Environmentally friendly refrigerant compositions having low flammability and low GWP

Information

  • Patent Grant
  • 11208583
  • Patent Number
    11,208,583
  • Date Filed
    Wednesday, April 21, 2021
    3 years ago
  • Date Issued
    Tuesday, December 28, 2021
    2 years ago
Abstract
A refrigerant composition includes R-125 (pentafluoroethane), R-134a (1,1,1,2-tetrafluoroethane), R-32 (difluoromethane), R-227ea (1,1,1,2,3,3,3-heptafluoropropane), R-152a (1,1-difluoroethane), CO2 and 1234ze (1,3,3,3-tetrafluoropropene). In one exemplary embodiment, the refrigerant includes about 14-16 wt % R-125, about 14-16 wt % R-134a, about 25-27 wt % R-32, about 3-5 wt % R-227ea, about 2-4 wt % R-152a, about 6-8 wt % CO2 and about 29-31 wt % 1234ze. In another embodiment, the refrigerant composition includes about 15 wt % R-125, about 15 wt % R-134a, about 26 wt % R-32, about 4 wt % R-227ea, about 3 wt % R-152a, about 5 wt % CO2 and about 30 wt % 1234ze. Optionally, R-152a can be replaced with dimethyl ether. Formulating with reclaimed material lowers the global warming potential to about 400-750.
Description
FIELD OF DISCLOSURE

The present disclosure relates generally to environmentally friendly refrigerant compositions that include pentafluoroethane, 1,1,1,2-tetrafluoroethane, difluoromethane, 1,1,1,2,3,3,3-heptafluoropropane, 1,1-difluoroethane, CO2 and 1,3,3,3-tetrafluoropropene.


BACKGROUND

Refrigeration and air conditioning equipment frequently employ refrigerants to remove heat from a conditioned space. A refrigerant is a fluid used for heat transfer in a refrigerating system, which absorbs heat at a low temperature and a low pressure of the fluid and rejects heat at a higher temperature and a higher pressure of the fluid, usually involving changes of the state of the fluid.


Since the 1930s, R-12 (CCl2F2) and R-22 (CHCl2F2) have been commonly used as refrigerants in refrigeration and air conditioning equipment. R-12 is a chlorofluorocarbon (CFC) refrigerant and R-22 is a hydrochlorofluorocarbon (HCFC) refrigerant. The release of CFC and HCFC refrigerants into the atmosphere has been found to deplete the Earth's protective ozone layer and contribute to climate change. The United States signed the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987 and ultimately established proper refrigerant management procedures and a phase-out schedule that would ban the production and import of R-12 in 1996 and R-22 in 2020.


In response to the Montreal Protocol on Substances that Deplete the Ozone Layer, a non-ozone depleting refrigerant known as R-410A was developed in 1991. R-410A is a hydrofluorocarbon (HFC) refrigerant used primarily in residential and light commercial comfort cooling applications. Over the past decade, approximately 50 million pounds of R-410A was introduced into new and existing equipment each year.


HFC refrigerants released into the atmosphere have been found to contribute to global warming and climate change. In 2020, the US passed the American Innovation and Manufacturing (AIM) Act which gave the US Environmental Protection Agency (EPA) authority to establish a schedule to phasedown HFC refrigerants and a requirement to recover, reclaim, and reuse, or destroy, HFC refrigerants contained within equipment being repaired or taken out of service. Beginning in 2022, the phasedown schedule takes into account each refrigerant's Global Warming Potential (GWP) and gradually moves toward a cap on the consumption and production of HFC refrigerants equal to 15% of baseline (average annual production and consumption from 2011 to 2013) in 2036 and beyond. Starting in 2023, California Air Resources Board (CARB) has proposed regulations to reduce HFC emissions by requiring new air conditioning equipment to contain either R-410A refrigerant made up of 10% to 15% reclaimed R-410A or a refrigerant with a GWP rating of 750 or less.


As the supply of R-410A falls below demand and CARB regulations come into existence, servicing R-410A equipment will rely on R-410A substitutes, reclaimed R-410A, and declining stockpiles of R-410A refrigerant. A low-GWP substitute for R-410A will be needed to service the existing installed equipment base and provide a solution to reuse, as feedstock, HFC refrigerants recovered from R-410A equipment. The disclosed formulation solves both of these challenges.


The Background section of this document is provided to place embodiments of the present disclosure in technological and operational context, to assist those of skill in the art in understanding their scope and utility. Unless explicitly identified as such, no statement herein is admitted to be prior art merely by its inclusion in the Background section.


SUMMARY

The following presents a simplified summary of the disclosure in order to provide a basic understanding to those of skill in the art. This summary is not an extensive overview of the disclosure and is not intended to identify key/critical elements of embodiments of the disclosure or to delineate the scope of the disclosure. The sole purpose of this summary is to present some concepts disclosed herein in a simplified form as a prelude to the more detailed description that is presented later.


Briefly described, an embodiment of the present disclosure relates to a refrigerant composition that includes R-125 (pentafluoroethane), R-134a (1,1,1,2-tetrafluoroethane), R-32 (difluoromethane), R-227ea (1,1,1,2,3,3,3-heptafluoropropane), R-152a (1,1-difluoroethane), CO2 and R-1234ze (1,3,3,3-tetrafluoropropene).


In one embodiment, the disclosure pertains to a refrigerant composition that includes about 14-16 wt % R-125, about 14-16 wt % R-134a, about 25-27 wt % R-32, about 3-5 wt % R-227ea, about 2-4 wt % R-152a, about 6-8 wt % CO2 and about 29-31 wt % R-1234ze.


In one embodiment, the disclosure pertains to a refrigerant composition that includes about 15 wt % R-125, about 15 wt % R-134a, about 26 wt % R-32, about 4 wt % R-227ea, about 3 wt % R-152a, about 5 wt % CO2 and about 30 wt % R-1234ze.


In another embodiment, the disclosure pertains to a refrigerant composition that includes about 14-16 wt % R-125, about 14-16 wt % R-134a, about 25-27 wt % R-32, about 3-5% HFC-227ea, about 2-4 wt % DME (dimethyl ether), about 6-8 wt % CO2, and about 29-31 wt % R-1234ze.


In another embodiment, the refrigerant composition has a low GWP of about 1000 to 1100, or about 1048.


In another embodiment, the refrigerant has a pressure of about 181 psi at 70° F. In another embodiment, at least part of the R-134a is reclaimed R-134a. In another embodiment, at least part of the R-125 is reclaimed R-125. In another embodiment, at least part of the R-32 is reclaimed R-32. In another embodiment, at least part of the R-227ea is recycled R-227ea. In another embodiment, at least part of the R-32 is reclaimed R-32. In another embodiment, at least part of the R-152a is reclaimed R-152a.


In the disclosure, adding up to 30 wt % reclaimed material yields a GWP of about 400-750. When the refrigerant composition contains about 10 wt % reclaimed R-410A this yields a global warming potential of about 630, or when the refrigerant composition contains about 10 wt % reclaimed R-407C, the global warming potential is about 487.


In another embodiment, the refrigerant composition has a liquid phase pressure of about 222 psia at 70° F., a vapor phase pressure of about 139 psia at 70° F., a liquid phase density of about 1.10 g/cm3 at 70° F., a vapor phase density of about 0.037 g/cm3 at 70° F., a liquid phase enthalpy of about 0.2323 kJ/g at 70° F., a vapor phase enthalpy of about 0.4283 kJ/g at 70° F., a liquid phase entropy of about 6.177×10−4 kJ/gR at 70° F. and a vapor phase entropy of about 9.988×10−4 kJ/gR at 70° F.


In another embodiment, the refrigerant composition has low flammability.


In another embodiment, a method for manufacturing a refrigerant includes charging a vessel with about 14-16 wt % R-125, about 14-16 wt % R-134a, about 25-27 wt % R-32, about 3-5 wt % R-227ea, about 2-4 wt % R-152a, about 6-8 wt % CO2 and about 29-31 wt % R-1234ze. The CO2 may be injected into the vessel last.


In another embodiment, a method for manufacturing a refrigerant includes charging a vessel with about 15 wt % R-125, about 15 wt % R-134a, about 26 wt % R-32, about 7 wt % CO2 and about 30 wt % R-1234ze.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the disclosure are shown. However, this disclosure should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Like numbers refer to like elements throughout.



FIG. 1 depicts the liquid phase pressure-temperature curve of the refrigerant compositions of the disclosure compared to R-410A.



FIG. 2 depicts the vapor phase pressure-temperature curve of the refrigerant compositions of the disclosure compared to R-410A.



FIG. 3 depicts the liquid phase enthalpy curve of the refrigerant compositions of the disclosure compared to R-410A.



FIG. 4 depicts the vapor phase enthalpy curve of the refrigerant compositions of the disclosure compared to R-410A.



FIG. 5 depicts the liquid phase entropy curve of the refrigerant compositions of the disclosure compared to R-410A.



FIG. 6 depicts the vapor phase entropy curve of the refrigerant compositions of the disclosure compared to R-410A.



FIG. 7 depicts vapor pressure versus temperature for Example 1 compared to R-410A.



FIG. 8 depicts the liquid enthalpy curve of Example 1 compared to R-410A



FIG. 9 depicts the vapor enthalpy curve of Example 1 compared to R-410A



FIG. 10 is a block diagram of a method of manufacturing the refrigerant composition of the disclosure.



FIG. 11 is a block diagram of a method of filling an apparatus designed for R-410A with the refrigerant of the disclosure.



FIG. 12 is a phase diagram of CO2.





DETAILED DESCRIPTION

For simplicity and illustrative purposes, the present disclosure is described by referring mainly to exemplary embodiments thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be readily apparent to one of ordinary skill in the art that the present disclosure may be practiced without limitation to these specific details.


The disclosure relates to low GWP refrigerant mixtures that can replace high GWP refrigerants such as R-410A while yielding similar or superior refrigeration performance. All new home air conditioning units in North America use R-410A, also known as AZ-20, EcoFluor R-410, Forane 410A, Genetron R-410A, Puron, and Suva 410A. But this refrigerant will consequently be phased out. This is due to a continued focus on reducing compounds known to have an effect on the environment. R-410A is a zeotropic but near-azeotropic mixture of R-32 and R-125.


The disclosure includes a refrigerant composition of R-125, R-134a, R-32, R-227ea, R152, CO2 and R-1234ze that performs similar to R-410A. In one embodiment, the composition includes about 14-16 wt % R-125, about 14-16 wt % R-134a, about 25-27 wt % R-32, about 3-5 wt % R-227ea, about 2-4 wt % R-152a, about 6-8 wt % CO2 and about 29-31 wt % R-1234ze. In another embodiment, the refrigerant composition includes about 15 wt % R-125, about 15 wt % R-134a, about 26 wt % R-32, about 4 wt % R-227ea, about 3 wt % R-152a, about 5 wt % CO2 and about 29-31 wt % R-1234ze.


The compositions of the disclosure was developed from a formulation, which is about 14-18 wt % R-134a, about 14-18 wt % R-125, about 23-27 wt % R-32, about 2-4 wt % R-152a, about 6-8 wt % CO2 and about 29-31 wt % R-1234ze It was unexpectedly found that the addition of R-227ea, which acts as a fire retardant, unexpectedly reduces the flammability of the refrigerant composition while matching the properties and performance of R-410A. In an embodiment, it was found that R-152a could be replaced with DME to achieve similar refrigeration performance.


Refrigerant compositions of the disclosure are set forth in Examples 1-8. Examples 1-8 compared to the formulation for R-410A are tabulated in Table 1.









TABLE 1





Refrigerant Compositions Examples 1-8 of the


Disclosure Compared to R-410A.





















Generic Name
Product
Ex. 1
Ex. 2
Ex. 3
Ex. 4






1,1,1,2-
R-134a
15.00%
15.00%
17.00%
15.00%



tetrafluoroethane








pentafluoroethane
R-125
15.00%
15.00%
15.00%
17.00%



difluoromethane
R-32
26.00%
24.00%
24.00%
24.00%



1, 1,1,2, 3, 3, 3-
R-227ea
4.00%
4.00%
4.00%
4.00%



heptafluoropropane








1,1-difluoroethane
R-152a
3.00%
3.00%
3.00%
3.00%



dimethyl ether
R-E170
0.00%
0.00%
0.00%
0.00%



(DME)








CO2
CO2
7.00%
7.00%
7.00%
7.00%



1,3,3,3-
R-1234ze(E)
30.00%
32.00%
30.00%
30.00%



tetrafluoropropene









TOTAL
100.00%
100.00%
100.00%
100.00%




Liquid Phase
221.7
218.9
219.1
221.2




Pressure at








70° F. (psia)








GWP
1048
1034
1063
1104




Theo BP*
−73.07
−72.85
−72.92
−73.34




(° F.)





Generic Name
Product
Ex. 5
Ex. 6
Ex. 7
Ex. 8
R-410A





1,1,1,2-
R-134a
15.00%
15.00%
15.00%
15.00%
0.00%


tetrafluoroethane








pentafluoroethane
R-125
15.00%
15.00%
15.00%
15.00%
50.00


%








difluoromethane
R-32
26.00%
21.00%
24.00%
26.00%
50.00


%








1,1,1,2,3,3,3-
R-227ea
4.50%
4.00%
4.00%
4.00%
0.00%


heptafluoropropane








1,1-difluoroethane
R-152a
2.50%
5.00%
5.00%
0.00%
0.00%


dimethyl ether
R-E170
0.00%
0.00%
0.00%
3.00%
0.00%


(DME)








CO2
CO2
7.00%
7.00%
7.00%
7.00%
0.00%


1,3,3,3-
R-
30.00%
30.00%
30.00%
30.00%
0.00%


tetrafluoropropene
1234ze(E)








TOTAL
100.00%
100.00%
100.00%
100.00%
100.00%



Liquid
222.2
227.9
217.8
218.1
216.5



Phase








Pressure at








70° F. (psia)








GWP
1063
1017
1037
1044
2088



Theo BP*








(° F.)
−73.17
−77.34
−72.67
−72.44
−60.60





*Calculated from REFPROP






The refrigerant formulations of the disclosure have a low Global Warming Potential (GWP) between 1000 and about 1100. In contrast, R-410A has a GWP of 2087.5, which is almost 2 times the GWP of the formulations of the disclosure. It is notable that in 2014, the United States, Canada and Mexico proposed an amendment to the Montreal Protocol to reduce production and consumption of HFCs by 85% during the period 2016-2035. Having a low GWP weighs the amount of HFC consumption downwards.


Thermodynamic values for the formulations of the disclosure compared to R-410A were evaluated using the REFPROP software from NIST.


The liquid and vapor phase pressures of Ex. 1 to 8 compared to R-410A at 70° F. is shown in Table 2.









TABLE 2







70° F. Liquid and Vapor Phase Pressure, Enthalpy and


Entropy of R-410A Compared to Ex. 1 to 8 of the Disclosure.














Liquid
Vapor
Liquid
Vapor





Phase
Phase
Phase
Phase
Liquid
Vapor



Pres-
Pres-
En-
En-
Phase
Phase



sure
sure
thalpy
thalpy
Entropy
Entropy


Material
(psia)
(psia)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





R-410A
216.5
215.8
0.2334
0.4259
6.197 × 10−4
9.832 × 10−4


Ex. 1
221.7
139.1
0.2323
0.4283
6.177 × 10−4
9.988 × 10−4


Ex. 2
218.9
135.2
0.2321
0.4260
6.173 × 10−4
9.947 × 10−4


Ex. 3
219.1
135.9
0.2321
0.4263
6.174 × 10−4
9.951 × 10−4


Ex. 4
221.2
137.5
0.2321
0.4250
6.173 × 10−4
9.925 × 10−4


Ex. 5
222.2
139.4
0.2323
0.4273
6.176 × 10−4
9.970 × 10−4


Ex. 6
227.9
137.5
0.2329
0.4264
6.189 × 10−4
9.963 × 10−4


Ex. 7
217.8
134.8
0.2322
0.4285
6.177 × 10−4
9.994 × 10−4


Ex. 8
218.1
134.2
0.2310
0.4322
7.056 × 10−4
10.97 × 10−4









As can be seen, the correspondence of the Examples of the disclosure approximate that of R-410A for liquid phase pressure, liquid phase enthalpy, vapor phase enthalpy, liquid phase entropy and vapor phase entropy.


