Enzymatic detergent composition

Information

  • Patent Grant
  • 4873016
  • Patent Number
    4,873,016
  • Date Filed
    Wednesday, June 3, 1987
    37 years ago
  • Date Issued
    Tuesday, October 10, 1989
    34 years ago
Abstract
The invention relates to a detergent composition comprising lipases. By inclusion of a certain, immunologically defined class of lipases in a detergent composition which comprises a mixture of an anionic and a nonionic detergent, an improved overall detergency is obtained. Typical suitable lipases are obtained from certain Pseudomonas and Chromobacter strains.
Description

The present invention relates to an enzymatic detergent composition. More particularly it relates to an enzymatic detergent composition which contains a lipolytic enzyme.
Enzymatic detergent compositions are well known in the art. Enzymes of many types have been proposed for inclusion in detergent compositions, but the main attention has been focussed on proteases and amylases. Although lipases have been mentioned as possible enzymes for detergent compositions, there is relatively little prior art directly concerned with lipases for detergent compositions in general. Thus, our British Patent Specification No. 1,372,034 discloses the use of lipases produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, in detergent compositions for soaking fabrics which contain specific nonionic detergent actives, optionally with a specific anionic detergent active. However, it was made clear that "the mere addition of lipoytic enzymes to any and all detergent compositions does not product, (as was shown) a satisfactory and acceptable detergent composition both regarding the enzyme activity and the cleaning efficiency. Various ingredients of detergent compositions have been found to exert a negative influence on lipolytic enzymes".
In British Patent Specification Nos. 1,442,418 and 1,442,419 a two-stage laundering process is described wherein a soaking step with a lipase-containing liquor is followed by a washing step with a detergent-containing wash liquor.
In specification No. 1,442,419 the "lipase-containing liquor" consisted of the claimed lipase(s) and a water soluble borax salt. Optional inclusion of conventional detergent surfactants or builders was mentioned but effectiveness in the presence of surfactants and builders was not demonstrated. In specification 1,442,418 the "lipase-containing liquor" consisted of the claimed lipase(s) plus borax and Ca.sup.++ or Mg.sup.++ ions. Surfactants were again mentioned but again no evidence relating to effectiveness in surfactant solutions was provided. Builders which bind Ca.sup.++ and/or Mg.sup.++ ions were specifically excluded in these pre-wash liquors. Overall, the wash process described by these specifications needed two separate formulated products; it was cumbersome and it would be of limited applicability in practice.
In a more recent article in Journal of Applied Biochemistry, 2 (1980), pages 218-229, Andree et al. report on their investigations of lipases as detergent components. They concluded that the two tested commercially available lipases (pancreatic lipase and Rhizopus lipase) were unstable in solutions of active systems containing mixtures of typical detergent anionic and nonionic surfactants. They deduced that the lipases were inactivated by the presence of the anionic detergents, the pancreatic lipase somewhat less so than the Rhizopus lipase. Andree et al. further concluded that the tested lipases can improve the washing efficiency of full nonionic detergent formulations but that this improvement can be matched by increasing the concentrations of nonionic active in detergent formulations.
A recently published European patent application, No. 0130064, describes the use of a lipase from Fusarium oxysporum as detergent additive. The detergent compositions exemplified in this patent application contain a nonionic and an anionic detergent, or consist solely of a nonionic detergent.
The above prior art therefore either teaches to use a specific lipase in detergent compositions, or to formulate specific detergent compositions and/or wash regimes for inclusion of lipases therein.
It is an object of the present invention to provide lipase-containing detergent compositions which have an improved overall detergency performance and which show significant detergency improvements by the inclusion of lipases therein.
We have now discovered that the inclusion of a certain class of lipases in a detergent composition which contains an anionic and a nonionic detergent-active material provides an improved overall detergency.
