The field of the disclosure relates generally to electrical connectors, and more particularly, to environmentally sealed, reusable connectors for flexible circuits.
At least some known connectors for flexible cables or circuits, such as flat flexible cables (FFCs), are not environmentally sealed and reusable. Typical sealed FFC connectors require an electrical terminal to be pressed into or otherwise connected to the FFC, a wire to be attached to the electrical terminal, and a permanent sealant (e.g., epoxy, plastic, resin, and the like) disposed or permanently affixed around the connector in an overmold process. By using, for example, an epoxy as the sealing agent, the FFC and connector cannot be reused. As such, there is a need for a reusable and an environmentally sealed connector for electrically coupling an FFC to one or more wires and that can withstand extreme outdoor environments, including submersion under water for extended periods.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the detailed description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the present disclosure will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
In one aspect, an environmentally sealed connector is provided. The environmentally sealed connector includes a spring-loaded terminal and a connector cap having a terminal cavity for receiving at least a portion of the spring-loaded terminal in order to electrically couple the spring-loaded terminal to a flexible circuit. Furthermore, the environmentally sealed connector includes a connector base releasably coupled to the connector cap. The connector base covers the terminal cavity and the portion of the spring-loaded terminal. Moreover, the environmentally sealed connector includes an elastic member disposed between the connector cap and the connector base. The elastic member is in sealing engagement therewith and surrounds the terminal cavity and the portion of the spring-loaded terminal.
In another aspect, another environmentally sealed connector is provided. The environmentally sealed connector includes a spring-loaded terminal having a conductive component coupled thereto, a connector base, a connector cap, and first and second elastic members. The connector base includes a terminal cavity for receiving at least a portion of the spring-loaded terminal in order to electrically couple the spring-loaded terminal to a flexible circuit. The connector base also includes a central cavity for receiving an electrically conductive element therein. The connector cap releasably is coupled to the connector base and covers the central cavity, terminal cavity, and the portion of the spring-loaded terminal. The first elastic member is disposed between the connector cap and the connector base. In addition, the first elastic member is in sealing engagement therewith and surrounds the terminal cavity and the portion of the spring-loaded terminal. The second elastic member is disposed between the connector cap and the connector base, and is in sealing engagement therewith, surrounding the central cavity.
In yet another aspect, a method for releasably coupling a flexible circuit to a connector is provided. The method includes removably inserting the flexible circuit into a connector housing. The flexible circuit contacts a spring-loaded terminal of the connector to form an electrical connection within the connector housing. The method also includes sealing around the electrical connection to provide ingress protection.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of this disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of this disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein. While the drawings do not necessarily provide exact dimensions or tolerances for the illustrated components or structures, the drawings are to scale with respect to the relationships between the components of the structures illustrated in the drawings.
The following detailed description of embodiments of the disclosure references the accompanying figures. The embodiments are intended to describe aspects of the disclosure in sufficient detail to enable those with ordinary skill in the art to practice the disclosure. The embodiments of the disclosure are illustrated by way of example and not by way of limitation. Other embodiments may be utilized, and changes may be made without departing from the scope of the claims. The following description is, therefore, not limiting. The scope of the present disclosure is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
In this description, references to “one embodiment,” “an embodiment,” or “embodiments” mean that the feature or features referred to are included in at least one embodiment of the disclosure. Separate references to “one embodiment,” “an embodiment,” or “embodiments” in this description do not necessarily refer to the same embodiment and are not mutually exclusive unless so stated. Specifically, a feature, component, action, step, etc. described in one embodiment may also be included in other embodiments but is not necessarily included. Thus, particular implementations of the present disclosure can include a variety of combinations and/or integrations of the embodiments described herein.
In the following specification and the claims, reference will be made to several terms, which shall be defined to have the following meanings. The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. “Optional” or “optionally” means that the subsequently described feature, event, or circumstance may or may not be required or occur, and that the description includes instances with or without such element.
Approximating language, as used herein throughout the specification and the claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
As used herein, directional references, such as, “top,” “bottom,” “front,” “back,” “side,” and similar terms are used herein solely for convenience and should be understood only in relation to each other. For example, a component might in practice be oriented such that faces referred to herein as “top” and “bottom” are in practice sideways, angled, inverted, etc. relative to the chosen frame of reference.