The theoretical vapor pressure versus temperature relationship was calculated for Examples 1-8 of the disclosure compared to R-410A. The results are in Table 3.









TABLE 3





Liquid Pressure Versus Temperature Relationship of


Examples 1-8 of the Disclosure Compared to R-410A.




















Ex. 1
Ex. 2
Ex. 3
Ex. 4



Liquid
Liquid
Liquid
Liquid



Phase
Phase
Phase
Phase


Temperature
Pressure
Pressure
Pressure
Pressure


(° F.)
(psia)
(psia)
(psia)
(psia)





−60
 20.57
 20.44
 20.47
 20.71


−55
 23.25
 23.09
 23.12
 23.38


−50
 26.19
 26.00
 26.04
 26.32


−45
 29.41
 29.19
 29.23
 29.54


−40
 32.92
 32.67
 32.71
 33.06


−35
 36.74
 36.45
 36.49
 36.89


−30
 40.89
 40.56
 40.61
 41.04


−25
 45.39
 45.01
 45.06
 45.54


−20
 50.26
 49.83
 49.88
 50.40


−15
 55.51
 55.02
 55.07
 55.65


−10
 61.16
 60.60
 60.66
 61.29


−5
 67.23
 66.60
 66.66
 67.35


0
 73.74
 73.03
 73.10
 73.85


5
 80.70
 79.91
 79.98
 80.80


10
 88.15
 87.27
 87.34
 88.23


15
 96.09
 95.11
 95.19
 96.15


20
104.5
103.5
103.5
104.6


25
113.5
112.3
112.4
113.5


30
123.1
121.7
121.8
123.1


35
133.2
131.7
131.8
133.1


40
143.9
142.3
142.4
143.8


45
155.2
153.5
153.6
155.1


50
167.2
165.2
165.4
167.0


55
179.8
177.7
177.8
179.5


60
193.1
190.7
190.9
192.7


65
207.0
204.5
204.7
206.6


70
221.7
218.9
219.1
221.2


75
237.1
234.1
234.3
236.5


80
253.2
250.0
250.2
252.6


85
270.1
266.6
266.9
269.4


90
287.8
284.0
284.3
286.9


95
306.3
302.2
302.5
305.3


100
325.6
321.2
321.6
324.5


105
345.8
341.0
341.4
344.5


110
366.8
361.7
362.1
365.3


115
388.6
383.1
383.6
387.0


120
411.4
405.5
406.0
409.6


125
435.0
428.7
429.2
433.0
















Ex. 5
Ex. 6
Ex. 7
Ex. 8
R-410A



Liquid
Liquid
Liquid
Liquid
Liquid



Phase
Phase
Phase
Phase
Phase


Temperature
Pressure
Pressure
Pressure
Pressure
Pressure


(° F.)
(psia)
(psia)
(psia)
(psia)
(psia)





−60
 20.63
 22.71
 20.33
 20.25
 14.95


−55
 23.31
 25.56
 22.97
 22.89
 17.17


−50
 26.26
 28.67
 25.87
 25.78
 19.65


−45
 29.48
 32.06
 29.03
 28.94
 22.41


−40
 33.00
 35.76
 32.49
 32.40
 25.45


−35
 36.83
 39.77
 36.26
 36.16
 28.82


−30
 40.10
 44.11
 40.34
 40.24
 32.52


−25
 45.51
 48.80
 44.77
 44.66
 36.58


−20
 50.38
 53.86
 49.55
 49.45
 41.03


−15
 55.64
 59.30
 54.71
 54.61
 45.88


−10
 61.31
 65.14
 60.27
 60.17
 51.17


−5
 67.39
 71.40
 66.23
 66.14
 56.91


0
 73.92
 78.10
 72.63
 72.54
 63.13


5
 80.90
 85.26
 79.48
 79.39
 69.86


10
 88.36
 92.88
 86.79
 86.71
 77.12


15
 96.32
101.0
 94.58
 94.52
 84.95


20
104.8
109.6
102.9
102.8
 93.36


25
113.8
118.8
111.7
111.7
102.4


30
123.4
128.5
121.1
121.1
112.1


35
133.5
138.8
131.0
131.0
122.4


40
144.2
149.6
141.5
141.5
133.5


45
155.6
161.0
152.6
152.8
145.3


50
167.6
173.1
164.3
164.4
157.9


55
180.2
185.8
176.7
176.8
171.2


60
193.5
199.2
189.7
189.9
185.4


65
207.5
213.2
203.4
203.6
200.5


70
222.2
227.9
217.8
218.1
216.5


75
237.6
243.3
232.9
233.2
233.4


80
253.8
259.5
248.7
249.1
251.2


85
270.7
276.4
265.2
265.7
270.1


90
288.4
294.0
282.6
283.1
290.1


95
307.0
312.4
300.7
301.3
311.1


100
326.3
331.6
319.6
320.3
333.2


105
346.5
351.6
339.3
340.2
356.6


110
367.5
372.5
359.8
360.8
381.1


115
389.4
394.1
381.2
382.3
407.0


120
412.2
416.6
403.5
404.7
434.1


125
435.8
440.0
426.6
428.0
462.6









The results of Table 3 are presented graphically in FIG. 1. As can be seen, the correspondence of the liquid phase pressure to R-410A is very close over the entire range. The pressure is identical starting at about 70° F. up to about 100° F., indicating identical performance when used as a drop-in for an air conditioner.


Table 4 presents the vapor phase pressure versus temperature of R-410A compared to Examples 1 to 8 of the disclosure.









TABLE 4





Vapor Pressure Versus Temperature Relationship of


Examples 1-8 of the Disclosure Compared to R-410A.




















Ex. 1
Ex. 2
Ex. 3
Ex. 4



Vapor
Vapor
Vapor
Vapor



Phase
Phase
Phase
Phase


Temperature
Pressure
Pressure
Pressure
Pressure


(° F.)
(psia)
(psia)
(psia)
(psia)





−60
 7.057
 6.787
 6.840
 6.950


−55
 8.257
 7.946
 8.006
 8.133


−50
 9.617
 9.258
 9.328
 9.473


−45
 11.15
 10.74
 10.82
 10.99


−40
 12.87
 12.41
 12.50
 12.69


−35
 14.80
 14.27
 14.37
 14.59


−30
 16.95
 16.35
 16.47
 16.71


−25
 19.35
 18.67
 18.80
 19.07


−20
 22.00
 21.24
 21.38
 21.70


−15
 24.93
 24.08
 24.23
 24.58


−10
 28.15
 27.20
 27.38
 27.77


−5
 31.70
 30.64
 30.84
 31.27


0
 35.58
 34.41
 34.63
 35.11


5
 39.83
 38.54
 38.78
 39.31


10
 44.46
 43.03
 43.29
 43.88


15
 49.50
 47.93
 48.21
 48.86


20
 54.97
 53.24
 53.56
 54.27


25
 60.89
 59.00
 59.34
 60.13


30
 67.30
 65.22
 65.60
 66.46


35
 74.21
 71.95
 72.36
 73.29


40
 81.65
 79.19
 79.64
 80.66


45
 89.66
 86.98
 87.47
 88.58


50
 98.26
 95.35
 95.88
 97.08


55
107.5
104.3
104.9
106.2


60
117.3
113.9
114.5
116.0


65
127.9
124.2
124.9
126.4


70
139.1
135.2
135.9
137.5


75
151.1
146.9
147.6
149.0


80
163.9
159.3
160.1
162.1


85
177.5
172.6
173.5
175.5


90
192.0
186.7
187.6
189.8


95
207.3
201.6
202.6
205.0


100
223.6
217.5
218.6
221.1


105
240.8
234.3
235.5
238.2


110
259.1
252.2
253.4
256.3


115
278.4
271.0
272.3
275.5


120
298.9
291.0
292.4
295.8


125
320.5
312.1
313.6
317.2
















Ex. 5
Ex. 6
Ex. 7
Ex. 8
R-410A



Vapor
Vapor
Vapor
Vapor
Vapor



Phase
Phase
Phase
Phase
Phase


Temperature
Pressure
Pressure
Pressure
Pressure
Pressure


(° F.)
(psia)
(psia)
(psia)
(psia)
(psia)





−60
 7.063
 6.918
 6.796
 6.752
 14.90


−55
 8.264
 8.098
 7.954
 7.903
 17.10


−50
 9.625
 9.434
 9.266
 9.206
 19.58


−45
 11.16
 10.94
 10.75
 10.68
 22.32


−40
 12.89
 12.64
 12.41
 12.33
 25.36


−35
 14.82
 14.54
 14.27
 14.18
 28.71


−30
 16.97
 16.66
 16.35
 16.25
 32.41


−25
 19.37
 19.01
 18.66
 18.55
 36.45


−20
 22.02
 21.63
 21.23
 21.10
 40.89


−15
 24.96
 24.52
 24.06
 23.92
 45.72


−10
 28.19
 27.70
 27.18
 27.02
 50.99


−5
 31.74
 31.2
 30.61
 30.43
 56.71


0
 35.63
 35.04
 34.37
 34.18
 62.91


5
 39.89
 39.23
 38.49
 38.27
 69.62


10
 44.52
 43.80
 42.97
 42.73
 76.86


15
 49.57
 48.78
 47.85
 47.59
 84.66


20
 55.05
 54.19
 53.15
 52.86
 93.05


25
 60.98
 60.04
 58.89
 58.58
102.1


30
 67.40
 66.38
 65.10
 64.76
111.7


35
 74.32
 73.21
 71.81
 71.44
122.0


40
 81.78
 80.58
 79.03
 78.63
133.1


45
 89.80
 88.50
 86.80
 86.36
144.8


50
 98.41
 97.01
 95.14
 94.67
157.3


55
107.6
106.1
104.1
103.6
170.7


60
117.5
115.9
113.7
113.1
184.8


65
128.1
126.3
123.9
123.3
199.8


70
139.4
137.50
134.8
134.2
215.8


75
151.4
149.4
146.5
145.8
232.6


80
164.2
162.1
158.9
158.2
250.5


85
177.8
175.5
172.1
171.4
269.3


90
192.3
189.9
186.2
185.4
289.2


95
207.7
205.1
201.1
200.2
310.2


100
224.0
221.2
216.9
216.0
332.3


105
241.2
238.3
233.6
232.7
355.6


110
259.5
256.5
251.0
250.4
380.1


115
278.9
275.7
270.2
269.2
405.9


120
299.4
296.0
290.1
289.0
433.0


125
321.1
317.6
311.2
310.0
461.5









The results of Table 4 are presented graphically in FIG. 2. As can be seen, the correspondence of the vapor phase pressure to R-410A is very close at the lower temperature ranges.


Table 5 presents the liquid phase enthalpy versus temperature of R-410A compared to Examples 1 to 8 of the disclosure.









TABLE 5





Liquid Phase Enthalpy Versus Temperature Relationship of


Examples 1-8 of the Disclosure Compared to R-410A.




















Ex. 1
Ex. 2
Ex. 3
Ex. 4



Liquid
Liquid
Liquid
Liquid



Phase
Phase
Phase
Phase


Temperature
Enthalpy
Enthalpy
Enthalpy
Enthalpy


(° F.)
(kJ/g)
(kJ/g))
(kJ/g))
(kJ/g)





−60
0.1277
0.1281
0.1281
0.1282


−55
0.1325
0.1319
0.1318
0.1319


−50
0.1353
0.1357
0.1356
0.1357


−45
0.1391
0.1395
0.1394
0.1400


−40
0.1429
0.1433
0.1432
0.1433


−35
0.1468
0.1471
0.1471
0.1471


−30
0.1506
0.1509
0.1509
0.1510


−25
0.1545
0.1548
0.1547
0.1548


−20
0.1584
0.1586
0.1590
0.1587


−15
0.1623
0.1625
0.1625
0.1625


−10
0.1662
0.1664
0.1664
0.1664


−5
0.1702
0.1703
0.1703
0.1703


0
0.1741
0.1743
0.1743
0.1743


5
0.1781
0.1782
0.1782
0.1782


10
0.1821
0.1820
0.1822
0.1822


15
0.1861
0.1862
0.1862
0.1862


20
0.1902
0.1902
0.1902
0.1902


25
0.1943
0.1943
0.1943
0.1943


30
0.1984
0.1984
0.1984
0.1984


35
0.2025
0.2025
0.2025
0.2025


40
0.2066
0.2070
0.2066
0.2066


45
0.2108
0.2108
0.2108
0.2108


50
0.2151
0.2150
0.2150
0.2150


55
0.2193
0.2192
0.2192
0.2192


60
0.2236
0.2235
0.2235
0.2235


65
0.2279
0.2278
0.2278
0.2278


70
0.2323
0.2321
0.2321
0.2321


75
0.2367
0.2370
0.2365
0.2365


80
0.2412
0.2409
0.2410
0.2409


85
0.2457
0.2454
0.2454
0.2454


90
0.2503
0.2499
0.2500
0.2500


95
0.2549
0.2545
0.2546
0.2545


100
0.2596
0.2592
0.2592
0.2592


105
0.2643
0.2639
0.2639
0.2639


110
0.2692
0.2687
0.2687
0.2687


115
0.2741
0.2735
0.2736
0.2736


120
0.2790
0.2784
0.2785
0.2785


125
0.2841
0.2835
0.2835
0.2836
















Ex. 5
Ex. 6
Ex. 7
Ex. 8
R-410A



Liquid
Liquid
Liquid
Liquid
Liquid



Phase
Phase
Phase
Phase
Phase


Temperature
Enthalpy
Enthalpy
Enthalpy
Enthalpy
Enthalpy


(° F.)
(kJ/g)
(kJ/g)
(kJ/g)
(kJ/g)
(kJ/g)





−60
0.1279
0.1266
0.1277
0.1251
0.1268


−55
0.1316
0.1304
0.1315
0.1290
0.1306


−50
0.1354
0.1343
0.1353
0.1328
0.1345


−45
0.1392
0.1382
0.1391
0.1367
0.1383


−40
0.1431
0.1420
0.1430
0.1406
0.1422


−35
0.1469
0.1459
0.1468
0.1445
0.1460


−30
0.1507
0.1498
0.1507
0.1484
0.1499


−25
0.1546
0.1538
0.1545
0.1523
0.1538


−20
0.1585
0.1577
0.1584
0.1562
0.1577


−15
0.1624
0.1617
0.1623
0.1602
0.1617


−10
0.1663
0.1657
0.1662
0.1641
0.1657


−5
0.1702
0.1697
0.1708
0.1681
0.1697


0
0.1742
0.1737
0.1741
0.1721
0.1737


5
0.1781
0.1777
0.1781
0.1762
0.1777


10
0.1821
0.1818
0.1821
0.1802
0.1818


15
0.1862
0.1859
0.1861
0.1843
0.1858


20
0.1902
0.1900
0.1902
0.1884
0.1900


25
0.1943
0.1942
0.1943
0.1925
0.1941


30
0.1984
0.1983
0.1984
0.1966
0.1983


35
0.2025
0.2025
0.2025
0.2008
0.2025


40
0.2066
0.2068
0.2067
0.2050
0.2068


45
0.2108
0.2110
0.2109
0.2093
0.2111


50
0.2150
0.2153
0.2150
0.2135
0.2155


55
0.2193
0.2197
0.2193
0.2178
0.2199


60
0.2236
0.2240
0.2236
0.2222
0.2243


65
0.2279
0.2285
0.2279
0.2265
0.2288


70
0.2323
0.2329
0.2323
0.2310
0.2334


75
0.2367
0.2374
0.2367
0.2354
0.2380


80
0.2411
0.2420
0.2411
0.2399
0.2427


85
0.2456
0.2466
0.2456
0.2445
0.2475


90
0.2502
0.2513
0.2502
0.2491
0.2523


95
0.2548
0.2560
0.2548
0.2537
0.2572


100
0.2595
0.2608
0.2595
0.2584
0.2622


105
0.2642
0.2656
0.2642
0.2632
0.2674


110
0.2690
0.2705
0.2690
0.2681
0.2726


115
0.2739
0.2755
0.2739
0.2730
0.2780


120
0.2799
0.2806
0.2788
0.2780
0.2836


125
0.2840
0.2859
0.2839
0.2831
0.2893









The results of Table 5 are presented graphically in FIG. 3. As can be seen, the correspondence of the liquid phase enthalpy pressure to R-410A is very close over the entire temperature range.