In contrast with the above prior art, complete, lipase-containing detergent compositions are provided by the present invention with which a normal washing process can be carried out, also at lower temperatures, whereby the benefits of the lipases are obtained without having to resort to special carefully selected detergent compositions or special washing or soaking steps of without having to treat the fabrics for long periods with the lipase-containing composition.
The class of lipases to be used according to the present invention embraces those lipases which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescens IAM 1057. This lipase and a method for its purification have been described in Japanese Patent Application 53-20487, laid open to public inspection on Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd, Nagoya, Japan, under the trade name Lipase P "Amano", hereinafter referred to as "Amano-P". The lipases of the present invention should show a positive immunological cross reaction with the Amano-P antibody, using the standard and well-known immunodiffusion procedure according to Ouchterlony (Acta. Med. Scan., 133, pages 76-79 (1950)).
The preparation of the antiserum is carried out as follows:
Equal volumes of 0.1 mg/ml antigen and of Freund's adjuvant (complete or incomplete) are mixed until an emulsion is obtained. Two female rabbits are injected with 2 ml samples of the emulsion according to the following scheme:
day 0: antigen in complete Freund's adjuvant
day 4: antigen in complete Freund's adjuvant
day 32: antigen in incomplete Freund's adjuvant
day 60: booster of antigen in incomplete Freund's adjuvant
The serum containing the required antibody is prepared by centrifugation of clotted blood, taken on day 67.
The titre of the anti-Amano-P-lipase antiserum is determined by the inspection of precipitation of serial dilutions of antigen and antiserum according to the Ouchterlony procedure. A 2.sup.5 dilution of antiserum was the dilution that still gave a visible precipitation with an antigen concentration of 0.1 mg/ml.
All lipases showing a positive immunological cross reaction with the Amano-P antibody as hereabove described are lipases according to the present invention. Typical examples thereof are the Amano-P lipase, the lipase ex Pseudomonas fragi FERM P 1339 (available under the trade name Amano-B), lipase ex Pseudomonas nitroreducens var. lipolyticum FERM P 1338 (available under the trade name Amano-CES), lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from US Biochemical Corp., U.S.A. and Diosynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
Preferably, the lipases of the present invention should also show a positive immunological cross reaction with the antibody of one of the the following lipases: lipase ex Chromobacter viscosum var. lipolyticum NRRLB 3673, as sold by Toyo Jozo Co., Tagata, Japan, and lipase ex Pseudomonas gladioli.
Typical examples of such lipases showing such further cross reaction are Amano-P, Amano-B, Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from US Biochemical Corp., U.S.A. and Diosynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
A Technical Leaflet printed by the Amano Pharmaceutical Company has reported that the Amano-B and Amano-CES lipases are useful in detergent systems including those that contain anionic and nonionic surfactants. The present invention is not intended to cover a detergent composition comprising anionic and nonionic detergent-active compounds where the lipase is produced by Pseudomonas fragi or Pseudomonas nitroreducens var. lipolyticum, whose commercial embodiments are found in Amano-B and Amano-CES, respectively. However, under circumstances where the formulation contains a bleaching agent in addition to the detergent-actives, the Amano-B and Amano-CES lipases are intended as operative species for purposes of this invention.
The lipases of the present invention are included in the detergent composition in such an amount that the final detergent composition has a lipolytic enzyme activity of from 100 to 0.005 LU/mg preferably 25 to 0.05 LU/mg of the composition.
A Lipase Unit (LU) is that amount of lipase which produces 1 .mu.mol of titratable fatty acid per minute in a pH stat. under the following conditions: temperature 30.degree. C.; pH=9.0; substrate is an emulsion of 3.3 wt. % of olive oil and 3.3% gum arabic, in the presence of 13 mmol Ca.sup.2+ and 20 mmol NaCl in 5 mmol Tris-buffer.
Naturally, mixtures of the above lipases can be used. The lipases can be used in their impurified form, or in a purified form, e.g. purified with the aid of well-known adsorption methods, such as a phenylsepharose-packed column technique.