Broadly, the present disclosure describes a reusable, resealable enclosure or connector that contains the contacts of an electrically conductive element (e.g., a flexible circuit or sensor), an O-ring or other elastic member, and one or more spring-loaded terminals to electrically connect the electrically conductive element to another conductor (e.g., one or more wires). This arrangement allows the electrically conductive element to be removed by opening or loosening the enclosure or connector.
In the exemplary embodiment, the reusable connector 108 includes a connector base 110 and a connector cap 112 defining a connector housing, an elastic member 114, and one or more fastener assemblies 116. In the exemplary embodiment, the fastener assembly 116 includes a screw 118 and a nut 120 releasably secured to each other via threaded connection. Alternatively, the fastener assembly 116 may include rivets, bolts, pins, clamps, adhesive, and any other type of fastener that enables the connector 108 to function as described herein. In alternative embodiments, the one or more fastener assemblies 116 may be formed as part of the connector base 110 and/or the connector cap 112. In addition, the elastic member 114 may include, for example, a gasket, an O-ring, or a sealable foil to provide sealing engagement between the connector base 110 and the connector cap 112. The elastic member 114 may be fabricated from a resilient material including, for example, without limitation, perfluoro elastomers, Viton®, Extreme Viton® Type A, nitrile (Buna-N), hydrogenated nitrile, silicone rubber, silicone, fluorosilicone, ethylene propylene, butyl rubber, Neoprene®, urethane, Teflon®, styrene butadiene, natural rubber, acrylic rubber, and ethylene acrylic.
Each conductive component 104 (e.g., a wire, cable, etc.) may be electrically and mechanically coupled to a respective spring-loaded terminal 106 via a crimp connection, solder connection, or any other connection that enables the cable assembly 100 to function as described herein. As best shown in
The connector cap 112 is illustrated in more detail in
In the exemplary embodiment, the connector cap 112 may be fabricated as an integrally formed solid structure, for example, using an additive manufacturing process, such as, binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, and vat photopolymerization. These processes may include technologies such as fused deposition modelling, direct metal laser melting, direct metal laser sintering, selective laser sintering, selective laser melting, electron beam melting, binder jet, and/or any other additive manufacturing technology. Alternatively, the connector cap 112 may be fabricated using a molding process. Accordingly, the features of the connector cap 112 described herein may have a draft angle associated with each wall and/or cavity to promote removal of the connector cap 112 from a mold.
The connector cap 112 may be fabricated from any generally rigid solid material or materials, including, but not limited to, metal, plastic, glass, and ceramic. Suitable metals may include, but are not limited to, aluminum, stainless steel, galvanized steel, alloys of tin, and combinations thereof. Suitable plastics may include, but are not limited to, one or more of acrylonitrile butadiene styrenes (ABS), poly lactic acids (PLA), styrenics, acrylics, polytetrafluoroethylenes (PTFE), perfluoroalkoxy alkanes (PFA), polyesters, polycarbonates (PET, PEN), polysulfones (PSU), polyether sulfones (PES), polyether imides (PEI), polyvinyl chlorides (PVC), chlorinated polyvinyl chlorides (CPVC), polyethylenes (PE, HDPE, LDPE, UPE), polypropylenes (PP), polyether etherketones (PEEK), fluorinated ethylene propylenes (FEP), ethylene tetrafluoroethylenes (ETFE), ethylene chlorotrifluoroethylenes (ECTFE), polyphenylene sulfides (PS), nylons, polyurethanses, and thermoplastics containing reinforcing fibers such as glasses, carbon fibers, and metal oxides. Suitable glasses may include, but are not limited to, quartz, soda lime, silicate, borosilicate, and combinations thereof. Suitable ceramics may include, but are not limited to, oxides of alumina, beryllia, ceria, and zirconia and nonoxides such as carbides, borides, nitrides, and silicides. Composite materials may also be used such as particulate-reinforced or fiber-reinforced oxides and nonoxides and combinations thereof. It is to be appreciated, however, that the connector cap 112 may be fabricated from any material that enables the connector 108 to function as described herein. Furthermore, the connector cap 112 may be fabricated by methods other than additive manufacturing and molding, including, e.g., machining, and therefore may not have a draft angle associated with the features as described herein.