Table 6 presents the vapor phase enthalpy versus temperature of R-410A compared to Examples 1 to 8 of the disclosure.









TABLE 6





Vapor Phase Enthalpy Versus Temperature Relationship of


Examples 1-8 of the Disclosure Compare to R-410A.




















Ex. 1
Ex. 2
Ex. 3
Ex. 4



Vapor
Vapor
Vapor
Vapor



Phase
Phase
Phase
Phase


Temperature
Enthalpy
Enthalpy
Enthalpy
Enthalpy


(° F.)
(kJ/g)
(kJ/g)
(kJ/g)
(kJ/g)





−60
0.3883
0.3854
0.3859
0.3847


−55
0.3901
0.3872
0.3876
0.3864


−50
0.3918
0.3889
0.3894
0.3882


−45
0.3936
0.3907
0.3912
0.3899


−40
0.3953
0.3925
0.3933
0.3917


−35
0.3970
0.3942
0.3946
0.3934


−30
0.3986
0.3959
0.3964
0.3951


−25
0.4004
0.3976
0.3981
0.3968


−20
0.4021
0.3993
0.3998
0.3985


−15
0.4038
0.4010
0.4014
0.4002


−10
0.4054
0.4027
0.4031
0.4018


−5
0.4071
0.4043
0.4047
0.4035


0
0.4087
0.4060
0.4064
0.4051


5
0.4103
0.4076
0.4080
0.4067


10
0.4118
0.4092
0.4095
0.4083


15
0.4134
0.4107
0.4111
0.4098


20
0.4149
0.4123
0.4126
0.4114


25
0.4164
0.4138
0.4142
0.4129


30
0.4179
0.4153
0.4156
0.4144


35
0.4193
0.4168
0.4171
0.4160


40
0.4207
0.4182
0.4185
0.4172


45
0.4221
0.4196
0.4199
0.4186


50
0.4234
0.4210
0.4213
0.4200


55
0.4247
0.4223
0.4226
0.4213


60
0.4259
0.4236
0.4239
0.4225


65
0.4271
0.4249
0.4251
0.4238


70
0.4283
0.4260
0.4263
0.4250


75
0.4294
0.4272
0.4274
0.4261


80
0.4305
0.4283
0.4285
0.4272


85
0.4315
0.4293
0.4296
0.4282


90
0.4324
0.4303
0.4306
0.4292


95
0.4333
0.4312
0.4315
0.4301


100
0.4341
0.4321
0.4323
0.4309


105
0.4348
0.4329
0.4331
0.4317


110
0.4354
0.4336
0.4338
0.4323


115
0.4360
0.4342
0.4343
0.4329


120
0.4364
0.4347
0.4348
0.4334


125
0.4367
0.4351
0.4352
0.4337
















Ex. 5
Ex. 6
Ex. 7
Ex. 8
R-410A



Vapor
Vapor
Vapor
Vapor
Vapor



Phase
Phase
Phase
Phase
Phase


Temperature
Enthalpy
Enthalpy
Enthalpy
Enthalpy
Enthalpy


(° F.)
(kJ/g)
(kJ/g)
(kJ/g)
(kJ/g)
(kJ/g)





−60
0.3874
0.3845
0.3879
0.3910
0.3994


−55
0.3892
0.3863
0.3897
0.3928
0.4009


−50
0.3909
0.3881
0.3915
0.3946
0.4023


−45
0.3927
0.3899
0.3932
0.3964
0.4037


−40
0.3944
0.3917
0.3950
0.3982
0.4050


−35
0.3961
0.3935
0.3967
0.3999
0.4064


−30
0.3978
0.3953
0.3985
0.4017
0.4077


−25
0.3995
0.3971
0.4002
0.4034
0.4090


−20
0.4012
0.3988
0.4019
0.4051
0.4103


−15
0.4029
0.4006
0.4036
0.4068
0.4115


−10
0.4045
0.4023
0.4052
0.4085
0.4127


−5
0.4061
0.4040
0.4069
0.4102
0.4139


0
0.4077
0.4057
0.4085
0.4119
0.4150


5
0.4093
0.4074
0.4101
0.4135
0.4161


10
0.4109
0.4090
0.4122
0.4151
0.4172


15
0.4124
0.4106
0.4133
0.4167
0.4182


20
0.4139
0.4122
0.4148
0.4183
0.4192


25
0.4154
0.4138
0.4163
0.4198
0.4201


30
0.4169
0.4153
0.4178
0.4213
0.4210


35
0.4183
0.4168
0.4193
0.4228
0.4218


40
0.4197
0.4184
0.4207
0.4243
0.4226


45
0.4211
0.4198
0.4221
0.4257
0.4233


50
0.4224
0.4212
0.4235
0.4271
0.4240


55
0.4237
0.4225
0.4250
0.4284
0.4246


60
0.4251
0.4239
0.4261
0.4297
0.4251


65
0.4262
0.4252
0.4273
0.4310
0.4255


70
0.4273
0.4264
0.4285
0.4322
0.4259


75
0.4285
0.4276
0.4297
0.4334
0.4261


80
0.4295
0.4287
0.4308
0.4345
0.4263


85
0.4305
0.4500
0.4318
0.4356
0.4263


90
0.4315
0.4308
0.4328
0.4366
0.4262


95
0.4323
0.4318
0.4337
0.4375
0.4260


100
0.4331
0.4326
0.4346
0.4384
0.4257


105
0.4338
0.4334
0.4354
0.4392
0.4251


110
0.4345
0.4341
0.4360
0.4399
0.4244


115
0.4350
0.4347
0.4367
0.4406
0.4235


120
0.4355
0.4352
0.4372
0.4411
0.4223


125
0.4358
0.4356
0.4375
0.4415
0.4208









The results of Table 6 are presented graphically in FIG. 4. As can be seen, the correspondence of the liquid phase enthalpy pressure to R-410A is very close over the entire temperature range.


Table 7 presents the liquid phase entropy versus temperature of R-410A compared to Examples 1 to 8 of the disclosure.









TABLE 7





Liquid Phase Entropy Versus Temperature Relationship of


Examples 1-8 of the Disclosure Compared to R-410A.




















Ex. 1
Ex. 2
Ex. 3
Ex. 4



Liquid Phase
Liquid Phase
Liquid Phase
Liquid Phase


Temperature
Entropy
Entropy
Entropy
Entropy


(° F.)
(kJ/gR)
(kJ/gR)
(kJ/gR)
(kJ/gR)





−60
3.943 × 10−4
3.952 × 10−4
3.951 × 10−4
3.953 × 10−4


−55
4.037 × 10−4
4.045 × 10−4
4.044 × 10−4
4.047 × 10−4


−50
4.130 × 10−4
4.138 × 10−4
4.137 × 10−4
4.139 × 10−4


−45
4.222 × 10−4
4.229 × 10−4
4.229 × 10−4
4.231 × 10−4


−40
4.313 × 10−4
4.320 × 10−4
4.319 × 10−4
.4321 × 10−4


−35
4.404 × 10−4
4.410 × 10−4
4.411 × 10−4
4.411 × 10−4


−30
4.493 × 10−4
4.499 × 10−4
4.499 × 10−4
4.500 × 10−4


−25
4.582 × 10−4
4.588 × 10−4
4.587 × 10−4
4.589 × 10−4


−20
4.671 × 10−4
4.677 × 10−4
4.675 × 10−4
4.676 × 10−4


−15
4.758 × 10−4
4.763 × 10−4
4.762 × 10−4
4.763 × 10−4


−10
4.845 × 10−4
4.849 × 10−4
4.849 × 10−4
4.850 × 10−4


−5
4.932 × 10−4
4.935 × 10−4
4.935 × 10−4
4.936 × 10−4


0
5.018 × 10−4
5.021 × 10−4
5.020 × 10−4
5.021 × 10−4


5
5.103 × 10−4
5.106 × 10−4
5.105 × 10−4
5.105 × 10−4


10
5.188 × 10−4
5.190 × 10−4
5.190 × 10−4
5.190 × 10−4


15
5.272 × 10−4
5.274 × 10−4
5.274 × 10−4
5.274 × 10−4


20
5.356 × 10−4
5.357 × 10−4
5.357 × 10−4
5.357 × 10−4


25
5.439 × 10−4
5.440 × 10−4
5.440 × 10−4
5.440 × 10−4


30
5.522 × 10−4
5.523 × 10−4
5.523 × 10−4
5.523 × 10−4


35
5.605 × 10−4
5.605 × 10−4
5.605 × 10−4
5.605 × 10−4


40
5.688 × 10−4
5.687 × 10−4
5.687 × 10−4
5.687 × 10−4


45
5.770 × 10−4
5.768 × 10−4
5.769 × 10−4
5.768 × 10−4


50
5.852 × 10−4
5.850 × 10−4
5.850 × 10−4
5.850 × 10−4


55
5.933 × 10−4
5.931 × 10−4
5.931 × 10−4
5.931 × 10−4


60
6.015 × 10−4
6.012 × 10−4
6.012 × 10−4
6.012 × 10−4


65
6.096 × 10−4
6.093 × 10−4
6.093 × 10−4
6.093 × 10−4


70
6.177 × 10−4
6.173 × 10−4
6.174 × 10−4
6.173 × 10−4


75
6.259 × 10−4
6.254 × 10−4
6.255 × 10−4
6.254 × 10−4


80
6.340 × 10−4
6.335 × 10−4
6.335 × 10−4
6.335 × 10−4


85
6.421 × 10−4
6.415 × 10−4
6.416 × 10−4
6.415 × 10−4


90
6.502 × 10−4
6.497 × 10−4
6.497 × 10−4
6.496 × 10−4


95
6.584 × 10−4
6.577 × 10−4
6.578 × 10−4
6.577 × 10−4


100
6.666 × 10−4
6.658 × 10−4
6.659 × 10−4
6.658 × 10−4


105
6.748 × 10−4
6.740 × 10−4
6.740 × 10−4
6.740 × 10−4


110
6.830 × 10−4
6.821 × 10−4
6.822 × 10−4
6.822 × 10−4


115
6.913 × 10−4
6.903 × 10−4
6.905 × 10−4
6.904 × 10−4


120
6.997 × 10−4
6.986 × 10−4
6.987 × 10−4
6.987 × 10−4


125
7.081 × 10−4
7.070 × 10−4
7.070 × 10−4
7.071 × 10−4
















Ex. 5
Ex. 6
Ex. 7
Ex. 8
R-410A



Liquid Phase
Liquid Phase
Liquid Phase
Liquid Phase
Liquid Phase


Temperature
Entropy
Entropy
Entropy
Entropy
Entropy


(° F.)
(kJ/gR)
(kJ/gR)
(kJ/gR)
(kJ/gR)
(kJ/gR)





−60
3.946 × 10−4
3.919 × 10−4
3.943 × 10−4
4.795 × 10−4
3.922 × 10−4


−55
4.040 × 10−4
4.014 × 10−4
4.037 × 10−4
4.890 × 10−4
4.017 × 10−4


−50
4.133 × 10−4
4.109 × 10−4
4.130 × 10−4
4.985 × 10−4
4.111 × 10−4


−45
4.225 × 10−4
4.202 × 10−4
4.222 × 10−4
5.078 × 10−4
4.204 × 10−4


−40
4.316 × 10−4
4.294 × 10−4
4.313 × 10−4
5.170 × 10−4
4.296 × 10−4


−35
4.406 × 10−4
4.386 × 10−4
4.404 × 10−4
5.262 × 10−4
4.387 × 10−4


−30
4.496 × 10−4
4.477 × 10−4
4.494 × 10−4
5.353 × 10−4
4.478 × 10−4


−25
4.584 × 10−4
4.567 × 10−4
4.583 × 10−4
5.443 × 10−4
4.568 × 10−4


−20
4.673 × 10−4
4.657 × 10−4
4.671 × 10−4
5.532 × 10−4
4.657 × 10−4


−15
4.760 × 10−4
4.746 × 10−4
4.759 × 10−4
5.621 × 10−4
4.745 × 10−4


−10
4.847 × 10−4
4.834 × 10−4
4.846 × 10−4
5.709 × 10−4
4.833 × 10−4


−5
4.933 × 10−4
4.922 × 10−4
4.932 × 10−4
5.797 × 10−4
4.921 × 10−4


0
5.019 × 10−4
5.009 × 10−4
5.018 × 10−4
5.883 × 10−4
5.008 × 10−4


5
5.104 × 10−4
5.096 × 10−4
5.103 × 10−4
5.970 × 10−4
5.095 × 10−4


10
5.188 × 10−4
5.182 × 10−4
5.188 × 10−4
6.056 × 10−4
5.181 × 10−4


15
5.273 × 10−4
5.267 × 10−4
5.272 × 10−4
6.141 × 10−4
5.266 × 10−4


20
5.356 × 10−4
5.353 × 10−4
5.356 × 10−4
6.226 × 10−4
5.352 × 10−4


25
5.440 × 10−4
5.437 × 10−4
5.439 × 10−4
6.310 × 10−4
5.437 × 10−4


30
5.523 × 10−4
5.522 × 10−4
5.522 × 10−4
6.394 × 10−4
5.522 × 10−4


35
5.605 × 10−4
5.606 × 10−4
5.605 × 10−4
6.478 × 10−4
5.606 × 10−4


40
5.687 × 10−4
5.690 × 10−4
5.688 × 10−4
6.561 × 10−4
5.691 × 10−4


45
5.769 × 10−4
5.773 × 10−4
5.770 × 10−4
6.644 × 10−4
5.775 × 10−4


50
5.851 × 10−4
5.857 × 10−4
5.851 × 10−4
6.727 × 10−4
5.859 × 10−4


55
5.933 × 10−4
5.940 × 10−4
5.933 × 10−4
6.809 × 10−4
5.944 × 10−4


60
6.014 × 10−4
6.023 × 10−4
6.014 × 10−4
6.892 × 10−4
6.028 × 10−4


65
6.095 × 10−4
6.106 × 10−4
6.096 × 10−4
6.974 × 10−4
6.112 × 10−4


70
6.176 × 10−4
6.189 × 10−4
6.177 × 10−4
7.056 × 10−4
6.197 × 10−4


75
6.257 × 10−4
6.271 × 10−4
6.258 × 10−4
7.138 × 10−4
6.281 × 10−4


80
6.338 × 10−4
6.354 × 10−4
6.339 × 10−4
 7220 × 10−4
6.367 × 10−4


85
6.419 × 10−4
6.437 × 10−4
6.420 × 10−4
7.302 × 10−4
6.453 × 10−4


90
6.501 × 10−4
6.520 × 10−4
6.501 × 10−4
7.384 × 10−4
6.539 × 10−4


95
6.582 × 10−4
6.603 × 10−4
6.582 × 10−4
7.466 × 10−4
6.625 × 10−4


100
6.664 × 10−4
6.687 × 10−4
6.664 × 10−4
7.548 × 10−4
6.713 × 10−4


105
6.745 × 10−4
6.770 × 10−4
6.746 × 10−4
7.631 × 10−4
6.801 × 10−4


110
6.828 × 10−4
6.855 × 10−4
6.828 × 10−4
7.714 × 10−4
6.890 × 10−4


115
6.912 × 10−4
6.939 × 10−4
6.910 × 10−4
7.797 × 10−4
6.981 × 10−4


120
6.994 × 10−4
7.025 × 10−4
6.994 × 10−4
7.881 × 10−4
7.074 × 10−4


125
7.078 × 10−4
7.111 × 10−4
7.078 × 10−4
7.966 × 10−4
7.169 × 10−4









The results of Table 7 are presented graphically in FIG. 5. As can be seen, the correspondence of the liquid phase enthalpy pressure to R-410A is very close over the entire temperature range.


Table 8 presents the vapor phase entropy versus temperature of R-410A compared to Examples 1 to 8 of the disclosure.