The detergent composition incorporating the lipases of the present invention contains as active detergent material a mixture of one or more nonionic synthetic detergent active materials and one or more anionic synthetic detergent-active materials. Both types of detergent-active materials are well known in the art, and suitable examples are fully described in Schwartz, Perry and Berch, Surface-Active Agents and Detergents, Vol. I (1949) and Vol. II (1958) and in Schick, Nonionic Surfactants, Vol. I (1967).
In general, the weight ratio of the nonionic to the anionic detergent varies from 12:1 to 1:12, preferably from 8:l to 1:8, and particularly preferably from 4:1 to 1:4.
The amount of nonionic and anionic detergent-active material together in the detergent composition ranges from 1 to 30%, usually 2 to 20% and preferably 6 to 16% by weight.
Detergent materials of other types, such as soaps, cationic and zwitterionic detergents, may also be included.
The detergent composition may further more include the usual detergent ingredients in the usual amounts. They may be unbuilt or built, and may be of the zero-P type (i.e. not containing phosphorus-containing builders). Thus, the composition may contain from 1-45%, preferably from 5-30% by weight of one or more organic and/or inorganic builders. Typical examples of such builders are the alkali metal ortho-, pyro- and -tripolyphosphates, alkali metal carbonates, either alone or in admixture with calcite, alkali metal citrates, alkali metal nitrilotriacetates, carboxymethyloxysuccinates, zeolites, polyacetalcarboxylates and so on. Furthermore, it may contain from 1-35% of a bleaching agent or a bleaching system comprising a bleaching agent and an activator therefor. In this respect it has been surprisingly found that the lipases of the present invention often are significantly less affected by the bleaching agent or bleaching system in the composition than other lipases, not according to the invention.
The compositions may furthermore comprise lather boosters, foam depressors, anti-corrosion agents, soil-suspending agents, sequestering agents, anti-soil redeposition agents, perfumes, dyes, stabilising agents for the enzymes and bleaching agents and so on. They may also comprise enzymes other than lipases, such as proteases, amylases, oxidases and cellulases. In this respect it has surprisingly been found that, although the lipases of the present invention rapidly lose activity in the presence of proteases in clean model systems, under practical wash conditions in washing machines a substantial benefit is still delivered by the lipases in the presence of proteases.
The compositions of the present invention can be formulated in any desired form, such as powders, bars, pastes, liquids etc.
As said before, the compositions of the present invention show an improved overall detergency performance, particularly at lower temperatures. It is surprising that fully formulated detergent compositions incorporating the lipases of the present invention do show such an improved overall performance, when the prior art hitherto has indicated that lipases would only given some effect under particular conditions.





The invention will now further be illustrated by way of Examples.
EXAMPLE I
With the following particulate detergent composition, washing experiments were carried out with several lipases:
______________________________________ parts by weight______________________________________sodium dodecylbenzenesulphonate 6.5C.sub.14 --C.sub.15 primary alcohol, condensedwith 11 moles of ethylene oxide 2.0sodium stearate 2.5sodium tripolyphosphate 16.0trisodium orthophosphate 5.0sodium silicate 10.0soil-suspending agents 1.0fluorescers 0.2dyes 0.001sodium sulphate 24.0water 6.0______________________________________
The lipases tested were Amano-P as described heretofore, furthermore SP 225, a lipase producible by Mucor miehei ex Novo Industri A/S and Esterase MM, a lipase producible by Mucor miehei ex Gist-Brocades.
The washing experiments were carried out under the following conditions:
washing process: 30 minutes at 30.degree. C.
water hardness: 8.degree. GH
monitor: cotton test cloths soiled with a mixture containing inorganic pigments, protein, olive oil or palm oil, respectively and in the presence of cloth to give the desired cloth/liquor ratio.
lipase concentration: 15 LU/ml
cloth/liquor ratio: 1:6.
dosage of composition: 6 g/l
The number of soil/wash cycles was 4, and after the fourth wash the reflectance of the test cloths and the residual percentage of fatty material on the test cloths were determined. The reflectance was measured in a Reflectometer at 460 nm with a UV filter in the light pathway and the fatty matter by extracting the dried test cloths with petroleum ether, distilling off the solvent and weighing the resulting fatty matter.