In the exemplary embodiment, the connector cap 112 is a generally cuboid-shaped structure that broadly includes a curved front wall 122, a rear wall 124, a first end wall 126, and an opposing second end wall 128. While the connector cap 112 is described as being generally cuboid-shaped, it is noted that the connector cap 112 can be any shape that enables the connector 108 to function as described herein. As shown in
With reference to
With reference to
With reference back to
Extending away from the bottom surface 133 is a locating member 142, which is sized and shaped to physically engage with a slot 162 formed in the connector base 110, as best shown in
With reference to
In addition, the connector cap 112 includes a substantially symmetrical pair of fastener holes 146 with respect to line A. The fastener holes 146 are generally positioned on either side of the groove 140 and terminal cavities 132 and 134 to facilitate providing a compression force across the groove 140 and terminal cavities 132 and 134 when the connector 108 is assembled for use. Each fastener hole 146 is sized and shaped to receive a respective screw 118 (shown in
The connector base 110 is illustrated in
In the exemplary embodiment, like the connector cap 112 described above, the connector base 110 may be fabricated as an integrally formed solid structure, for example, using any of the described additive manufacturing processes and/or technologies for the connector cap 112. Alternatively, the connector base 110 may be fabricated using a molding process. Accordingly, the features of the connector base 110 described herein may have a draft angle associated with each wall and/or cavity to promote removal of the connector base 110 from a mold. Furthermore, like the connector cap 112, the connector base 110 may be fabricated from any generally rigid solid material or materials, including, but not limited to the above described metals, plastics, glasses, ceramics, and/or combinations thereof. Composite materials may also be used such as particulate-reinforced or fiber-reinforced oxides and nonoxides and combinations thereof. It is to be appreciated, however, that the connector base 110 may be fabricated from any material that enables the connector 108 to function as described herein. Moreover, the connector base 110 may be fabricated by methods other than additive manufacturing and molding, including, e.g., machining, and therefore may not have a draft angle associated with the features as described herein.
In the exemplary embodiment, the connector base 110 has a perimeter shape that is generally complementary to that of the connector cap 112. More particularly, the connector base 110 is a generally cuboid-shaped structure that broadly includes a curved front wall 150, a rear wall 152, a first end wall 154, and an opposing second end wall 156. While the connector base 110 is described as being generally cuboid-shaped, it is noted that the connector base 110 can be any shape that enables the connector 108 to function as described herein. As shown in
With reference to
In the exemplary embodiment, the slot 162 sized and shaped to engage with the locating member 142 of the connector cap 112 (shown in
With reference to
In addition, the connector base 110 includes a substantially symmetrical pair of fastener holes 166 with respect to line 10-10. The fastener holes 166 are generally positioned on either side of the alignment channel 158 proximate the rear wall 152 to facilitate providing a compression force across the FC 102 when the connector 108 is assembled for use. Each fastener hole 166 is sized and shaped to receive a respective screw 118 (shown in
A bottom surface 210 of the four-position connector cap 200 includes a groove 212 that surrounds the cavities 202, 204, 206, and 208. The groove 212 is sized and shaped to receive an elastic member, such as the elastic member 114. The groove 212 is generally annular-shaped. The term “annular,” as used herein, is not limited to the description of circular ring-shaped openings. Rather, it is contemplated that annular shapes include, for example, and without limitation, shapes that are round, polygonal, rectangular, oval, and/or racetrack-like with two generally parallel sides joined by rounded ends. As shown in
In the exemplary embodiment, the connector 308 includes a connector base 310 and a connector cap 312 defining a connector housing, an elastic member 314, and one or more fastener assemblies 116, including the screw 118 and the nut 120 releasably secured to each other via threaded connection. In alternative embodiments, the one or more fastener assemblies 116 may be formed as part of the connector base 310 and/or the connector cap 312. In addition, the elastic member 314 may include, for example, a gasket, an O-ring, or a sealable foil to provide sealing engagement between the connector base 310 and the connector cap 312. The elastic member 314 may be fabricated from a resilient material including, for example, without limitation, perfluoro elastomers, Viton®, Extreme Viton® Type A, nitrile (Buna-N), hydrogenated nitrile, silicone rubber, silicone, fluorosilicone, ethylene propylene, butyl rubber, Neoprene®, urethane, Teflon®, styrene butadiene, natural rubber, acrylic rubber, and ethylene acrylic.