TABLE 8





Vapor Phase Entropy Versus Temperature Relationship of


Examples 1-8 of the Disclosure Compared to R-410A.




















Ex. 1
Ex. 2
Ex. 3
Ex. 4



Vapor Phase
Vapor Phase
Vapor Phase
Vapor Phase


Temperature
Entropy
Entropy
Entropy
Entropy


(° F.)
(kJ/gR)
(kJ/gR)
(kJ/gR)
(kJ/gR)





−60
1.073 × 10−3
1.066 × 10−3
1.067 × 10−3
1.064 × 10−3


−55
1.069 × 10−3
1.062 × 10−3
1.062 × 10−3
1.059 × 10−3


−50
1.064 × 10−3
1.057 × 10−3
1.058 × 10−3
1.055 × 10−3


−45
1.060 × 10−3
1.053 × 10−3
1.054 × 10−3
1.051 × 10−3


−40
1.056 × 10−3
1.049 × 10−3
1.050 × 10−3
1.047 × 10−3


−35
1.052 × 10−3
1.046 × 10−3
1.047 × 10−3
1.044 × 10−3


−30
1.049 × 10−3
1.042 × 10−3
1.043 × 10−3
1.040 × 10−3


−25
1.045 × 10−3
1.039 × 10−3
1.040 × 10−3
1.037 × 10−3


−20
1.042 × 10−3
1.036 × 10−3
1.037 × 10−3
1.038 × 10−3


−15
1.039 × 10−3
1.033 × 10−3
1.033 × 10−3
1.031 × 10−3


−10
1.036 × 10−3
1.030 × 10−3
1.031 × 10−3
1.028 × 10−3


−5
1.033 × 10−3
1.027 × 10−3
1.028 × 10−3
1.025 × 10−3


0
1.030 × 10−3
1.024 × 10−3
1.025 × 10−3
1.022 × 10−3


5
1.027 × 10−3
1.022 × 10−3
1.022 × 10−3
1.020 × 10−3


10
1.025 × 10−3
1.019 × 10−3
1.020 × 10−3
1.017 × 10−3


15
1.022 × 10−3
1.017 × 10−3
1.018 × 10−3
1.015 × 10−3


20
1.020 × 10−3
1.015 × 10−3
1.015 × 10−3
1.013 × 10−3


25
1.018 × 10−3
1,012 × 10−3
1.013 × 10−3
1.010 × 10−3


30
1.015 × 10−3
1.010 × 10−3
1.011 × 10−3
1.008 × 10−3


35
1.013 × 10−3
1.008 × 10−3
1.009 × 10−3
1.006 × 10−3


40
1.011 × 10−3
1.006 × 10−3
1.007 × 10−3
1.004 × 10−3


45
1.009 × 10−3
1.004 × 10−3
1.005 × 10−3
1.002 × 10−3


50
1.007 × 10−3
1.002 × 10−3
1.003 × 10−3
1.000 × 10−3


55
1.005 × 10−3
1.000 × 10−3
1.001 × 10−3
9.981 × 10−4


60
1.003 × 10−3
9.983 × 10−4
9.988 × 10−4
9.962 × 10−4


65
1.001 × 10−3
9.965 × 10−4
9.969 × 10−4
9.943 × 10−4


70
9.988 × 10−4
9.947 × 10−4
9.951 × 10−4
9.925 × 10−4


75
9.969 × 10−4
9.929 × 10−4
9.932 × 10−4
9.907 × 10−4


80
9.949 × 10−4
9.910 × 10−4
9.914 × 10−4
9.888 × 10−4


85
9.930 × 10−4
9.892 × 10−4
9.895 × 10−4
9.870 × 10−4


90
9.910 × 10−4
9.874 × 10−4
9.877 × 10−4
9.851 × 10−4


95
9.891 × 10−4
9.855 × 10−4
9.858 × 10−4
9.832 × 10−4


100
9.870 × 10−4
9.836 × 10−4
9.839 × 10−4
9.813 × 10−4


105
9.850 × 10−4
9.817 × 10−4
9.819 × 10−4
9.794 × 10−4


110
9.829 × 10−4
9.797 × 10−4
9.799 × 10−4
9.773 × 10−4


115
9.806 × 10−4
9.777 × 10−4
9.778 × 10−4
9.752 × 10−4


120
9.784 × 10−4
9.755 × 10−4
9.757 × 10−4
9.731 × 10−4


125
9.760 × 10−4
9.733 × 10−4
9.734 × 10−4
9.708 × 10−4
















Ex. 5
Ex.6
Ex. 7
Ex. 8
R-410A



Vapor Phase
Vapor Phase
Vapor Phase
Vapor Phase
Vapor Phase


Temperature
Entropy
Entropy
Entropy
Entropy
Entropy


(° F.)
(kJ/gR)
(kJ/gR)
(kJ/gR)
(kJ/gR)
(kJ/gR)





−60
1.071 × 10−3
1.068 × 10−3
1.072 × 10−3
1.173 × 10−3
1.075 × 10−3


−55
1.066 × 10−3
1.063 × 10−3
1.068 × 10−3
1.168 × 10−3
1.070 × 10−3


−50
1.062 × 10−3
1.059 × 10−3
1.063 × 10−3
1.164 × 10−3
1.065 × 10−3


−45
1.058 × 10−3
1.055 × 10−3
1.059 × 10−3
1.160 × 10−3
1.060 × 10−3


−40
1.054 × 10−3
1.051 × 10−3
1.055 × 10−3
1.155 × 10−3
1.056 × 10−3


−35
1.050 × 10−3
1.047 × 10−3
1.052 × 10−3
1.152 × 10−3
1.052 × 10−3


−30
1.047 × 10−3
1.044 × 10−3
1.048 × 10−3
1.148 × 10−3
1.048 × 10−3


−25
1.043 × 10−3
1.040 × 10−3
1.045 × 10−3
1.144 × 10−3
1.044 × 10−3


−20
1.040 × 10−3
1.037 × 10−3
1.041 × 10−3
1.141 × 10−3
1.040 × 10−3


−15
1.037 × 10−3
1.034 × 10−3
1.038 × 10−3
1.138 × 10−3
1.036 × 10−3


−10
1.034 × 10−3
1.031 × 10−3
1.035 × 10−3
1.135 × 10−3
1.033 × 10−3


−5
1.031 × 10−3
1.029 × 10−3
1.032 × 10−3
1.132 × 10−3
1.029 × 10−3


0
1.028 × 10−3
1.026 × 10−3
1.030 × 10−3
1.129 × 10−3
1.026 × 10−3


5
1.025 × 10−3
1.023 × 10−3
1.027 × 10−3
1.126 × 10−3
1.023 × 10−3


10
1.023 × 10−3
1.021 × 10−3
1.025 × 10−3
1.124 × 10−3
1.019 × 10−3


15
1.020 × 10−3
1.018 × 10−3
1.022 × 10−3
1.121 × 10−3
1.016 × 10−3


20
1.018 × 10−3
1.016 × 10−3
1.020 × 10−3
1.119 × 10−3
1.013 × 10−3


25
1.016 × 10−3
1.014 × 10−3
1.018 × 10−3
1.116 × 10−3
1.010 × 10−3


30
1.013 × 10−3
1.012 × 10−3
1.015 × 10−3
1.114 × 10−3
1.007 × 10−3


35
1.011 × 10−3
1.010 × 10−3
1.013 × 10−3
1.112 × 10−3
1.004 × 10−3


40
1.009 × 10−3
1.008 × 10−3
1.011 × 10−3
1.109 × 10−3
1.001 × 10−3


45
1.007 × 10−3
1.006 × 10−3
1.009 × 10−3
1.107 × 10−3
9.981 × 10−4


50
1.005 × 10−3
1.004 × 10−3
1.007 × 10−3
1.105 × 10−3
9.951 × 10−4


55
1.003 × 10−3
1.002 × 10−3
1.005 × 10−3
1.103 × 10−3
9.922 × 10−4


60
1.001 × 10−3
1.000 × 10−3
1.003 × 10−3
1.101 × 10−3
9.892 × 10−4


65
9.989 × 10−4
9.981 × 10−4
1.001 × 10−3
1.099 × 10−3
9.862 × 10−4


70
9.970 × 10−4
9.963 × 10−4
9.994 × 10−4
1.097 × 10−3
9.832 × 10−4


75
9.951 × 10−4
9.945 × 10−4
9.975 × 10−4
1.095 × 10−3
9.801 × 10−4


80
9.932 × 10−4
9.927 × 10−4
9.957 × 10−4
1.094 × 10−3
9.770 × 10−4


85
9.912 × 10−4
9.991 × 10−4
9.938 × 10−4
1.092 × 10−3
9.737 × 10−4


90
9.893 × 10−4
9.890 × 10−4
9.919 × 10−4
1.090 × 10−3
9.704 × 10−4


95
9.873 × 10−4
9.871 × 10−4
9.900 × 10−4
1.088 × 10−3
9.669 × 10−4


100
9.853 × 10−4
9.852 × 10−4
9.881 × 10−4
1.086 × 10−3
9.633 × 10−4


105
9.832 × 10−4
9.833 × 10−4
9.861 × 10−4
1.084 × 10−3
9.596 × 10−4


110
9.811 × 10−4
9.812 × 10−4
9.841 × 10−4
1.082 × 10−3
9.556 × 10−4


115
9.789 × 10−4
9.791 × 10−4
9.820 × 10−4
1.080 × 10−3
9.513 × 10−4


120
9.767 × 10−4
9.769 × 10−4
9.800 × 10−4
1.077 × 10−3
9.468 × 10−4


125
9.743 × 10−4
9.746 × 10−4
9.775 × 10−4
1.075 × 10−3
9.418 × 10−4









The results of Table 8 are presented graphically in FIG. 6. As can be seen, the correspondence of the vapor phase enthalpy pressure to R-410A is very close over the entire temperature range.


The NIST REFPROP program was used to generate the thermodynamic values for the examples of the disclosure. The results for temperature, pressure, density, enthalpy and entropy for Examples 1-8 are set forth in Tables 9-16.









TABLE 9





Temperature, Pressure, Density, Enthalpy and Entropy Values for


Example 1.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.57
7.057
1.347
2.132 × 10−3


−55
23.25
8.257
1.339
2.470 × 10−3


−50
26.19
9.617
1.331
2.850 × 10−3


−45
29.40
11.15
1.322
3.274 × 10−3


−40
32.92
12.87
1.314
3.746 × 10−3


−35
36.74
14.80
1.305
4.271 × 10−3


−30
40.89
16.95
1.297
4.850 × 10−3


−25
45.39
19.35
1.288
5.494 × 10−3


−20
50.26
22.00
1.279
6.201 × 10−3


−15
55.50
24.93
1.270
6.978 × 10−3


−10
61.16
28.15
1.262
7.830 × 10−3


−5
67.23
31.70
1.252
8.762 × 10−3


0
73.74
35.58
1.243
9.779 × 10−3


5
80.70
39.83
1.234
0.01089


10
88.15
44.46
1.225
0.01209


15
96.09
49.50
1.215
0.01340


20
104.5
55.00
1.206
0.01482


25
113.5
60.89
1.196
0.01636


30
123.1
67.30
1.186
0.01802


35
133.2
74.21
1.176
0.01980


40
143.9
81.65
1.167
0.02176


45
155.2
89.66
1.155
0.02385


50
167.2
98.26
1.145
0.02611


55
179.8
107.5
1.134
0.02853


60
193.1
117.3
1.123
0.03115


65
207.0
127.9
1.112
0.03400


70
221.7
139.1
1.100
0.03699


75
237.1
151.1
1.088
0.04024


80
253.2
163.9
1.076
0.04375


85
270.1
177.5
1.064
0.04752


90
287.8
192.0
1.051
0.05157


95
306.3
207.3
1.038
0.05595


100
325.6
223.6
1.025
0.06066


105
345.8
240.8
1.011
0.06574


110
366.8
259.1
0.9967
0.07124


115
388.2
278.4
0.9818
0.07719


120
411.4
298.9
0.9664
0.08363






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1277
0.3883
3.940 × 10−4
1.073 × 10−3


−55
0.1315
0.3901
4.037 × 10−4
1.069 × 10−3


−50
0.1353
0.3918
4.130 × 10−4
1.064 × 10−3


−45
0.1391
0.3936
4.222 × 10−4
1.060 × 10−3


−40
0.1429
0.3953
4.313 × 10−4
1.056 × 10−3


−35
0.1468
0.3970
4.404 × 10−4
1.052 × 10−3


−30
0.1506
0.3988
4.493 × 10−4
1.049 × 10−3


−25
0.1545
0.4004
4.582 × 10−4
1.045 × 10−3


−20
0.1584
0.4021
4.671 × 10−4
1.042 × 10−3


−15
0.1623
0.4038
4.758 × 10−4
1.039 × 10−3


−10
0.1662
0.4054
4.845 × 10−4
1.036 × 10−3


−5
0.1702
0.4071
4.932 × 10−4
1.033 × 10−3


0
0.1741
0.4087
5.018 × 10−4
1.030 × 10−3


5
0.1781
0.4103
5.103 × 10−4
1.027 × 10−3


10
0.1821
0.4118
5.188 × 10−4
1.025 × 10−3


15
0.1861
0.4134
5.272 × 10−4
1.022 × 10−3


20
0.1902
0.4149
5.356 × 10−4
1.020 × 10−3


25
0.1943
0.4164
5.439 × 10−4
1.019 × 10−3


30
0.1984
0.4179
5.522 × 10−4
1.015 × 10−3


35
0.2025
0.4193
5.605 × 10−4
1.013 × 10−3


40
0.2066
0.4207
5.688 × 10−4
1.011 × 10−3


45
0.2108
0.4221
5.770 × 10−4
1.009 × 10−3


50
0.2151
0.4234
5.852 × 10−4
1.007 × 10−3


55
0.2193
0.4247
5.933 × 10−4
1.005 × 10−3


60
0.2236
0.4259
6.015 × 10−4
1.003 × 10−3


65
0.2279
0.4271
6.100 × 10−4
1.001 × 10−3


70
0.2323
0.4283
6.177 × 10−4
9.988 × 10−4


75
0.2367
0.4294
6.259 × 10−4
9.969 × 10−4


80
0.2412
0.4305
6.340 × 10−4
9.949 × 10−4


85
0.2457
0.4315
6.421 × 10−4
9.930 × 10−4


90
0.2503
0.4324
6.502 × 10−4
9.910 × 10−4


95
0.2549
0.4333
6.583 × 10−4
9.890 × 10−4


100
0.2596
0.4341
6.666 × 10−4
9.870 × 10−4


105
0.2643
0.4348
6.748 × 10−4
9.850 × 10−4


110
0.2692
0.4354
6.830 × 10−4
9.828 × 10−4


115
0.2741
0.4360
6.913 × 10−4
9.806 × 10−4


120
0.2790
0.4364
6.997 × 10−4
9.784 × 10−4
















TABLE 10





Temperature, Pressure, Density, Enthalpy and Entropy Values for


Example 2.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.44
6.787
1.351
2.084 × 10−3


−55
23.09
7.946
1.343
2.415 × 10−3


−50
26.00
9.258
1.335
2.787 × 10−3


−45
29.19
10.74
1.326
3.203 × 10−3


−40
32.67
12.41
1.318
3.667 × 10−3


−35
36.45
14.27
1.340
4.183 × 10−3


−30
40.56
16.35
1.301
4.754 × 10−3


−25
45.01
18.67
1.292
5.385 × 10−3


−20
49.83
21.24
1.284
6.080 × 10−3


−15
55.02
24.08
1.275
6.844 × 10−3


−10
60.60
27.20
1.266
7.682 × 10−3


−5
66.60
30.64
1.257
8.599 × 10−3


0
73.03
34.41
1.248
9.600 × 10−3


5
79.91
38.54
1.238
0.01069


10
87.27
43.03
1.229
0.01188


15
95.11
47.93
1.220
0.01317


20
103.5
53.24
1.210
0.01457


25
112.3
59.00
1.200
0.01608


30
121.7
65.22
1.190
0.01772


35
131.7
71.95
1.180
0.01949


40
142.3
79.19
1.170
0.02140


45
153.5
86.98
1.160
0.02346


50
165.2
95.35
1.149
0.02568


55
177.7
104.3
1.139
0.02808


60
190.7
113.9
1.129
0.03065


65
204.5
124.2
1.116
0.03342


70
218.9
135.2
1.105
0.03640


75
234.1
146.9
1.093
0.03960


80
250.0
159.3
1.081
0.04306


85
266.6
172.6
1.069
0.04680


90
284.0
186.7
1.056
0.05076


95
302.2
201.6
1.044
0.05507


100
321.2
217.5
1.030
0.05970


105
341.0
234.3
1.016
0.06470


110
361.7
252.2
1.002
0.07010


115
383.1
271.0
0.9874
0.07594


120
405.5
291.0
0.9720
0.08226


125
428.7
312.1
0.9561
0.08913






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1281
0.3854
3.952 × 10−4
1.066 × 10−3