The following results were obtained:
______________________________________ % FM % FMlipase R*.sub.460 palm oil olive oil______________________________________-- 63.9 12.5 .+-. 0.1 10.0 .+-. 0.6Amano-P 70.5 7.2 .+-. 0.6 6.3 .+-. 0.6SP 225 65.0 11.3 .+-. 0.9 9.8 .+-. 0.1Esterase MM 67.3 10.1 .+-. 0.3 8.7 .+-. 0.8______________________________________
These results show that the lipase of the present invention (Amano-P) is superior to the other two prior art lipases.
EXAMPLE II
Replacing Amano-P by Diosynth as heretofore described in Example I gave similar results.
EXAMPLE III
The lipase stability of various lipases in a bleach containing detergent composition (5 g/l) containing 3% TAED, 8% sodiumperboratemonohydrate and 0.3% Dequest.RTM. was compared at 30.degree. C. in water of 22.degree. GH. The balance of the formulation was equal to the one as described in Example VIII; no Savinase.RTM. or other proteolytic enzyme was present.
______________________________________ Residual activity (% of input) 10 30 halftimeLipase min. min. (min.)______________________________________Amano-P 95 99 *C. viscosum NRRLB 3673 84 73 *Amano CE (ex Humicola lanuginosa) 100 100 *Amano AP (ex Aspergillus niger) 83 48 27Mucor Miehei lipase 61 13 27Fusarium oxysporum lipase 14 0 3Esterase MM (ex Mucor mihei) 38 10 7Lipase PL ex Meito Sangyo, Japan 19 0 3(ex Alcaligenes species)MY 30.000 ex Meito Sangyo, Japan 5 0 3(ex Candida cylindraceae)______________________________________
EXAMPLE IV
The stability of the lipases was tested in clean wash liquors, using the detergent formulation of Example V with and without the bleaching system and/or proteolytic enzymes. The water hardness was 22.degree. GH.
The following results were obtained:
______________________________________ residual activity afterClean systems 10 min. 30 min.______________________________________Amano-P (%) (%)Base powder (without bleach 100 98and proteaseBase powder + TAED/perborate 95 95Base powder + Savinase (protease) 20 10Base powder + Alcalase (protease) 10 --Base powder + Esperase (protease) 10 --DiosynthBase detergent powder+ TAED/perborate 98 96Base detergent powder+ TAED/perborate + Savinase 50 30Toyo JozoBase detergent powder+ TAED/perborate 93 93Base detergent powder+ TAED/perborate + Savinase 55 30______________________________________
The stability of lipases of the invention in bleach containing detergent formulations is further demonstrated. In these clean detergent solutions the sensitivity of the lipases to proteolytic attack is also shown.
EXAMPLE V
The performance in washing machines of Amano P in the presence of strong bleach(6/12; TAED/perborate) and high levels of a proteolytic enzyme(Savinase; 30GU/ml) was determined. The formulation of Example I was used at a water hardness of 8 GH and using the wash conditions given in Example I.
Following results were obtained after the fourth wash:
______________________________________ olive oil palm oilCotton R*.sub.460 % FM R*.sub.460 % FM______________________________________base powder only 67.7 8.8 68.5 9.5base powder + lipase 75.8 6.2 76.8 5.5base p. + Savinase + bleach 71.6 8.8 74.3 8.2base p. + Sav. + bleach + 76.2 7.4 76.2 7.1lipase______________________________________
These results showed that
Savinase (bleach) have a large effect on R*.sub.460 but no or little effect on %FM
In contrast to the sensitivity to Savinase in clean detergent solutions shown in Example IV, the lipase is compatible with Savinase/bleach (30GU/ml)/(6/12 TAED/perforatemonohydrate) in these realistic practical wash trials although some inhibition occurred.