Like the cable assembly 100 described above, the spring-loaded terminal 106 with the conductive component 104 coupled thereto, is inserted into the connector cap 312 as further described below. The spring-loaded terminal 106 expands after full insertion to facilitate retaining the spring-loaded terminal 106 and conductive component 104. The elastic member 314 is positioned within the connector cap 312, the FC 102 is positioned on the connector base 310, and the connector cap 312 is coupled to the connector base 310. More specifically, the connector cap 312 is coupled to the connector base 310 such that the elastic member 314 is compressed against the FC 102 and a portion of the spring-loaded terminals 106 are in electrical contact with the FC 102. As described in more detail below, the elastic member 314 surrounds the electrical connections between the FC 102 and the portion of the spring-loaded terminals 106 contacting the FC 102 such that the electrical connections are sealed from the outside environment. The connector cap 312 is releasably coupled to the connector base 310 via the one or more fastener assemblies 116. It will be appreciated that the position of the configuration of the connector 308 could be revised, i.e., the connector base 310 could contain the elastic member 314 and the spring-loaded terminals 106 and conductive components 104.
The connector cap 312 is illustrated in more detail in
In the exemplary embodiment, like the connector cap 112 described above, the connector cap 312 may be fabricated as an integrally formed solid structure, for example, using any of the described additive manufacturing processes and/or technologies for the connector cap 112. Alternatively, the connector cap 312 may be fabricated using a molding process. Accordingly, the features of the connector cap 312 described herein may have a draft angle associated with each wall and/or cavity to promote removal of the connector cap 312 from a mold. Furthermore, like the connector cap 112, the connector cap 312 may be fabricated from any generally rigid solid material or materials, including, but not limited to the above described metals, plastics, glasses, ceramics, and/or combinations thereof. Composite materials may also be used such as particulate-reinforced or fiber-reinforced oxides and nonoxides and combinations thereof. It is to be appreciated, however, that the connector cap 312 may be fabricated from any material that enables the connector 308 to function as described herein. Moreover, the connector cap 312 may be fabricated by methods other than additive manufacturing and molding, including, e.g., machining, and therefore may not have a draft angle associated with the features as described herein.
In the exemplary embodiment, the connector cap 312 is a generally cuboid-shaped structure that broadly includes a front wall 322, a rear wall 324, a first sidewall 326, and an opposing second sidewall 328. While the connector cap 312 is described as being generally cuboid-shaped, it is noted that the connector cap 312 can be any shape that enables the connector 308 to function as described herein. As shown in
An internal sealing cavity 330 is defined within the connector cap 312 and is coupled to a cable access hole 329 defined in the front wall 322. The cable access hole 329 is generally centered between a top surface 331 and a bottom surface 333 of the connector cap 312 and that is substantially symmetrical with respect to horizontal line B. The internal sealing cavity 330 in generally centered about line B and extends from the bottom surface 333 partially through the connector cap 312 a predefined depth. The internal sealing cavity 330 is configured to receive the conductive components 104 and spring-loaded terminals 106 therethrough and a potting material therein to facilitate sealing the spring-loaded terminals 106 from the outside environment. In the exemplary embodiment, the sealing cavity 330 is generally rectangular in shape, although it is contemplated that the sealing cavity 330 can have any shape that enables the connector cap 312 to function as described herein.
With reference to
With reference back to
The exemplary connector cap 312 includes a substantially symmetrical pair of apertures 344 with respect to line B. The apertures 344 are generally positioned centrally on the connector cap 312 along the line B. The apertures 344 are substantially circular in shape and extend through the connector cap 312, from the top surface 331 to the bottom surface 333. While the apertures 344 are illustrated as circular, in other embodiments, the apertures 344 may have other shapes, including, for example, and without limitation, rectangular, polygonal, and the like. The apertures 344 may be used to facilitate coupling the connector 308 to another structure and or additional connectors.