−55
0.1319
0.3872
4.045 × 10−4
1.062 × 10−3


−50
0.1357
0.3889
4.138 × 10−4
1.057 × 10−3


−45
0.1395
0.3907
4.229 × 10−4
1.053 × 10−3


−40
0.1433
0.3925
4.320 × 10−4
1.049 × 10−3


−35
0.1471
0.3942
4.410 × 10−4
1.046 × 10−3


−30
0.1509
0.3959
4.499 × 10−4
1.042 × 10−3


−25
0.1548
0.3976
4.588 × 10−4
1.039 × 10−3


−20
0.1586
0.3993
4.676 × 10−4
1.039 × 10−3


−15
0.1625
0.4010
4.730 × 10−4
1.033 × 10−3


−10
0.1664
0.4027
4.849 × 10−4
1.030 × 10−3


−5
0.1703
0.4043
4.935 × 10−4
1.027 × 10−3


0
0.1743
0.4060
5.021 × 10−4
1.024 × 10−3


5
0.1782
0.4076
5.106 × 10−4
1.022 × 10−3


10
0.1822
0.4092
5.190 × 10−4
1.019 × 10−3


15
0.1862
0.4107
5.274 × 10−4
1.017 × 10−3


20
0.1902
0.4123
5.357 × 10−4
1.015 × 10−3


25
0.1943
0.4138
5.440 × 10−4
1.012 × 10−3


30
0.1984
0.4153
5.523 × 10−4
1.010 × 10−3


35
0.2024
0.4168
5.605 × 10−4
1.008 × 10−3


40
0.2070
0.4181
5.687 × 10−4
1.050 × 10−3


45
0.2108
0.4196
5.769 × 10−4
1.004 × 10−3


50
0.2150
0.4210
5.850 × 10−4
1.002 × 10−3


55
0.2192
0.4223
5.931 × 10−4
1.000 × 10−3


60
0.2235
0.4236
6.012 × 10−4
9.983 × 10−4


65
0.2278
0.4248
6.093 × 10−4
9.965 × 10−4


70
0.2321
0.4260
6.173 × 10−4
9.947 × 10−4


75
0.2377
0.4272
6.254 × 10−4
9.929 × 10−4


80
0.2409
0.4283
6.335 × 10−4
9.910 × 10−4


85
0.2454
0.4293
6.415 × 10−4
9.892 × 10−4


90
0.2499
0.4303
6.496 × 10−4
9.874 × 10−4


95
0.2545
0.4312
6.577 × 10−4
9.855 × 10−4


100
0.2592
0.4321
6.658 × 10−4
9.836 × 10−4


105
0.2639
0.4329
6.740 × 10−4
9.820 × 10−4


110
0.2687
0.4336
.6821 × 10−4
9.800 × 10−4


115
0.2735
0.4342
6.903 × 10−4
9.777 × 10−4


120
0.2784
0.4347
6.986 × 10−4
9.755 × 10−4


125
0.2835
0.4351
7.070 × 10−4
9.732 × 10−4
















TABLE 11





Temperature, Pressure, Density, Enthalpy and Entropy


Values for Example 3.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.47
6.840
1.352
2.097 × 10−3


−55
23.12
8.006
1.344
2.430 × 10−3


−50
26.04
9.328
1.336
2.804 × 10−3


−45
29.23
10.82
1.327
3.222 × 10−3


−40
32.71
12.50
1.319
3.689 × 10−3


−35
36.49
14.37
1.310
4.207 × 10−3


−30
40.61
16.47
1.302
4.780 × 10−3


−25
45.06
18.80
1.293
5.414 × 10−3


−20
49.88
21.38
1.284
6.113 × 10−3


−15
55.07
24.23
1.275
6.881 × 10−3


−10
60.66
27.38
1.266
7.722 × 10−3


−5
66.66
30.84
1.257
8.643 × 10−3


0
73.10
34.63
1.248
9.649 × 10−3


5
79.98
38.77
1.239
0.01075


10
87.34
43.29
1.230
0.01194


15
95.19
48.21
1.220
0.01323


20
103.5
53.56
1.211
0.01464


25
112.4
59.34
1.201
0.01616


30
121.8
65.60
1.191
0.01780


35
131.8
72.36
1.181
0.01958


40
142.
79.64
1.171
0.02150


45
153.6
87.47
1.160
0.02357


50
165.4
95.87
1.150
0.02580


55
177.8
104.9
1.139
0.02821


60
190.9
114.5
1.128
0.03079


65
204.7
124.9
1.117
0.03358


70
219.1
135.9
1.105
0.03657


75
234.3
147.6
1.094
0.03979


80
250.2
160.1
1.082
0.04326


85
266.9
173.5
1.069
0.04699


90
284.3
187.6
1.057
0.05100


95
302.5
202.6
1.044
0.05532


100
321.6
218.6
1.030
0.05998


105
341.4
235.6
1.017
0.06501


110
362.1
253.4
1.002
0.07044


115
383.6
272.3
 0.9876
0.07631


120
406.0
292.4
 0.9722
0.08267


125
429.2
313.6
 0.9562
0.08959






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1281
0.3859
0.0003951
1.067 × 10−3


−55
0.1318
0.3876
0.0004044
1.062 × 10−3


−50
0.1356
0.3890
0.0004137
1.058 × 10−3


−45
0.1394
0.3912
4.229 × 10−4
1.054 × 10−3


−40
0.1432
0.3929
4.319 × 10−4
1.050 × 10−3


−35
0.1471
0.3946
4.410 × 10−4
1.047 × 10−3


−30
0.1509
0.3964
4.508 × 10−4
1.043 × 10−3


−25
0.1547
0.3981
4.587 × 10−4
1.040 × 10−3


−20
0.1586
0.3998
0.0004.675
1.037 × 10−3


−15
0.1625
0.4014
 4762 × 10−4
1.033 × 10−3


−10
0.1664
0.4031
4.849 × 10−4
1.031 × 10−3


−5
0.1703
0.4047
4.935 × 10−4
1.028 × 10−3


0
0.1743
0.4064
5.020 × 10−4
1.025 × 10−3


5
0.1782
0.4080
5.105 × 10−4
1.022 × 10−3


10
0.1822
0.4095
5.189 × 10−4
1.020 × 10−3


15
0.1862
0.4111
5.273 × 10−4
1.018 × 10−3


20
0.1902
0.4126
5.357 × 10−4
1.015 × 10−3


25
0.1943
0.4142
5.440 × 10−4
1.013 × 10−3


30
0.1984
0.4156
5.523 × 10−4
1.011 × 10−3


35
0.2025
0.4171
5.605 × 10−4
1.009 × 10−3


40
0.2066
0.4185
5.687 × 10−4
1.007 × 10−3


45
0.2108
0.4199
5.769 × 10−4
1.005 × 10−3


50
0.2150
0.4213
5.850 × 10−4
1.003 × 10−3


55
0.2192
0.4226
5.931 × 10−4
1.001 × 10−3


60
0.2235
0.4239
6.012 × 10−4
9.988 × 10−4


65
0.2278
0.4251
6.093 × 10−4
9.969 × 10−4


70
0.2321
0.4263
6.174 × 10−4
9.951 × 10−4


75
0.2365
0.4274
6.255 × 10−4
9.932 × 10−4


80
0.2410
0.4285
6.335 × 10−4
9.914 × 10−4


85
0.2454
0.4296
6.416 × 10−4
9.895 × 10−4


90
0.2500
0.4306
6.497 × 10−4
9.877 × 10−4


95
0.2546
0.4315
6.578 × 10−4
9.858 × 10−4


100
0.2592
0.4323
6.659 × 10−4
9.839 × 10−4


105
0.2639
0.4331
6.740 × 10−4
9.819 × 10−4


110
0.2687
0.4338
6.822 × 10−4
9.799 × 10−4


115
0.2736
0.4343
6.905 × 10−4
9.778 × 10−4


120
0.2785
0.4348
6.987 × 10−4
9.757 × 10−4


125
0.2835
0.4352
7.070 × 10−4
9.734 × 10−4
















TABLE 12





Temperature, Pressure, Density, Enthalpy and Entropy Values for


Example 4.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.70
6.950
1.354
2.136 × 10−3


−55
23.38
8.133
1.345
2.475 × 10−3


−50
26.32
9.473
1.337
2.855 × 10−3


−45
29.54
10.99
1.329
3.281 × 10−3


−40
33.06
12.69
1.320
3.755 × 10−3


−35
36.89
14.59
1.311
4.282 × 10−3


−30
41.04
16.71
1.303
4.865 × 10−3


−25
45.54
19.07
1.294
5.509 × 10−3


−20
50.40
21.69
1.285
6.219 × 10−3


−15
55.65
24.58
1.276
6.999 × 10−3


−10
61.29
27.77
1.267
7.855 × 10−3


−5
67.35
31.27
1.258
8.790 × 10−3


0
73.85
35.11
1.249
9.812 × 10−3


5
80.80
39.31
1.240
0.01093


10
88.23
43.88
1.231
0.01214


15
96.15
48.86
1.221
0.01345


20
104.6
54.27
1.211
0.01488


25
113.5
60.13
1.202
0.01642


30
123.1
66.46
1.192
0.01810


35
133.1
73.29
1.181
0.01990


40
143.8
80.66
1.171
0.02185


45
155.1
88.58
1.161
0.02395


50
167.0
97.08
1.150
0.02622


55
179.5
106.2
1.139
0.02866


60
192.7
116.0
1.128
0.03129


65
206.6
126.4
1.117
0.03412


70
221.2
137.5
1.105
0.03716


75
236.5
149.4
1.094
0.04043


80
252.6
162.1
1.082
0.04395


85
269.4
175.5
1.069
0.04774


90
286.9
189.8
1.057
0.05182


95
305.3
205.0
1.043
0.05622


100
324.5
221.1
1.030
0.06096


105
344.5
238.2
1.016
0.06607


110
365.3
256.3
1.001
0.07160


115
387.0
275.5
0.9866
0.07758


120
409.6
295.8
0.9711
0.08406


125
433.0
317.2
0.9548
0.09111






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1282
0.3847
3.953 × 10−4
1.064 × 10−3


−55
0.1319
0.3864
4.047 × 10−4
1.059 × 10−3


−50
0.1357
0.3882
4.139 × 10−4
1.055 × 10−3


−45
0.1395
0.3899
4.231 × 10−4
1.051 × 10−3


−40
0.1433
0.3917
4.321 × 10−4
1.047 × 10−3


−35
0.1471
0.3934
4.411 × 10−4
1.048 × 10−3


−30
0.1510
0.3951
4.500 × 10−4
1.040 × 10−3


−25
0.1549
0.3968
4.589 × 10−4
1.037 × 10−3


−20
0.1587
0.3985
4.676 × 10−4
1.034 × 10−3


−15
0.1625
0.4002
4.763 × 10−4
1.031 × 10−3


−10
0.1664
0.4018
4.850 × 10−4
1.028 × 10−3


−5
0.1703
0.4035
4.936 × 10−4
1.025 × 10−3


0
0.1743
0.4051
5.021 × 10−4
1.022 × 10−3


5
0.1782
0.4067
5.106 × 10−4
1.020 × 10−3


10
0.1822
0.4083
5.190 × 10−4
1.017 × 10−3


15
0.1862
0.4098
5.274 × 10−4
1.015 × 10−3


20
0.1902
0.4114
5.357 × 10−4
1.013 × 10−3


25
0.1943
0.4129
5.440 × 10−4
1.010 × 10−3


30
0.1984
0.4144
5.523 × 10−4
1.008 × 10−3


35
0.2025
0.4158
5.605 × 10−4
1.010 × 10−3


40
0.2066
0.4172
5.687 × 10−4
1.004 × 10−3


45
0.2108
0.4186
5.768 × 10−4
1.002 × 10−3


50
0.2150
0.4200
5.850 × 10−4
1.000 × 10−3


55
0.2192
0.4213
5.931 × 10−4
9.981 × 10−4


60
0.2235
0.4225
6.012 × 10−4
9.962 × 10−4


65
0.2278
0.4238
6.093 × 10−4
9.943 × 10−4


70
0.2321
0.4250
6.173 × 10−4
9.925 × 10−4


75
0.2370
0.4261
6,254 × 10−4
9.907 × 10−4


80
0.2409
0.4272
6.335 × 10−4
9.888 × 10−4


85
0.2454
0.4282
6.415 × 10−4
9.870 × 10−4


90
0.2500
0.4292
6.496 × 10−4
9.851 × 10−4


95
0.2545
0.4301
6.578 × 10−4
9.832 × 10−4


100
0.2592
0.4309
6.658 × 10−4
9.813 × 10−4


105
0.2639
0.4317
6.740 × 10−4
9.794 × 10−4


110
0.2690
0.4323
6.822 × 10−4
9.773 × 10−4


115
0.2736
0.4329
6.904 × 10−4
9.752 × 10−4


120
0.2785
0.4334
6.987 × 10−4
9.731 × 10−4


125
0.2834
0.4337
7.071 × 10−4
9.708 × 10−4
















TABLE 13





Temperature, Pressure, Density, Enthalpy and Entrop Values for


Example 5.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Density


Temp.
Pressure
Pressure
Density
Phase


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.63
   7.063
1.350 
2.142 × 10−3


−55
23.31
   8.264
1.342 
2.481 × 10−3


−50
26.26
   9.625
1.334 
2.863 × 10−3


−45
29.48
  11.16
1.325 
3.289 × 10−3


−40
33.00
  12.89
1.317 
3.764 × 10−3


−35
36.83
  14.82
1.308 
4.291 × 10−3


−30
41.00
  16.97
1.300 
4.875 × 10−3


−25
45.51
  19.37
1.291 
5.521 × 10−3


−20
50.38
  22.02
1.282 
6.231 × 10−3


−15
55.64
  24.96
1.273 
7.012 × 10−3


−10
61.31
  28.19
1.264 
7.869 × 10−3


−5
67.39
  31.74
1.255 
8.805 × 10−3


0
73.92
  35.63
1.246 
9.828 × 10−3


5
80.80
  39.89
1.237 
0.0109 


10
88.36
  44.52
1.227 
0.0122 


15
96.32
  49.57
1.218 
0.0138 


20
104.8
  55.05
1.208 
0.0149 


25
113.8
  60.98
1.198 
0.0165 


30
123.4
  67.40
1.188 
0.0181 


35
133.5
  74.32
1.178 
0.0199 


40
144.2
  81.78
1.168 
0.0219 


45
155.6
  89.80
1.158 
0.0240 


50
167.6
  98.41
1.147 
0.0263 


55
180.2
107.6
1.136 
0.0287 


60
193.5
117.5
1.125 
0.0313 


65
207.5
128.1
1.114 
0.0342 


70
222.2
139.4
1.102 
0.0372 


75
237.6
151.4
1.091 
0.0405 


80
253.8
164.2
1.079 
0.0440 


85
270.7
177.8
1.066 
0.0478 


90
288.4
192.3
1.053 
0.05187


95
307.0
207.7
1.040 
0.05626


100
326.3
224.0
1.027 
0.06101


105
346.5
241.2
1.013 
0.06612


110
367.5
259.5
0.9985
0.07165


115
389.4
278.9
0.9835
0.07764


120
412.2
299.4
0.9680
0.08413


125
435.8
321.1
0.9517
0.09119






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1279
0.3874
3.946 × 10−4
3.919 × 10−4