EXAMPLE VI
In the same manner as described in Example I, the lipase Amano-P was compared with a lipase producible by Fusarium oxysporum according to EP 0130064. The test cloths were cotton and polyester fabrics, the soiling contained a mixture of palm oil, protein and inorganic pigment and the water hardness was 8.degree. and 22.degree. GH.
The following results were obtained:
______________________________________ 8.degree. GH 22.degree. GH lipase R*.sub.460 % FM R*.sub.460 % FM______________________________________cotton -- 60.4 11.2 55.8 15.9 Amano-P 62.6 8.1 58.7 11.8 lipase ex Fusarium 63.8 9.9 61.4 13.7______________________________________ lipase R*.sub.460 % FM R*.sub.460 % FM______________________________________polyester -- 67.9 7.4 64.9 8.2 Amano-P 72.6 4.5 68.1 5.5 lipase ex Fusarium 70.2 7.3 70.2 7.2______________________________________
The lipase according to EP 0130064 had a lipolytic activity of 90 LU/mg,, but also showed a proteolytic activity of 120 GU/mg. Amano P does not show any detectable proteolytic activity. Although the effects of lipase ex Fusarium on % FM are negligible/small, the effects on R*.sub.460 are quite marked. This however, is easily explainable by the proteolytic activity in this lipase sample if a comparison with Example V (powder+Savinase versus powder+lipase) is made.
EXAMPLE VII
Comparing in the manner as described in Example I the lipase Amano-P with a lipase of the same manufacturer, not according to the invention, Amano CE, and with two other lipases according to the invention, Amano B and Amano CES gave the following results:
______________________________________ cottonlipase R*.sub.460 % FM______________________________________-- 61.9 9.8Amano-P 66.0 6.8Amano CE 65.3 8.7Amano B 65.6 6.7Amano CES 65.2 6.9______________________________________
The Amano CE lipase had an activity of 17 LU/mg, but also showed a proteolytic activity of 16 GU/mg. Amano-P, Amano-B and Amano CES had comparable LU/mg activities, but do not show any detectable proteolytic activity. Again the good result on R*.sub.460 but not on %FM of Amano CE are explained by its contaminated proteolytic activity.
EXAMPLE VIII
With the following particulate detergent composition, further washing experiments were carried out to show compatibility with bleach and proteolytic enzymes during the wash process.
______________________________________ parts by weight______________________________________sodium dodecylbenzenesulphonate 8.5C.sub.12 -C.sub.15 primary alcohol, condensedwith 7 moles of ethylene oxide 4.0sodium-hardened rapeseed oil soap 1.5sodium triphosphate 33.0sodium carbonate 5.0sodium silicate 6.0sodium sulphate 20.0water 9.0fluorescers, soil-suspending agents,dyes, perfumes minor amountsodium perborate 12.0tetraacetyl ethylene diamine(TAED) (granules) 2.0proteolytic enzyme (Savinase ex Novo) 0.4______________________________________
The washing experiments were carried out under the following conditions:
washing machine with a load of 3.5 kg dirty laundry
washing process: 30 minutes at 30.degree. C.
water hardness: 8 and 22.degree. GH
lipase concentrations: 15 LU/ml
dosage of compositions 3.5 g/l.
The following results were obtained after the fourth wash:
______________________________________ 8.degree. GH 22.degree. GH lipase R*.sub.460 % FM R*.sub.460 % FM______________________________________cotton -- 73 12.1 70 15.9 Amano-P 79 6.7 76.5 7.5______________________________________ 8.degree. GH 22.degree. GH lipase R*.sub.460 % FM R*.sub.460 % FM______________________________________polyester -- 67.5 9.9 70 10.7 Amano-P 76.5 8.1 77 9.8______________________________________
EXAMPLE IX
A similar experiment as in Example VIII was done using lipase according to the invention with different resistance against proteolytic enzymes as shown in Example IV.