In addition, the connector cap 312 includes a substantially symmetrical set of fastener holes 346 with respect to line B. The fastener holes 346 are generally positioned proximate the corners of the connector cap 312, with one pair positioned on either side of the groove 340 and terminal cavities 332 and 334 to facilitate providing a compression force across the groove 340 and terminal cavities 332 and 334 when the connector 308 is assembled for use. Each fastener hole 346 is sized and shaped to receive a respective screw 118 (shown in
The connector base 310 is illustrated in
In the exemplary embodiment, like the connector cap 312 described above, the connector base 310 may be fabricated as an integrally formed solid structure, for example, using any of the described additive manufacturing processes and/or technologies for the connector cap 312. Alternatively, the connector base 310 may be fabricated using a molding process. Accordingly, the features of the connector base 310 described herein may have a draft angle associated with each wall and/or cavity to promote removal of the connector base 310 from a mold. Furthermore, like the connector cap 312, the connector base 310 may be fabricated from any generally rigid solid material or materials, including, but not limited to the above described metals, plastics, glasses, ceramics, and/or combinations thereof. Composite materials may also be used such as particulate-reinforced or fiber-reinforced oxides and nonoxides and combinations thereof. It is to be appreciated, however, that the connector base 310 may be fabricated from any material that enables the connector 308 to function as described herein. Moreover, the connector base 310 may be fabricated by methods other than additive manufacturing and molding, including, e.g., machining, and therefore may not have a draft angle associated with the features as described herein.
In the exemplary embodiment, the connector base 110 has a perimeter shape that is generally complementary to that of the connector cap 312. More particularly, the connector base 310 is a generally cuboid-shaped structure that broadly includes a front wall 350, a rear wall 352, a first sidewall 354, and an opposing second sidewall 356. While the connector base 310 is described as being generally cuboid-shaped, it is noted that the connector base 310 can be any shape that enables the connector 308 to function as described herein. As shown in
With reference to
With reference to
In addition, the connector base 310 includes a substantially symmetrical set of fastener holes 366 with respect to line C. The fastener holes 366 are generally positioned proximate the corners of the connector base 310, with one pair positioned on either side of the channel 358 proximate the rear wall 352 to facilitate providing a compression force across the FC 102 when the connector 308 is assembled for use. Each fastener hole 366 is sized and shaped to receive a respective screw 118 (shown in
As illustrated in
The connector base 404 includes a second groove 414 that surrounds the central cavity 410. The second groove 414 is sized and shaped to receive a second elastic member (not shown) to facilitate sealing the central cavity 410 from the outside environment. The second groove 414 extends into the connector base 404 a predetermined depth and has a cross-sectional shape that is substantially rectangular. Alternatively, the cross-sectional shape of the second groove 414 can be any shape that enables the connector 402 to function as described herein.
Advantageously, the illustrated embodiment provides easy access to change the FCs 102. For instance, where the FC 102 is a printed sensor, the connector 402 may be removed from the invasive environment, and the FC 102 may be removed by simply loosening one or more of the fasteners 408 that couple the connector cap 406 to the connector base 404 and pulling the FC 102 out. A new FC 102 can then be connected by sliding it into the space between the connector cap 406 and the connector base 404 so that the FC's electrodes are in contact with the spring-loaded terminals 106. The fastener 408 or fasteners 408 can then be retightened.