−55
0.1316
0.3892
4.040 × 10−4
4.014 × 10−4


−50
0.1354
0.3909
4.133 × 10−4
4.109 × 10−4


−45
0.1392
0.3927
4.225 × 10−4
4.202 × 10−4


−40
0.1431
0.3944
4.316 × 10−4
4.294 × 10−4


−35
0.1469
0.3961
4.406 × 10−4
4.386 × 10−4


−30
0.1507
0.3978
4.496 × 10−4
4.477 × 10−4


−25
0.1556
0.3995
4.584 × 10−4
4.567 × 10−4


−20
0.1585
0.4012
4.673 × 10−4
4.657 × 10−4


−15
0.1624
0.4029
4.760 × 10−4
4.746 × 10−4


−10
0.1663
0.4045
4.847 × 10−4
4.834 × 10−4


−5
0.1702
0.4061
4.933 × 10−4
4.922 × 10−4


0
0.1742
0.4077
5.019 × 10−4
5.009 × 10−4


5
0.1781
0.4093
5.104 × 10−4
5.096 × 10−4


10
0.1821
0.4109
5.189 × 10−4
5.182 × 10−4


15
0.1862
0.4124
5.273 × 10−4
5.268 × 10−4


20
0.1902
0.4139
5.356 × 10−4
5.353 × 10−4


25
0.1943
0.4154
5.440 × 10−4
5.434 × 10−4


30
0.1984
0.4169
5.523 × 10−4
5.522 × 10−4


35
0.2025
0.4183
5.605 × 10−4
5.606 × 10−4


40
0.2066
0.4197
5.687 × 10−4
5.690 × 10−4


45
0.2108
0.4211
5.769 × 10−4
5.773 × 10−4


50
0.2150
0.4224
5.851 × 10−4
5.857 × 10−4


55
0.2193
0.4237
5.933 × 10−4
5.940 × 10−4


60
0.2236
0.4250
6.014 × 10−4
6.023 × 10−4


65
0.2279
0.4262
6.095 × 10−4
6.106 × 10−4


70
0.2323
0.4273
6.176 × 10−4
6.189 × 10−4


75
0.2367
0.4285
6.257 × 10−4
6.271 × 10−4


80
0.2411
0.4295
6.338 × 10−4
6.354 × 10−4


85
0.2456
0.4305
6.419 × 10−4
6.437 × 10−4


90
0.2502
0.4315
6.501 × 10−4
6.520 × 10−4


95
0.2548
0.4323
6.582 × 10−4
6.603 × 10−4


100
0.2595
0.4331
6.664 × 10−4
6.687 × 10−4


105
0.2642
0.4338
6.745 × 10−4
6.770 × 10−4


110
0.2690
0.4345
6.828 × 10−4
6.855 × 10−4


115
0.2739
0.4350
6.911 × 10−4
6.939 × 10−4


120
0.2790
0.4355
6.994 × 10−4
7.025 × 10−4


125
0.2840
0.4358
7.078 × 10−4
7.111 × 10−4
















TABLE 14





Temperature, Pressure, Density, Enthalpy and Entropy Values for


Example 6.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
22.71
6.918
1.290 
2.085 × 10−3


−55
25.56
8.098
1.282 
2.417 × 10−3


−50
28.67
9.434
1.274 
2.789 × 10−3


−45
32.06
10.94
1.266 
3.205 × 10−3


−40
35.76
12.64
1.258 
3.668 × 10−3


−35
39.77
14.54
1.250 
4.184 × 10−3


−30
44.12
16.66
1.242 
4.755 × 10−3


−25
48.80
19.01
1.233 
5.385 × 10−3


−20
53.86
21.63
1.225 
6.081 × 10−3


−15
59.30
24.52
1.216 
6.844 × 10−3


−10
65.14
27.70
1.208 
7.682 × 10−3


−5
71.40
31.20
1.199 
8.599 × 10−3


0
78.10
35.04
1.190 
9.600 × 10−3


5
85.26
39.23
1.181 
0.01069


10
92.88
43.80
1.172 
0.01188


15
101.0
48.78
1.163 
0.01317


20
109.6
54.19
1.154 
0.01457


25
118.8
60.04
1.144 
0.01608


30
128.5
66.38
1.135 
0.01772


35
138.8
73.21
1.125 
0.01950


40
149.6
80.58
1.115 
0.02141


45
161.0
88.50
1.105 
0.02347


50
173.1
97.01
1.095 
0.02570


55
185.8
106.1
1.084 
0.02810


60
199.2
116.0
1.075 
0.03068


65
213.1
126.3
1.063 
0.03346


70
227.9
137.5
1.052 
0.03645


75
243.3
149.4
1.040 
0.03967


80
259.5
162.1
1.029 
0.04314


85
276.4
175.5
1.017 
0.04687


90
294.0
189.9
1.004 
0.05089


95
312.4
205.1
0.9912
0.05522


100
331.6
221.2
0.9786
0.05990


105
351.6
238.3
0.9651
0.06495


110
372.5
256.5
0.9511
0.07041


115
394.1
275.7
0.9366
0.07632


120
416.6
296.0
0.9214
0.08275


125
440.0
317.6
0.9056
0.08974






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1266
0.3845
3.919 × 10−4
1.071 × 10−3


−55
0.1304
0.3863
4.014 × 10−4
1.066 × 10−3


−50
0.1343
0.3881
4.109 × 10−4
1.062 × 10−3


−45
0.1382
0.3899
4.202 × 10−4
1.058 × 10−3


−40
0.1420
0.3917
4.294 × 10−4
1.054 × 10−3


−35
0.1459
0.3935
4.399 × 10−4
1.050 × 10−3


−30
0.1498
0.3953
4.480 × 10−4
1.047 × 10−3


−25
0.1539
0.3971
4.567 × 10−4
1.043 × 10−3


−20
0.1577
0.3988
4.657 × 10−4
1.040 × 10−3


−15
0.1617
0.4006
4.746 × 10−4
1.037 × 10−3


−10
0.1657
0.4023
4.834 × 10−4
1.034 × 10−3


−5
0.1697
0.4040
4.922 × 10−4
1.031 × 10−3


0
0.1737
0.4057
5.009 × 10−4
1.028 × 10−3


5
0.1777
0.4074
5.096 × 10−4
1.025 × 10−3


10
0.1818
0.4090
5.182 × 10−4
1.023 × 10−3


15
0.1859
0.4106
5.267 × 10−4
1.020 × 10−3


20
0.1900
0.4122
5.353 × 10−4
1.018 × 10−3


25
0.1940
0.4138
5.437 × 10−4
1.016 × 10−3


30
0.1983
0.4153
5.522 × 10−4
1.013 × 10−3


35
0.2025
0.4168
5.606 × 10−4
1.011 × 10−3


40
0.2068
0.4183
5.690 × 10−4
1.009 × 10−3


45
0.2110
0.4197
5.773 × 10−4
1.007 × 10−3


50
0.2153
0.4212
5.857 × 10−4
1.005 × 10−3


55
0.2197
0.4225
5.940 × 10−4
1.003 × 10−3


60
0.2240
0.4239
6.023 × 10−4
1.001 × 10−3


65
0.2285
0.4252
6.106 × 10−4
9.989 × 10−4


70
0.2329
0.4264
6.189 × 10−4
9.970 × 10−4


75
0.2374
0.4276
6.271 × 10−4
9.951 × 10−4


80
0.2420
0.4287
6.354 × 10−4
9.932 × 10−4


85
0.2466
0.4298
6.437 × 10−4
9.912 × 10−4


90
0.2513
0.4308
6.520 × 10−4
9.893 × 10−4


95
0.2560
0.4318
6.603 × 10−4
9.873 × 10−4


100
0.2608
0.4326
6.687 × 10−4
9.853 × 10−4


105
0.2656
0.4334
6.770 × 10−4
9.832 × 10−4


110
0.2705
0.4341
6.855 × 10−4
9.811 × 10−4


115
0.2755
0.4347
6.939 × 10−4
9.789 × 10−4


120
0.2806
0.4352
7.025 × 10−4
9.767 × 10−4


125
0.2859
0.4356
7.111 × 10−4
9.743 × 10−4
















TABLE 15





Temperature, Pressure, Density, Enthalpy and Entropy Values for


Example 7.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.33
6.796
1.343
2.066 × 10−3


−55
22.97
7.954
1.335
2.394 × 10−3


−50
25.87
9.266
1.327
2.762 × 10−3


−45
29.03
10.75
1.318
3.173 × 10−3


−40
32.49
12.41
1.310
3.632 × 10−3


−35
36.26
14.27
1.301
4.141 × 10−3


−30
40.34
16.35
1.293
4.710 × 10−3


−25
44.77
18.66
1.284
5.330 × 10−3


−20
49.55
21.23
1.276
6.017 × 10−3


−15
54.71
24.06
1.267
6.772 × 10−3


−10
60.27
27.18
1.258
7.510 × 10−3


−5
66.23
30.61
1.249
8.505 × 10−3


0
72.63
34.37
1.240
9.494 × 10−3


5
79.48
38.49
1.231
0.01057


10
86.79
42.97
1.222
0.01174


15
94.58
47.85
1.212
0.01302


20
102.9
53.15
1.203
0.01440


25
111.7
58.89
1.193
0.01589


30
121.1
65.10
1.183
0.01751


35
131.0
71.81
1.173
0.01923


40
141.5
79.03
1.163
0.02115


45
152.6
86.80
1.153
0.02318


50
164.3
95.14
1.143
0.02537


55
176.7
104.1
1.132
0.02774


60
189.7
113.7
1.121
0.03028


65
203.4
123.9
1.110
0.03301


70
217.8
134.8
1.099
0.03595


75
232.9
146.5
1.087
0.03912


80
248.7
158.9
1.075
0.04252


85
265.2
172.1
1.063
0.04618


90
282.6
186.2
1.051
0.05012


95
300.7
201.1
1.038
0.05437


100
319.6
216.9
1.025
0.05894


105
339.3
233.6
1.011
0.06387


110
359.8
251.
0.9969
0.06919


115
381.2
270.2
0.9823
0.07495


120
403.5
290.1
0.9671
0.08119


125
426.6
311.2
0.9513
0.08796






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1277
0.3879
3.943 × 10−4
1.072 × 10−3


−55
0.1315
0.3897
4.037 × 10−4
1.068 × 10−3


−50
0.1353
0.3915
4.130 × 10−4
1.063 × 10−3


−45
0.1391
0.3932
4.222 × 10−4
1.059 × 10−3


−40
0.1430
0.3950
4.313 × 10−4
1.055 × 10−3


−35
0.1468
0.3967
4.404 × 10−4
1.052 × 10−3


−30
0.1507
0.3985
4.494 × 10−4
1.005 × 10−3


−25
0.1545
0.4002
4.583 × 10−4
1.045 × 10−3


−20
0.1584
0.4019
4.671 × 10−4
1.041 × 10−3


−15
0.1623
0.4036
4.759 × 10−4
1.038 × 10−3


−10
0.1662
0.4052
4.846 × 10−4
1.035 × 10−3


−5
0.1702
0.4069
4.932 × 10−4
1.032 × 10−3


0
0.1741
0.4085
5.018 × 10−4
1.030 × 10−3


5
0.1781
0.4101
5.103 × 10−4
1.027 × 10−3


10
0.1821
0.4117
5.188 × 10−4
1.025 × 10−3


15
0.1861
0.4133
5.272 × 10−4
1.022 × 10−3


20
0.1902
0.4148
5.356 × 10−4
1.020 × 10−3


25
0.1943
0.4163
5.439 × 10−4
1.018 × 10−3


30
0.1984
0.4178
5.522 × 10−4
1.015 × 10−3


35
0.2025
0.4193
5.605 × 10−4
1.013 × 10−3


40
0.2066
0.4207
5.688 × 10−4
1.011 × 10−3


45
0.2108
0.4221
5.770 × 10−4
1.009 × 10−3


50
0.2150
0.4235
5.851 × 10−4
1.007 × 10−3


55
0.2193
0.4248
5.933 × 10−4
1.005 × 10−3


60
0.2236
0.4261
6.014 × 10−4
1.003 × 10−3


65
0.2279
0.4273
6.096 × 10−4
1.001 × 10−3


70
0.2323
0.4285
6.177 × 10−4
9.994 × 10−4


75
0.2367
0.4297
6.258 × 10−4
9.975 × 10−4


80
0.2411
0.4308
6.339 × 10−4
9.957 × 10−4


85
0.2456
0.4318
6.420 × 10−4
9.938 × 10−4


90
0.2502
0.4328
6.501 × 10−4
9.919 × 10−4


95
0.2548
0.4337
6.582 × 10−4
9.900 × 10−4


100
0.2595
0.4346
6.664 × 10−4
9.881 × 10−4


105
0.2642
0.4354
6.746 × 10−4
9.861 × 10−4


110
0.2690
0.4360
6.828 × 10−4
9.841 × 10−4


115
0.2739
0.4367
6.910 × 10−4
9.820 × 10−4


120
0.2788
0.4372
6.994 × 10−4
9.800 × 10−4


125
0.2839
0.4375
7.078 × 10−4
9.775 × 10−4
















TABLE 16





Temperature, Pressure, Density, Enthalpy and Entropy Values for


Example 8.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
20.25
6.752
1.333
2.017 × 10−3


−55
22.89
7.903
1.325
2.336 × 10−3


−50
25.78
9.206
1.316
2.695 × 10−3


−45
28.94
10.68
1.308
3.096 × 10−3


−40
32.40
12.33
1.300
3.543 × 10−3


−35
36.16
14.18
1.292
4.039 × 10−3


−30
40.24
16.25
1.283
4.589 × 10−3


−25
44.66
18.55
1.275
5.206 × 10−3


−20
49.45
21.10
1.266
5.875 × 10−3


−15
54.61
23.92
1.258
6.600 × 10−3


−10
60.17
27.02
1.249
7.406 × 10−3


−5
66.14
30.43
1.240
8.288 × 10−3


0
72.54
34.18
1.231
9.250 × 10−3


5
79.39
38.27
1.222
0.01030


10
86.71
42.73
1.213
0.01144


15
94.52
47.59
1.204
0.01268


20
102.8
52.86
1.194
0.01402


25
111.7
58.58
1.185
0.01548


30
121.1
64.76
1.175
0.01705


35
131.0
71.44
1.166
0.01875


40
141.5
78.63
1.156
0.02058


45
152.7
86.36
1.145
0.02256


50
164.4
94.67
1.135
0.02469


55
176.8
103.6
1.125
0.02698


60
189.9
113.1
1.114
0.02945


65
203.6
123.3
1.103
0.03211


70
218.1
134.2
1.092
0.03496


75
233.2
145.8
1.081
0.03804


80
249.1
158.2
1.069
0.04134


85
265.7
171.4
1.057
0.04489


90
283.1
185.4
1.045
0.04869


95
301.3
200.2
1.032
0.05280


100
320.3
216.0
1.011
0.05722


105
340.2
232.7
1.006
0.06110


110
360.8
250.4
0.9924
0.06713


115
382.3
269.2
0.9781
0.07269


120
404.7
289.0
0.9633
0.07871


125
428.0
310.0
0.9477
0.08524






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1251
0.3910
4.795 × 10−4
1.173 × 10−3


−55
0.1290
0.3928
4.890 × 10−4
1.168 × 10−3


−50
0.1328
0.3946
4.985 × 10−4
1.164 × 10−3


−45
0.1367
0.3964
5.078 × 10−4
1.159 × 10−3


−40
0.1406
0.3982
5.170 × 10−4
1.155 × 10−3


−35
0.1445
0.3999
5.262 × 10−4
1.152 × 10−3


−30
0.1484
0.4017
5.353 × 10−4
1.148 × 10−3


−25
0.1523
0.4034
5.443 × 10−4
1.144 × 10−3


−20
0.1562
0.4051
5.532 × 10−4
1.141 × 10−3


−15
0.1602
0.4068
5.621 × 10−4
1.138 × 10−3


−10
0.1642
0.4085
5.710 × 10−4
1.135 × 10−3


−5
0.1681
0.4102
5.797 × 10−4
1.132 × 10−3


0
0.1721
0.4119
5.883 × 10−4
1.129 × 10−3


5
0.1762
0.4135
5.970 × 10−4
1.126 × 10−3


10
0.1802
0.4151
6.056 × 10−4
1.124 × 10−3


15
0.1843
0.4167
6.141 × 10−4
1.121 × 10−3


20
0.1884
0.4183
6.226 × 10−4
1.119 × 10−3


25
0.1925
0.4198
6.310 × 10−4
1.116 × 10−3


30
0.1966
0.4213
6.394 × 10−4
1.114 × 10−3


35
0.2008
0.4228
6.478 × 10−4
1.112 × 10−3


40
0.2050
0.4243
6.561 × 10−4
1.109 × 10−3


45
0.2093
0.4257
6.644 × 10−4
1.107 × 10−3


50
0.2135
0.4271
6.727 × 10−4
1.105 × 10−3


55
0.2178
0.4284
6.810 × 10−4
1.103 × 10−3


60
0.2222
0.4297
6.892 × 10−4
1.101 × 10−3


65
0.2265
0.4310
6.974 × 10−4
1.099 × 10−3


70
0.2310
0.4322
7.056 × 10−4
1.097 × 10−3


75
0.2354
0.4334
7.138 × 10−4
1.095 × 10−3


80
0.2399
0.4345
7.220 × 10−4
1.094 × 10−3


85
0.2445
0.4356
7.302 × 10−4
1.092 × 10−3


90
0.2491
0.4366
7.384 × 10−4
1.090 × 10−3


95
0.2537
0.4376
7.466 × 10−4
1.088 × 10−3


100
0.2584
0.4385
7.548 × 10−4
1.086 × 10−3


105
0.2632
0.4392
7.631 × 10−4
1.084 × 10−3


110
0.2681
0.4399
7.714 × 10−4
1.082 × 10−3


115
0.2730
0.4406
7.797 × 10−4
1.080 × 10−3


120
0.2780
0.4411
7.881 × 10−4
1.077 × 10−3


125
0.2831
0.4415
7.966 × 10−4
1.075 × 10−3









The temperature, pressure, density, enthalpy and entropy values in Tables 9-16 compare favorably to those of R-410A, which are set forth in Table 17.