Lipase concentration was 5 LU/ml.
Textile used was cotton.
______________________________________Lipase R*.sub.460 % FM______________________________________-- 67.8 15.5Amano-P 71.6 11.2C. viscosumex Toyo Jozo 74.2 9.5C. viscosumex Diosynth 72.9 10.3______________________________________
Residual activities in the wash liquor after the 30 minutes wash process:
Amano-P: 36%
Toyo Jozo: 55%
Diosynth: 60%
Detailed comparison with Example IV shows that in the realistic, practical wash conditions used in this Example lipases of the invention are substantially less sensitive to attack by proteases such as Savinase used in detergent products.
EXAMPLE X
The test of Example 1 was repeated, but using 4 g/l of the detergent composition and using lipases in an amount of 1 LU/ml. The following results were obtained:
______________________________________ R*.sub.460 % FM IgG palm olive palm oliveLipase reaction oil oil oil oil______________________________________-- - 61.3 59.8 13.7 13.7Amano-P + 72.1 71.2 7.4 7.4Toyo Jozo + 72.0 70.8 7.2 8.0Diosynth + 73.0 71.5 7.1 7.8Amano AP 6 - 63.2 63.5 12.9 11.9(ex Aspergillus niger)Lipase MY - 63.8 62.7 12.3 11.8(ex Candida cylindraceae)Lipase ex Candida - 63.5 63.6 12.8 11.1cylindraceaeLipase ex Fusarium - 64.8 61.2 12.0 14.1oxysporumLipase ex Mucor mihei - 66.0 65.3 11.3 11.1Esterase MM - 67.4 66.6 10.0 9.8(ex Mucor mihei)Amano CE - 68.9 66.6 9.3 10.4(ex Humicola lanuginosa)______________________________________
EXAMPLE XI
In the same manner as in Example I, washing experiments were carried out, using either 5 g/l of the detergent composition of Example VIII (water hardness 22.degree. GH) or 4 g/l of the detergent composition of Example I (water hardness 8.degree. GH). The lipases were used at 1 and 3 LU/ml. The test cloths were either polyester/cotton (P/C) mixed fabrics, or pre-washed cotton (PWC).
The following results were obtained.
with the composition of Example VIII:
______________________________________ R*.sub.460 % FMLipase P/C PWC P/C PWC______________________________________0 66.7 71.5 16.8 7.41 LU Toyo Jozo 78.6 73.0 7.6 6.83 LU Toyo Jozo 80.1 74.3 6.9 5.51 LU lipase ex Pseudomonas 80.0 73.9 7.5 5.8gladioli3 LU lipase ex Pseudomonas 80.8 74.9 6.8 5.1gladioliwith the composition of Example I:0 73.7 67.8 10.6 9.01 LU Toyo Jozo 78.8 72.7 6.9 5.13 LU Toyo Jozo 79.7 73.7 7.1 4.71 LU lipase ex Pseudomonas 79.9 73.3 6.6 4.9gladioli3 LU lipase ex Pseudomonas 80.7 74.7 7.3 4.6gladioli______________________________________
EXAMPLE XII
Repeating Example I, using the detergent composition of Example I at 4 g/l in water of 8.degree. GH, or the detergent composition of Example VIII at 5 g/l in water of 22.degree. GH, at various temperatures gave the following results:
______________________________________ Toyo Jozo Temper- R*.sub.460 % FM lipase ature palm olive palm olive (LU/ml) (.degree.C.) oil oil oil oil______________________________________Compositionof Example I 0 30 64.3 61.4 14.5 16.0" 3 30 74.2 72.6 7.4 7.6" 0 40 68.2 64.8 12.5 13.7" 3 40 75.9 74.2 6.5 6.9" 0 50 68.9 68.3 12.3 11.8" 3 50 76.4 75.1 6.1 6.4Compositionof Example VIII 0 30 73.9 74.7 8.4 7.9" 3 30 75.4 76.1 7.6 7.0" 0 40 74.8 75.0 7.5 7.8" 3 40 76.1 76.3 6.9 7.1" 0 50 75.3 75.4 7.5 7.7" 3 50 76.9 76.8 6.1 7.6______________________________________
EXAMPLE XIII
In the manner as described in Example I, the following detergent compositions were tested.