In operation, with particular reference to
The elastic member 114 is positioned between the connector cap 112 and the connector base 110 such that it surrounds the spring-loaded terminals 106 in the plane that is coplanar with the space between the connector cap 112 and the connector base 110. The groove 140 may be provided in the connector cap 112 or the connector base 110 to hold the elastic member 114 in place. The connector cap 112 and the connector base 110 are loosely coupled together via one or more fastener assemblies 116. More specifically, the locating member 142 of the connector cap 112 is inserted into the slot 162 of the connector base 110 to align the connector cap 112 with the connector base 110 and the one or more fasteners 118 are loosely threadedly coupled to a respective nut 120 contained in the connector base 110. The fastener assemblies 116 are selected to facilitate holding the connector cap 112 and the connector base 110 together tightly enough to compress the elastic member 114 and prevent environmental ingress into the region containing the spring-loaded terminals 106. The FC 102 is then clamped between the connector cap 112 and the connector base 110 in electrical contact with one or more spring-loaded terminals 106. More particularly, the FC 102 is inserted between the connector cap 112 and the connector base 110 via the alignment channel 158 defined in the connector base 110 and pushed against the locating member 142 to facilitate positioning the FC 102 in electrical contact with the spring-loaded terminals 106. The connector cap 112 and the connector base 110 are then tightly coupled together using the fastener assemblies 116 to compress the elastic member 114 and form a complete seal around the area containing the spring-loaded terminals 106. Compressing the elastic member 114, which surrounds the electrical connection between the FC 102 and the spring-loaded terminals 106, is advantageous in that the elastic member 114 provides a sealed area around the electrical connection to provide ingress protection. As such, the sealed connector 108 does not utilize a permanent sealant (e.g., epoxy, plastic, resin, and the like) to encapsulate the electrical connection, therefore enabling the FC 102 to be removed and replaced in the reusable connector 108.
Disclosed above are embodiments of reusable, environmentally sealed connector assemblies that provide ingress protection. Ingress protection includes reducing or preventing the ingress of environmental constituents into the connector, for example, that would otherwise be harmful to or interfere with the electrical connection of flexible circuits (FCs). In one preferred embodiment, the connector 108 prevents the ingress of water. When used in water, the connector 108 provides an Ingress Protection (IP) rating (as defined by IEC 60529) of at least about IP64, which is IP rated as “dust tight” and protected against water projected from a nozzle up to 60° from vertical. More preferably, the connector 108 provides an IP rating of at least about IP67, which is IP rated as “dust tight” and protected against immersion. Even more preferably, the connector 108 provides an IP rating of at least about IP68, which is IP rated as “dust tight” and protected against complete, continuous submersion in water. In other embodiments, the connector 108 can be manufactured so as to prevent the ingress of other environmental constituents, including, but not limited to, silicone oil, mineral oil, acetone, PGME, PGMEA, gasoline, diesel fuel, aqueous acids having a pH of 1 to 6, aqueous bases having a pH of 7 to 12, NMP, hexanes, ethers, esters, ketones, alcohols, and combinations thereof.
The following examples set forth methods in accordance with the above disclosure. It is to be understood, however, that these examples are provided by way of illustration and nothing therein should be taken as a limitation upon the overall scope of the invention.
The connector cap 112 and the connector base 110 were manufactured by three-dimensional (3D) printing using extrusion material GPFR03 (Formlabs, Inc.). Upon completion of the 3D printing, the connector cap 112 and the connector base 110 were cured by means of exposure to an ultraviolet light source and finished by sanding and/or buffing. Hex nuts, such as the nuts 120, were pressed into the respective four cavities 168 of the connector base 110 for use in the final mating process.
KK 2759 Molex® terminals were attached to 22 AWG stranded wire with 300 VDC insulation, such as the conductive component 104, by first stripping the outer insulation from the 22 AWG wire and then attaching the KK 2759 terminals using Molex® crimping tool 64016-0201. The electrical wire/terminal assembly was inserted into the terminal cavity, such as terminal cavities 132 and 134, of the connector cap 112 until fully seated, as shown in
A 1 mm×7.5 mm outside diameter (OD) Buna-N O-ring was placed into the groove 140 of the connector cap 112. The connector cap 112 and the connector base 110 were coupled together and four screws, such as fasteners 118, were routed through the connector cap 112 to the hex nuts, such as nuts 120, that were previously pressed into the connector base 110. The screws were tightened until the O-ring was compressed and a seal was formed.
A pressure pot was filled to a depth of 3 inches with water. One gram of salt was added to the water and stirred. A two-electrode resistive printed sensor, such as FC 102, was inserted into the connector 108 and the connector was tightened. The sensor was inserted upside down so that no contact would be made between the two wires of the connector. Silicone was used to create an airproof seal around the wires leading out of the pressure pot from the connector 108. The connector 108 and sensor were submerged in the salt water. The resistance of the connector 108 was monitored by a Brewer Science sensor test kit. If any valid resistance was measured, it would indicate that salt water had entered the connector 108 and shorted the connection.