TABLE 17





Temperature, Pressure, Density, Enthalpy and Entropy Values for


R-410A.




















Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Pressure
Pressure
Density
Density


(° F.)
(psia)
(psia)
(g/cm3)
(g/cm3)





−60
14.95
14.89
1.349
4.225 × 10−3


−55
17.17
17.10
1.340
4.816 × 10−3


−50
19.65
19.58
1.330
5.470 × 10−3


−45
22.41
22.32
1.322
6.193 × 10−3


−40
25.45
25.36
1.313
6.989 × 10−3


−35
28.82
28.71
1.304
7.863 × 10−3


−30
32.52
32.41
1.295
8.822 × 10−3


−25
36.58
36.45
1.285
9.872 × 10−3


−20
41.03
40.89
1.276
0.01102


−15
45.88
45.72
1.267
0.01227


−10
51.17
50.99
1.257
0.01363


−5
56.91
56.71
1.247
0.01511


0
63.13
62.91
1.237
0.01671


5
69.86
69.62
1.227
0.01845


10
77.12
76.86
1.217
0.02033


15
84.95
84.66
1.207
0.02236


20
93.36
93.05
1.196
0.02460


25
102.4
102.1
1.185
0.02693


30
112.1
111.7
1.174
0.02950


35
122.4
122.0
1.163
0.03226


40
133.5
133.1
1.152
0.03524


45
145.3
144.8
1.140
0.03845


50
157.9
157.3
1.128
0.04192


55
171.2
170.7
1.116
0.04565


60
185.4
184.8
1.104
0.04969


65
200.5
199.8
1.091
0.05404


70
216.5
215.8
1.078
0.05874


75
233.4
232.6
1.064
0.06382


80
251.2
250.5
1.050
0.06933


85
270.1
269.3
1.036
0.07530


90
290.1
289.2
1.021
0.08179


95
311.1
310.2
1.005
0.08885


100
333.2
332.3
0.9889
0.09660


105
356.6
355.6
0.9719
0.1050


110
381.1
380.1
0.9540
0.1144


115
407.0
405.9
0.9352
0.1247


120
434.1
433.0
0.9152
0.1362


125
462.6
461.5
0.8937
0.1491






Liquid
Vapor
Liquid
Vapor



Phase
Phase
Phase
Phase


Temp.
Enthalpy
Enthalpy
Entropy
Entropy


(° F.)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





−60
0.1268
0.3994
3.922 × 10−4
1.075 × 10−3


−55
0.1306
0.4009
4.017 × 10−4
1.070 × 10−3


−50
0.1345
0.4023
4.111 × 10−4
1.065 × 10−3


−45
0.1383
0.4037
4.204 × 10−4
1.061 × 10−3


−40
0.1422
0.4050
4.296 × 10−4
1.056 × 10−3


−35
0.1460
0.4064
4.387 × 10−4
1.052 × 10−3


−30
0.1499
0.4077
4.478 × 10−4
1.048 × 10−3


−25
0.1538
0.4090
4.568 × 10−4
1.044 × 10−3


−20
0.1577
0.4103
4.657 × 10−4
1.040 × 10−3


−15
0.1617
0.4115
4.745 × 10−4
1.036 × 10−3


−10
0.1657
0.4127
4.833 × 10−4
1.033 × 10−3


−5
0.1696
0.4139
4.921 × 10−4
1.029 × 10−3


0
0.1737
0.4150
5.008 × 10−4
1.026 × 10−3


5
0.1777
0.4161
5.095 × 10−4
1.023 × 10−3


10
0.1818
0.4172
5.181 × 10−4
1.019 × 10−3


15
0.1858
0.4182
5.266 × 10−4
1.016 × 10−3


20
0.1900
0.4192
5.352 × 10−4
1.013 × 10−3


25
0.1941
0.4201
5.437 × 10−4
1.010 × 10−3


30
0.1983
0.4210
5.522 × 10−4
1.007 × 10−3


35
0.2025
0.4218
5.606 × 10−4
1.004 × 10−3


40
0.2068
0.4226
5.691 × 10−4
1.001 × 10−3


45
0.2111
0.4233
5.775 × 10−4
9.981 × 10−4


50
0.2156
0.4240
5.859 × 10−4
9.951 × 10−4


55
0.2200
0.4246
5.944 × 10−4
9.922 × 10−4


60
0.2243
0.4251
6.028 × 10−4
9.892 × 10−4


65
0.2288
0.4255
6.112 × 10−4
9.862 × 10−4


70
0.2334
0.4259
6.197 × 10−4
9.832 × 10−4


75
0.2380
0.4261
6.282 × 10−4
9.801 × 10−4


80
0.2427
0.4263
6.367 × 10−4
9.770 × 10−4


85
0.2475
0.4263
6.453 × 10−4
9.737 × 10−4


90
0.2523
0.4262
6.539 × 10−4
9.704 × 10−4


95
0.2573
0.4260
6.625 × 10−4
9.669 × 10−4


100
0.2622
0.4257
6.713 × 10−4
9.633 × 10−4


105
0.2674
0.4251
6.801 × 10−4
9.596 × 10−4


110
0.2726
0.4244
6.890 × 10−4
9.556 × 10−4


115
0.2780
0.4235
6.981 × 10−4
9.513 × 10−4


120
0.2836
0.4223
7.074 × 10−4
9.468 × 10−4


125
0.2893
0.4208
7.169 × 10−4
9.418 × 10−4









An aspect of the disclosure is that at least one component of the refrigerant formulation contains reclaimed material. The EPA defines refrigerant reclamation as a means to reprocess refrigerant to at least the purity specified in Appendix A of 40 C.F.R. § 82, subpart F (based on AHRI Standard 700-1993, Specifications for Fluorocarbon and Other Refrigerants) and to verify this purity using the analytical methodology prescribed in appendix A. The EPA requires that refrigerant be reclaimed when a certified technician recovers refrigerant and puts it in a special DOT container and has no intention of putting it back in the same system from which it was recovered.


In the disclosure, the refrigerant must be reclaimed to the AHRI Standard 700 of purity by a certified reclaimer. This requirement protects the purity of used refrigerant to prevent damage to air-conditioning and refrigeration equipment from the use of contaminated refrigerant. Equipment damage from contaminated refrigerant would result in costs to equipment owners, in releases of refrigerant from damaged equipment through increased leakage, servicing and replacement, and in reduction in consumer confidence in the quality of used refrigerant. Once the reclaimed refrigerant is brought up to standard, it can be used at least partially or wholly in the formulations of the disclosure.


Formulation with reclaimed material results in a dramatic reduction in GWP, because the reclaimed material is not being released into the atmosphere to harm the ozone layer. Compounding with up to 30% of reclaimed material results in a real GWP of 750 or less. Table 18 shows the effect on GWP for Examples 1 and 8 when formulated using reclaimed material. Boiling point values were generated using the REFPROP program.









TABLE 18







The Effect of Using Reclaimed Material on GWP.













Product
Ex. 1
Ex. 8
Ex. 9*
Ex. 10**

















R-134A
15.0%
15.0%
15.0%
15.0%



R-125
15.0%
15.0%
15.0%
15.0%



R-32
26.0%
26.0%
26.0%
26.0%



R-227ea
4.0%
4.0%
4.0%
4.0%



R-152a
3.0%
0.0%
3.0%
3.0%



DME
0.0%
3.0%
0.0%
0.0%



CO2
7.0%
7.0%
7.0%
7.0%



R-1234ze
30.0%
30.0%
30.0%
30.0%



Total
100.0%
100.0%
100.0%
100.0%



Pressure at
180.8
180.7
180.8
180.8



70° F.







GWP
1048
1044
630
487



Theo. BP (° F.)
−73.07
−72.44
−73.07
−73.07







*Ex. 1 using 10% reclaim content of R-410A



**Ex. 1 using 10% reclaim content of R-407C (R-407C is a blend of 23 wt % R-32, 25 wt % R-125 and 52 wt % R-134a).






When using 10% reclaim content of R-410A per the proposed California language, the calculated GWP falls from 1047 to 630. When using 10% reclaim content of R-407C, the calculated GWP falls to 487.39. Accordingly, using even moderate amounts of reclaimed material has the unexpected result of reducing the GWP to a 750-400 range.


Another issue for refrigerants is flammability. The most well established classification for this is the ASHRAE classification. Refrigerants such as R-410A, R-407A and R-404A are class 1 in their flammability, so do not show flame propagation when tested at 100° C. and 101.3 kPa in air. Class 2 refrigerants are those with flammability lower than 0.10 kg/m3 at 100° C. and 101.3 kPa and a heat of combustion of less than 19 kJ/kg. Class 3 refrigerants have flammability over this boundary and this includes many hydrocarbons.


Of the compounds used in the refrigerant formulations of the disclosure, R-227ea is a well-known fire suppressant and is governed by NFPA 2001-Standard for Clean Agent Fire Extinguishing Systems. Effective fire suppression requires introducing a concentration of the R-227ea agent between 6.25% and 9% depending on the hazard being suppressed. R-227ea has a molar mass of 170.03 g/mol, a density of 1.46 g/cm3 at 3.2° F. (−16° C.) and a boiling point of −2.5° F. (−16.4° C.).


Carbon dioxide (CO2) is another component of the formulations of the disclosure. CO2 is a well-known fire suppressant and is used in commercial fire extinguishers on Class B liquid fires and Class C electrical fires. The combination of R-227ea and CO2 in the formulations of the disclosure act synergistically to enhance low flammability properties of the formulations.


CO2 (R-744) itself acts as a refrigerant. It has a GWP of 1, a critical point of 1.067 psia at 88.0° F. and triple point of 75.1 psia at −69.9° F. CO2 can act as a critical fluid. The phase diagram for CO2 can be found in FIG. 12. The major challenges in CO2 refrigeration involve the relatively high working pressures. The supercritical portion of the transcritical cycle takes place above 1,067 psia, chiefly in cascade systems for industrial and process applications. Recently, strong interest has been shown in CO2 as a refrigerant by vending machine manufacturers. There are also possibilities for other light commercial refrigeration applications, as well as for residential air conditioning. The disclosure has unexpectedly found that CO2 can be blended with other refrigerants to yield refrigeration power with low GWP without the need to modify refrigeration or air conditioning equipment. The refrigerants of the disclosure can thus be used as a drop-in on any equipment that uses R-410A. The refrigerants of the disclosure can also be used as the basis, with modifications, as a drop-in on equipment that used R-22, R-407C, etc.


Good performance is seen for the formulation of Example 1, which has enhanced non-flammability due to the combination of R-227ea and CO2. For a more detailed analysis, the formulation for Example 1 compared to R-410A is in Table 19. The boiling point values were generated using REFPROP.









TABLE 19







Composition of Example 1 compared to R-410A.










Chemical Name
Product
410A
Ex. 1













1,1,1,2-
R-134a
0.00%
15.00%


tetrafluoroethane





pentafluoroethane
R-125
50.00%
15.00%


difluoromethane
R-32
50.00%
26.00%


1,1,1,2,3,3,3-
R-227ea
0.00%
4.00%


heptafluoropropane





1,1-difluoroethane
R-152a
0.00%
3.00%


CO2
CO2
0.00%
7.00%


1,3,3,3-
R-1234ze
0.00%
30.00%


tetrafluoropropene






Total
100.00%
100.00%



Pressure at
200.3
180.8



70° F. (psia)





GWP
2088
1048



Theo BP (° F.)
−60.60
−73.07









The properties of Example 1 compared to R-410A are in Table 20.









TABLE 20







Properties of Example 1 compared to R-410A at 70° F.














Liquid
Vapor
Liquid
Vapor





Phase
Phase
Phase
Phase
Liquid
Vapor



Pres-
Pres-
En-
En-
Phase
Phase



sure
sure
thalpy
thalpy
Entropy
Entropy


Material
(psia)
(psia)
(kJ/g)
(kJ/g)
(kJ/gR)
(kJ/gR)





Ex. 1
221.7
139.1
0.2323
0.4283
6.177 × 10−4
9.988 × 10−4


R-410A
216.5
215.8
0.2334
0.4259
6.197 × 10−4
9.832 × 10−4









The vapor pressure versus temperature graph for Example 1 and R-410A is shown in FIG. 7. As can be seen, the vapor pressure of Example 1 approaches that of R-410A at the lower temperatures where R-410A is usually utilized.


The liquid enthalpy of Example 1 compared to R-410A is shown in FIG. 8. As can be seen, there is a close correspondence between the formulation of Example 1 and R-410A.


The vapor enthalpy of Example 1 compared to R-410A is shown in FIG. 9. As can be seen, there is a close correspondence between the formulation of Example 1 and R-410A.


The entropy values of Example 1 compared to R-410A also have close correspondence.


Lubricants

Optionally, lubricants can be added to the formulations of the disclosure. The lubricants can be mineral oil, alkylbenzene oil or polyol ester (POE).


In another embodiment, the POE can be a synthetic POE compatible for use in refrigeration and air-conditioning compressors using HFC refrigerants, as well as for OEM retrofitting operations. The POE forms a single clear phase, i.e., is miscible with the formulations of the disclosure. Miscibility lowers the viscosity of the lubricant carried through the system, so that the lubricant can more efficiently return to the compressor. In contrast, existing mineral oil lubricants are not miscible with HFCs. The composition of the present disclosure is compatible with all types of compressors, including reciprocating and rotary in residential air conditioning, and centrifugal, reciprocating and scroll in industrial and commercial refrigeration and air conditioning.


The POE of the present disclosure can be obtained by introducing neopentyl polyol material, aliphatic monocarboxylic acid material and a catalytic quantity of acid catalyst material into a reaction zone, whereby a reaction mixture is formed, the neopentyl polyol material being at least one neopentyl polyol represented by the structural formula:




embedded image


in which each R is independently selected from CH3, C2H5 and CH2OH. The aliphatic monocarboxylic acid material is at least one aliphatic hydrocarbon monocarboxylic acid, and the acid catalyst material is at least one acid esterification catalyst, wherein the initial concentration of the aliphatic monocarboxylic acid material in the reaction mixture is such as to provide an initial mole ratio of carboxyl groups to hydroxyl groups in the reaction mixture of from about 0.25:1 to about 0.5:1, and, while the reaction mixture is established and maintained at 170-200° C., aliphatic monocarboxylic acid vapor and water vapor are withdrawn from the reaction zone.


