the group consisting of Na, K, Mg, Ca and Fe.
- 3. The process of claim 1 wherein said aluminosilicate-containing material in (1)(b) has a total moles of oxides selected from the group consisting of Na, K, Mg, Ca, Fe, and mixtures thereof of about 0.9 to 3 times the moles of Al.sub.2 O.sub.3 ; and a total amount of Al.sub.2 O.sub.3, SiO.sub.2, and the oxides of Na, K, Mg, Ca, and Fe that constitutes at least 90 wt. % of the total noncombustible inorganic components.
- 4. The process of claim 1 wherein the total solids content of said pumpable slurry in (1) with an aqueous slurrying medium in (1)(c) is in the range of about 30 to 70 wt. %; with a liquid hydrocarbonaceous fuel slurrying medium in (1)(c) the total solids content of said pumpable slurry in (1) is in the range of about 5 to 70 wt. %; and with a mixture of liquid hydrocarbonaceous fuel and water slurrying medium in (1)(c), the total solids content of said pumpable slurry in (1) is in the range of about 25 to 70 wt. %.
- 5. The process of claim 1 wherein said inorganic matter in (1)(a) is present in the amount of about a trace amount to 80 wt. % of the particulate solid carbonaceous plastic-containing scrap material; and said noncombustible constituents of the aluminosilicate-containing material in (1)(b) are present in the amount of about 5 to 100 wt. % of said aluminosilicate-containing material.
- 6. The process of claim 1 wherein about 0.1 to 60 wt. % of the particulate solid carbonaceous plastic-containing scrap material in (1)(a) comprises associated inorganic matter; the aluminosilicate-containing material in (1)(b) is coal; and the slurrying medium in (1)(c) comprises water with or without liquid hydrocarbonaceous fuel.
- 7. The process of claim 1 wherein said solid carbonaceous plastic-containing scrap material is shredded in a separate step to form the particulate scrap and said aluminosilicate-containing material is ground in a separate step.
- 8. The process of claim 1 provided with the step of introducing into said pumpable slurry in (1) a supplemental amount of a particulate solid carbonaceous plastic-containing material that is substantially free from associated inorganic matter.
- 9. The process of claim 1 wherein said pumpable slurry in (1) is an aqueous slurry and ammonium lignosulfonate is introduced into said slurry in the amount of about 0.01 to 3.0 wt. % of said slurry.
- 10. The process of claim 1 wherein said particulate solid carbonaceous plastic-containing scrap material in (1)(a) includes a halogen-containing plastic material and the product gas stream in (2) contains a hydrogen halide; and provided with the step of scrubbing said product gas stream with water containing ammonia or other basic material to remove said hydrogen halide.
- 11. The process of claim 10 wherein said halogen-containing plastic material is polyvinylchloride and/or polytetrafluoroethylene and said hydrogen halide is HCl if polyvinylchloride is present and/or HF if polytetrafluoroethylene is present.
- 12. A process for disposing of scrap plastic material comprising:
- (1) mixing together the following materials to produce a pumpable slurry having a total solids content in the range of about 3.0 to 70 weight % and a minimum HHV of about 4500 BTU per lb. of slurry:
- (a) particulate solid carbonaceous thermoplastic or thermosetting plastic-containing scrap material prepared from a form of plastics selected from the group consisting of sheets, extruded shapes, moldings, reinforced plastics, and foamed plastics, wherein said plastic-containing scrap material comprises at least about 25 weight % of the pumpable slurry, and has a maximum particle dimension of about 3 inch, and contains at least one inorganic ingredient in the amount of about 0.1 to 60 weight % of said plastic-containing material; and said inorganic ingredient is selected from the group consisting of: titania, talc, clays, alumina, glass, barium sulfate and carbonates, compounds of Sn, Co, Mn, Pb, Cd, Cr, Cu, B; and steel, nickel, aluminum, brass and copper metal;
- (b) bituminous coal con mining inorganic ash having an ash fusion temperature in a reducing atmosphere of less than about 2400.degree. F. and said ash constituting about 5 to 30 weight % of said coal; wherein the weight ratio of said ash in (b) to inorganic ingredient in (a) is at least 1;
- (c) a liquid slurrying medium selected from the group consisting of water, liquid hydrocarbonaceous fuel, and mixtures thereof;
- (2) introducing the pumpable slurry from (1) into the reaction zone of a partial oxidation gas generator by way of the intermediate annular passage of a multi-passage annular burner comprising a central conduit, an intermediate coaxial annular passage, and an outer coaxial annular passage, and passing a stream of free-oxygen containing gas through said central conduit and outer annular passage; and
- (3) reacting said pumpable slurry with said free-oxygen containing gas in said partial oxidation gas generator having a reducing atmosphere at a temperature of about 1800.degree. F. to 3500.degree. F., a weight ratio of H.sub.2 O to carbon in the feed of about 0.2 to 3.0, an atomic ratio of free-oxygen to carbon in the feed of about 0.8 to 1.4, and a dwell time of about 1 to 15 seconds to produce a gas selected from the group consisting of synthesis gas, reducing gas, fuel gas, and mixtures thereof; and nonhazardous slag.
Parent Case Info
This application is a continuation of application Ser. No. 07/965,104, filed Oct. 22, 1992, now abandoned.
US Referenced Citations (22)
Foreign Referenced Citations (9)
Number |
Date |
Country |
0088194 |
Sep 1983 |
EPX |
3333187 |
Mar 1984 |
DEX |
3307938 |
Sep 1984 |
DEX |
4017089 |
Nov 1991 |
DEX |
4104252 |
Aug 1992 |
DEX |
410923A1 |
Sep 1992 |
DEX |
4125517 |
Oct 1992 |
DEX |
53-207 |
Jan 1978 |
JPX |
57-153092 |
Sep 1982 |
JPX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
965104 |
Oct 1992 |
|