A pressure regulator was attached in-line to a compressed air line and a hose was used to connect the regulator to the pressure pot. All other airways on the pressure pot were sealed. The regulator was initially set to 0 psi. Over the course of 3 hours, the pressure setting of the regulator was increased by 10 psi and left to sit for approximately 20 minutes. This simulated a salt water depth of 6.86 meters. Meanwhile, the electrical signal from the connector 108 was monitored in order to detect for conduction caused by water leaks. The maximum pressure that was achievable using the equipment available was 80 psi (simulating 54.9 meters of saltwater depth). There was no evidence of water ingress throughout the entire test.
With respect to the above description, it is noted that the optimal dimensional relationships for the components of the embodiments, to include variations in size, materials, shape, form, function, and manner of operation, assembly, and use, are deemed readily apparent to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by an embodiment of the disclosure.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the embodiments, including the best mode, and to enable any person skilled in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This patent application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/537,056 filed Jul. 26, 2017, and entitled “ENVIRONMENTALLY SEALED, REUSABLE CONNECTOR FOR PRINTED FLEXIBLE ELECTRONICS,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3744128 | Fisher | Jul 1973 | A |
4191444 | Smith | Mar 1980 | A |
4335932 | Herrmann, Jr. | Jun 1982 | A |
4345223 | Chien-Chun | Aug 1982 | A |
4352540 | Liu | Oct 1982 | A |
4526432 | Cronin | Jul 1985 | A |
4566187 | Chen | Jan 1986 | A |
4629276 | Genaro | Dec 1986 | A |
5183420 | Hollander | Feb 1993 | A |
5580282 | Paterek | Dec 1996 | A |
5591041 | Cecil, Jr. | Jan 1997 | A |
6039596 | Whiteman, Jr. | Mar 2000 | A |
6558180 | Nishimoto | May 2003 | B2 |
6848930 | Fukuda | Feb 2005 | B2 |
6875048 | Lee | Apr 2005 | B2 |
6910904 | Herrick | Jun 2005 | B2 |
7059901 | Morita | Jun 2006 | B2 |
7297016 | Tymkewicz | Nov 2007 | B1 |
7309256 | Alloway et al. | Dec 2007 | B2 |
7632148 | Kawamura | Dec 2009 | B1 |
7928825 | Yang | Apr 2011 | B2 |
8052481 | Azad | Nov 2011 | B2 |
8647150 | Fujiwara | Feb 2014 | B2 |
8834197 | Wu | Sep 2014 | B2 |
8956166 | Ritner | Feb 2015 | B2 |
10211552 | Zhu | Feb 2019 | B2 |
10283917 | Darr | May 2019 | B1 |
20030087544 | Nogawa et al. | May 2003 | A1 |
20140154916 | Jinno et al. | Jun 2014 | A1 |
20150244091 | Naito | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
2004-241346 | Aug 2004 | JP |
03056665 | Jul 2003 | WO |
Entry |
---|
Molex Sealed Connector Families, printed Jun. 28, 2018, https://www.molex.com/molex/products/group?channel=products&key=sealed_connectors, 9 pages. |
Switchcraft : Sealed Circular Waterproof Connectors, printed Jun. 28, 2018, http://www.switchcraft.com/Category.aspx?Parent=901, 2 pages. |
Kinsun Industries Inc. Waterproof Connector, printed Jun. 28, 2018, https://www.kinsun.com/en/product-c68233/Waterproof-Connector-IP68.html, 5 pages. |
AMP Sealed Connectors, Catalog 65481, Revised 01-00, Tyco Electronics AMP, https://www.connectorpeople.com/library/sealed_connectors/Tyco_AMP_Sealed_Connectors_65481.pdf, 80 pages. |
International Search Report and Written Opinion dated Nov. 8, 2018 in corresponding PCT/US2018/043742 filed Jul. 25, 2018. |
Machine Translation of JP2004-241346, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20190036246 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62537056 | Jul 2017 | US |