Another approach would be to produce a poly(neopentyl polyol) ester composition by (I) reacting a neopentyl polyol having the formula:




embedded image


wherein each R is independently selected from the group consisting of CH3, C2H5 and CH2OH and n is a number from 1 to 4, with at least one monocarboxylic acid having 2 to 15 carbon atoms in the presence of an acid catalyst and at an initial mole ratio of carboxyl groups to hydroxyl groups of greater than 0.5:1 to 0.95:1 to form a partially esterified poly(neopentyl polyol) composition; and (ii) reacting the partially esterified poly(neopentyl polyol) composition produced in (i) with additional monocarboxylic acid having 2 to 15 Carbon atoms to form a final poly(neopentyl polyol) ester composition.


The properties of the POE of the present disclosure can be in the viscosity range of about 20 to 45 cSt at 40° C. (104° F.) and 3 to 7 cSt at 100° C. (212° F.). The viscosity index should be in the range of about 100 to 130. The pour point should be in the range of about −40 to −50° C. (−40 to −58° F.). The density at 20° C. (68° F.) should be in the range of about 0.97 to 0.98 g/ml. The flash point should be in the range of about 240 to 270° C. (464 to 518° F.). The acid value should be less than about 0.05 mg KOH/g.


The disclosure is not restricted to POE lubricant. Other lubricants can include mineral or hydrocarbon oil, alkylbenzene oil, white or paraffinic oil and mixtures thereof. The amount of lubricating oil is an amount effective to provide acceptable lubrication to the compressor parts for its longevity. An effective amount of these conventional lubricating oils is the amount recommended by the equipment manufacturer. Typically, the conventional lubricating oil is present in an amount from about 1 to about 60 wt %. The present disclosure has unexpectedly found the amount of POE to be less than about 1 wt %, as little as about 0.67 wt %, with even 0.4 wt % giving excellent lubrication. The range in which POE can be present can be from about 0.1 to about 5 wt %


Additives

The compositions of the disclosure may also contain one or more additives such as oxidation resistance and thermal stability enhancers, corrosion inhibitors, metal deactivators, lubricity additives, viscosity index enhancers, pour and/or floc point depressants, detergents, dispersants, antifoaming agents, anti-wear agents, and extreme pressure resistant additives. Many additives are multifunctional. For example, certain additives may impart both anti-wear and extreme pressure resistance properties, or function both as a metal deactivator and a corrosion inhibitor. Cumulatively, all additives preferably do not exceed about 8 wt %, or more preferably do not exceed about 5 wt %, of the total composition.


An effective amount of the foregoing additive types is generally in the range from about 0.01 to 5 wt % for the antioxidant component, about 0.01 to 5 wt % for the corrosion inhibitor component, from about 0.001 to 0.5 wt % for the metal deactivator component, from about 0.5 to 5 wt % for the lubricity additives, from about 0.01 to 2 wt % for each of the viscosity index enhancers and pour and/or floc point depressants, from about 0.1 to 5 wt % for each of the detergents and dispersants, from about 0.001 to 0.1 wt % for antifoam agents, and from about 0.1-2 wt % for each of the anti-wear and extreme pressure resistance components. All these percentages are by weight and are based on the total composition. It is to be understood that more or less than the stated amounts of additives may be more suitable to particular circumstances, and that a single molecular type or a mixture of types may be used for each type of additive component. Also, the examples listed below are intended to be merely illustrative and not limiting.


Examples of oxidation resistance and thermal stability enhancers suitable for use in the present disclosure include, for example: diphenyl-, dinaphthyl-, and phenylnaphthyl-amines, in which the phenyl and naphthyl groups can be substituted, e.g., N,N′-diphenyl phenylenediamine, p-octyldiphenylamine, p,p-dioctyldiphenylamine, N-phenyl-1-naphthyl amine, N-phenyl-2-naphthyl amine, N-(p-dodecyl)phenyl-2-naphthyl amine, di-1-naphthylamine, and di-2-naphthylamine; phenothiazines such as N-alkyl-phenothiazines; imino(bisbenzyl); hindered phenols such as 6-(t-butyl) phenol, 2,6-di-(t-butyl) phenol, 4-methyl-2,6-di-(t-butyl) phenol, 4,4′-methylenebis(2,6-di-{t-butyl} phenol); combinations of two or more thereof, and the like.


Examples of cuprous metal deactivators suitable for use in the present disclosure include, for example: imidazole, benzamidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, tolutriazole, 2-methylbenzamidazole, 3,5-dimethyl pyrazole, and methylene bis-benzotriazole. Benzotriazole derivatives are preferred. Other examples of more general metal deactivators and/or corrosion inhibitors include organic acids and their esters, metal salts, and anhydrides, e.g., N-oleyl-sarcosine, sorbitan mono-oleate, lead naphthenate, dodecenyl-succinic acid and its partial esters and amides, and 4-nonylphenoxy acetic acid; primary, secondary, and tertiary aliphatic and cycloaliphatic amines and amine salts of organic and inorganic acids, e.g., oil-soluble alkylammonium carboxylates; heterocyclic nitrogen containing compounds, e.g., thiadiazoles, substituted imidazolines, and oxazolines; quinolines, quinones, and anthraquinones; propyl gallate; barium dinonyl naphthalene sulfonate; ester and amide derivatives of alkenyl succinic anhydrides or acids, dithiocarbamates, dithiophosphates; amine salts of alkyl acid phosphates and their derivatives.


Examples of suitable lubricity additives include long chain derivatives of fatty acids and natural oils, such as esters, amines, amides, imidazolines, and borates.


Examples of suitable viscosity index enhancers include polymethacrylates, copolymers of vinyl pyrrolidone, as well as, methacrylates, polybutenes, and styrene-acrylate copolymers.


Examples of suitable pour point and/or floc point depressants include polymethacrylates such as methacrylate-ethylene-vinyl acetate terpolymers; alkylated naphthalene derivatives; and products of Friedel-Crafts catalyzed condensation of urea with naphthalene or phenols.


Examples of suitable detergents and/or dispersants include polybutenylsuccinic acid amides; polybutenyl phosphonic acid derivatives; long chain alkyl substituted aromatic sulfonic acids and their salts; and metal salts of alkyl sulfides, of alkyl phenols, and of condensation products of alkyl phenols and aldehydes.


Examples of suitable antifoam agents include silicone polymers and acrylates.


Examples of suitable anti-wear and extreme pressure resistance agents include sulfurized fatty acids and fatty acid esters, such as sulfurized octyl tallate; sulfurized terpenes; sulfurized olefins; organopolysulfides; organophosphorus derivatives including amine phosphates, alkyl acid phosphates, dialkyl phosphates, aminedithiophosphates, trialkyl and friaryl phosphorothionates, trialkyl and triaryl phosphines, and dialkylphosphites, e.g., amine salts of phosphoric acid monohexyl ester, amine salts of dinonylnaphthalene sulfonate, triphenyl phosphate, trinaphthyl phosphate, diphenyl cresyl and dicresyl phenyl phosphates, naphthyl diphenyl phosphate, triphenylphosphorothionate; dithiocarbamates, such as an antimony dialkyl dithiocarbamate; chlorinated and/or fluorinated hydrocarbons, and xanthates.


An effective amount of the foregoing additive types is generally in the range from about 0.01 to about 5 wt % for the antioxidant component, about 0.01 to about 5 wt % for the corrosion inhibitor component, from about 0.001 to about 0.5 wt % for the metal deactivator component, from about 0.5 to about 5 wt % for the lubricity additives, from about 0.01 to about 2 wt % for each of the viscosity index enhancers and pour and/or floc point depressants, from about 0.1 to about 5 wt % for each of the detergents and dispersants, from about 0.001 to about 0.1 wt % for antifoam agents, and from about 0.1 to about 2 wt % for each of the anti-wear and extreme pressure resistance components. All these percentages are by weight and are based on the total composition. It is to be understood that more or less than the stated amounts of additives may be more suitable to particular circumstances, and that a single molecular type or a mixture of types may be used for each type of additive component. As used herein, the term “effective amount” means the amount of each component which upon combination with the other component or components, results in the formation of the present compositions.


Many of the aforementioned additives are multifunctional. For example, certain additives may impart both anti-wear and extreme pressure resistance properties, or function both as a metal deactivator and a corrosion inhibitor. Cumulatively, all additives preferably do not exceed about 8% by weight, or more preferably do not exceed about 5% by weight, of the total composition.


Manufacture and Use

The refrigerant composition of the present disclosure can be used as an original OEM refrigerant or for a drop-in replacement for equipment using R-410A. The composition of the present application can also be used, with modifications, as a drop-in for HFC refrigerants such as R-22, R-404A, R-421A, R-421B, R-416A, R-417A, R-422A, R-422C, etc.



FIG. 10 is a block diagram of the manufacture of the refrigerant composition of the disclosure in a single vessel. In step 10, the vessel is charged with refrigerant components R-125, R-134a, R-32, R-227ea, R-152a and R-1234ze. Subsequently, in step 20, the appropriate amount of CO2 is injected into the vessel to attain 100 wt % of the refrigerant composition of the disclosure.


The refrigerant composition of the disclosure can be used as a drop-in replacement for R-410A. As is shown in FIG. 11, step 30 is the selection of a substitute refrigerant formed from R-125, R-134a, R-32, R-227ea, R-152a, CO2 and R-1234ze. Next, in step 40 the refrigerant of the disclosure is supplied under pressure to a cylinder and an R-410A compatible outlet and recharging manifold. Then, in step 50, the substitute refrigerant of the disclosure is added to the R-410A compatible apparatus.


Charging the air conditioner or refrigerator is performed using a charging cylinder designed to meter out a desired amount of a specific refrigerant by weight. Compensation for temperature variations is accomplished by reading the pressure on the gauge of the cylinder and dialing, using a calibrated chart, to the corresponding pressure reading for the refrigerant being used. When charging a refrigeration or air conditioning system with refrigerant, often the pressure in the system reaches a point where it is equal to the pressure in the charging cylinder from which the system is being charged. In order to get more refrigerant into the system to complete the charge, heat must be applied to the cylinder. In an exemplary embodiment, a standard 25 or 30 lb cylinder can be used, which is charged under pressure with the refrigerant composition of the current disclosure. This cylinder is fitted with an outlet compatible with R-410A. The outlet is connected to a recharging manifold of the apparatus to be charged.


Accordingly, the disclosure has shown that a drop-in replacement for R-410A unexpectedly produces a dramatic drop in GWP while not sacrificing performance in air conditioning systems.


Throughout the specification and the embodiments, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. Relational terms such as “first” and “second,” and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The term “or” is intended to mean an inclusive “or” unless specified otherwise or clear from the context to be directed to an exclusive form. Further, the terms “a,” “an,” and “the” are intended to mean one or more unless specified otherwise or clear from the context to be directed to a singular form. The term “include” and its various forms are intended to mean including but not limited to. References to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” and other like terms indicate that the embodiments of the disclosed technology so described may include a particular function, feature, structure, or characteristic, but not every embodiment necessarily includes the particular function, feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may. The terms “substantially,” “essentially,” “approximately,” “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.

Claims
  • 1. A refrigerant composition, comprising: about 14-16 wt % pentafluoroethane;about 14-16 wt % 1,1,1,2-tetrafluoroethane;about 25-27 wt % difluoromethane;about 3-5% 1,1,1,2,3,3,3-heptafluoropropane;about 2-4 wt % 1,1-difluoroethane;about 6-8 wt % CO2; andabout 29-31 wt % 1,3,3,3-tetrafluoropropene.
  • 2. The refrigerant composition of claim 1, wherein the refrigerant composition comprises: about 15 wt % pentafluoroethane;about 15 wt % 1,1,1,2-tetrafluoroethane;about 26 wt % difluoromethane;about 4 wt % 1,1,1,2,3,3,3-heptafluoropropane;about 3 wt % 1,1-difluoroethane;about 7 wt % CO2; andabout 30 wt % 1,3,3,3-tetrafluoropropene.
  • 3. The refrigerant composition of claim 1, wherein the refrigerant composition has a liquid phase pressure of about 222 psia at 70° F.
  • 4. The refrigerant composition of claim 1, wherein the refrigerant composition has a vapor phase pressure of about 139 psia at 70° F.
  • 5. The refrigerant composition of claim 1, wherein the refrigerant composition has a liquid phase density of about 1.10 g/cm3 at 70° F.
  • 6. The refrigerant composition of claim 1, wherein the refrigerant composition has a vapor phase density of about 0.037 g/cm3 at 70° F.
  • 7. The refrigerant composition of claim 1, wherein the refrigerant composition has a liquid phase enthalpy of about 0.2323 kJ/g at 70° F.
  • 8. The refrigerant composition of claim 1, wherein the refrigerant composition has a vapor phase enthalpy of about 0.4283 kJ/g at 70° F.
  • 9. The refrigerant composition of claim 1, wherein the refrigerant composition has a liquid phase entropy of about 6.177×10−4 kJ/gR at 70° F.
  • 10. The refrigerant composition of claim 1, wherein the refrigerant composition has a vapor phase entropy of about 9.988×10−4 kJ/gR at 70° F.
  • 11. The refrigerant composition of claim 1, wherein the refrigerant composition has a global warming potential of about 1000 to about 1100.
  • 12. The refrigerant composition of claim 1, wherein at least one of the components contains at least partially reclaimed material to yield a global warming potential of about 400-750.
  • 13. The refrigerant composition of claim 1, wherein the refrigerant composition contains about 10 wt % reclaimed R-410A to yield a global warming potential of about 630.
  • 14. A refrigerant composition having low flammability, comprising: about 14-16 wt % pentafluoroethane;about 14-16 wt % 1,1,1,2-tetrafluoroethane;about 25-27 wt % difluoromethane;about 3-5% 1,1,1,2,3,3,3-heptafluoropropane;about 2-4 wt % 1,1-difluoroethane;about 6-8 wt % CO2; andabout 29-31 wt % 1,3,3,3-tetrafluoropropene,wherein the refrigerant composition has a global warming potential of about 1000 to about 1100.
  • 15. The refrigerant composition of claim 14, wherein the refrigerant composition comprises: about 15 wt % pentafluoroethane;about 15 wt % 1,1,1,2-tetrafluoroethane;about 26 wt % difluoromethane;about 4 wt % 1,1,1,2,3,3,3-heptafluoropropane;about 3 wt % 1,1-difluoroethane;about 7 wt % CO2; andabout 30 wt % 1,3,3,3-tetrafluoropropene.
  • 16. The refrigerant composition of claim 14, wherein the refrigerant composition has a liquid phase pressure of about 222 psia at 70° F.
  • 17. The refrigerant composition of claim 14, wherein the refrigerant composition has a vapor phase pressure of about 139 psia at 70° F.
  • 18. The refrigerant composition of claim 14, wherein the refrigerant composition has a liquid phase density of about 1.10 g/cm3 at 70° F., and the refrigerant composition has a vapor phase density of about 0.037 g/cm3 at 70° F.
  • 19. The refrigerant composition of claim 14, wherein the refrigerant composition contains about 10 wt % reclaimed R-410A to yield a global warming potential of about 630.
  • 20. A refrigerant composition, comprising: about 14-16 wt % pentafluoroethane;about 14-16 wt % 1,1,1,2-tetrafluoroethane;about 25-27 wt % difluoromethane;about 3-5% 1,1,1,2,3,3,3-heptafluoropropane;about 2-4 wt % dimethyl ether;about 6-8 wt % CO2; andabout 29-31 wt % 1,3,3,3-tetrafluoropropene.
US Referenced Citations (4)
Number Name Date Kind
20060243945 Minor Nov 2006 A1
20080230738 Minor Sep 2008 A1
20180355269 Low Dec 2018 A1
20180362441 Low Dec 2018 A1