______________________________________A: 9% anionic detergent 1% nonionic detergent 21.5% sodium tripolyphosphate 7% sodium perborate 0.6% Savinase (a proteolytic enzyme)balance sodium sulphate + minor ingredientsB: 9% anionic detergent 4% nonionic detergent 28% zeolite 4.5% nitrilotriacetate 5.5% sodium perborate 3.5% tetraacetylethylenediamine 0.5% Savinasebalance sodium sulphate + minor ingredientsC: 5% anionic detergent 4% nonionic detergent 1% soap 30% zeolite 3.% copolymer of acrylic acid with maleic anhydride 7.5% sodium perborate 3% tetraacetylethylenediaminebalance sodium sulphate + minor ingredientsD: 8% anionic synthetic detergent 4% nonionic synthetic detergent 4% soap 35.% sodium carbonate 20% powdered calcite 6% sodium perborate 2% tetraacetylethylenediamine 0.5% Savinasebalance sodium sulphate + minor ingredients______________________________________
The following results were obtained:
______________________________________ lipase (Toyo Jozo) R*.sub.460 % FMComposition LU/ml palm oil palm oil______________________________________A 0 68.0 11.3 3 71.5 8.7 15 75.2 7.1B 0 70.7 9.6 3 73.4 8.9 15 75.1 7.9C 0 73.5 8.3 3 75.0 7.6 15 77.3 6.1D 0 63.1 16.1 3 71.9 10.6 15 75.0 8.0______________________________________
Claims
  • 1. A detergent composition comprising from 1 to 30% of a mixture of an anionic and a nonionic detergent-active compound in a weight ratio from 12:1 to 1:12, from 1 to 35% of a bleaching agent, and a lypolytic enzyme, wherein the enzyme shows a positive immunological cross-reaction with the antibody of the lipase produced by the microorganism Pseudomonas fluorescens IAM 1057, said composition containing the enzyme in such an amount that the final composition has a lipolytic activity of from 0.005 to 100 Lipase Units per milligram.
  • 2. A composition according to claim 1, wherein the enzyme additionally shows a positive immunological cross-reaction with the antibody of the lipase produced by the microoragnism Chromobacter viscosum var. lipolyticum NRRLB 3673 or Pseudomonas gladioli.
  • 3. A composition according to claim 1, wherein the positive immunological cross-reaction showing enzyme is a lipase produced by strains of the Pseudomonas and the Chromobacter genus.
  • 4. A composition according to claim 1, further containing a proteolytic enzyme in an amount sufficient to provide a proteolytic activity of from 0.005 to 0.1 Anson Units per gram of composition.
Priority Claims (1)
Number Date Country Kind
8514707 Jun 1985 GBX
Parent Case Info

This is a continuation-in-part application of Ser. No. 870,252 filed June 3, 1986, now U.S. Pat. No. 4,707,291.

US Referenced Citations (3)
Number Name Date Kind
4011169 Diehl et al. Mar 1977
4381247 Nakagawa et al. Apr 1983
4470919 Goffinet et al. Sep 1984
Foreign Referenced Citations (1)
Number Date Country
0130064 Jan 1985 EPX
Non-Patent Literature Citations (1)
Entry
Lipase, The Enzyme for Detergent, Amano Pharmaceutical Co., Ltd., (Pre-Jun. 1985).
Continuation in Parts (1)
Number Date Country
Parent 870252 Jun 1986