Claims
- 1. A method for dyeing a material, said method comprising contacting the material with a dyeing system which comprises:(a) a mixture of (i) at least one aromatic diamine and (ii) at least one compound selected from the group consisting of a naphthol and an aminonaphthalene; wherein said naphthol is not unsubstituted alpha-naphthol, halogenated 1-naphthol, or an unsubstituted dihydroxynaphthalene and (b) an oxidation system comprising (i) a hydrogen peroxide source and an enzyme exhibiting peroxidase activity or (ii) an enzyme exhibiting oxidase activity on one or more of the compounds of mixture (a), under conditions in which a colored material is produced.
- 2. A method as defined in claim 1, wherein said material is a fabric, yarn, fiber, garment or film made of a material selected from the group consisting of fur, hide, leather, silk, wool, cationic polysaccharide, cotton, diacetate, flax, linen, lyocel, polyacrylic, synthetic polyamide, polyester, ramie, rayon, triacetate, and viscose.
- 3. A method as defined in claim 1, wherein said aromatic diamine is substituted with a functional group selected from the group consisting of a sulfonic acid, a carboxylic acid, a salt of a sulfonic acid or carboxylic acid, a sulfonamide, and a quaternary ammonium salt.
- 4. A method as defined in claim 1, wherein said aromatic diamine is a compound of formula A, said naphthol is a compound of formula B, and said aminonaphthalene is a compound of formula C wherein, X is selected from the group consisting of hydrogen, sulfonic acid, carboxylic acid, a salt of sulfonic acid, a salt of carboxylic acid, sulfonamide, and a quaternary ammonium salt; R1 and R2 are each independently selected from the group consisting of hydrogen, C1-18-alkyl, C1-18-hydroxyalkyl, phenyl, aryl, azobenzene, amidophenyl, azobenzene substituted with one or more functional groups, and amidophenyl substituted with one or more functional groups; and the remaining positions on the aromatic ring(s) of A, B, and C are optionally substituted with one or more functional groups selected from the group consisting of hydrogen, halogen, sulfo, sulfonato, sulfamino, sulfanyl, amino, amido, amidoaryl, nitro, azo, azoaryl, imino, carboxy, cyano, formyl, hydroxy, halocarbonyl, carbamoyl, carbamidoyl, phenyl, aryl, phosphonato, phosphonyl, C1-18-alkyl, C2-18-alkenyl, C2-18-alkynyl, C1-18-alkoxy, C1-18-oxycarbonyl, C1-18-oxoalkyl, C1-18-alkyl sulfanyl, C1-18-alkyl imino, and amino which is substituted with one, two, or three C1-18-alkyl groups.
- 5. A method as defined in claim 4, wherein the halogen is selected from the group consisting of fluorine, chlorine, bromine, and iodine.
- 6. A method as defined in claim 1, wherein said naphthol is a compound of formula D wherein X is selected from the group consisting of hydrogen, sulfonic acid, carboxylic acid, a salt of sulfonic acid, a salt of carboxylic acid, sulfonamide, and a quaternary ammonium salt; R1.
- 7. A method as defined in claim 1, wherein said aromatic diamine is selected from the group consisting of 2-methoxy-p-phenylenediamine, N,N-bis-(2-hydroxyethyl-p-phenylenediamine, N-β-methoxyethyl-p-phenylenediamine, 2-methyl-1 3-diamino-benzene, 2,4-diaminotoluene, 2,5-Diaminotoluene, 2,6-diaminopyridine, 1-N-methylsulfonato-4-aminobenzene, 1-methoxy-2,4-diamino-benzene, 1-ethoxy-2,3-diamino-benzene, 1-62-hydroxyethyloxy-2,4-diamino-benzene, 1,4-Phenylenediamine, 2-Chloro-1,4-phenylenediamine, 1,3-Phenylenediamine, 2,3-diaminobenzoic acid, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, methyl-2,3-diaminobenzoate, ethyl-2,3-diaminobenzoate, isopropyl-2,3-diaminobenzoate, methyl-2,4-diaminobenzoate, ethyl-2,4-diaminobenzoate, isopropyl-2,4-diaminobenzoate, methyl-3,4-diaminobenzoate, ethyl-3,4-diaminobenzoate, isopropyl-3,4-diaminobenzoate, methyl-3,5-diaminobenzoate, ethyl-3,5-diaminobenzoate, isopropyl-3,5-diaminobenzoate, N,N-dimethyl-3,4-diaminobenzoic acid amide, N,N-diethyl-3,4-diaminobenzoic acid amide, N,N-dipropyl-3,4-diaminobenzoic acid amide, N,N-dibutyl-3,4-diaminobenzoic acid amide, N-phenyl-p-phenylenediamine, Disperse Black 9, Solvent Brown 1 (CI 11285), 4,4′-Diaminodiphenylamine sulfate, 4-aminodiphenylamine-2-sulfonic acid, N-(4′-aminophenyl)aminobenzene-4-sulfonic acid, N,N-dimethyl-1,4-phenylenediamine, N,N-diethyl-1,4-phenylenediamine, Disperse Yellow 9, N-phenyl-1,2-phenylenediamine, 1,2-phenylenediamine, 4′-aminoacetanilide, N-phenyl-2-aminobenzene-4-sulfonic acid, and 2,5-diaminobenzenesulfonic acid.
- 8. A method as defined in claim 1, wherein said naphthol is selected from the group consisting of 4-Chloro-1-naphthol, 4-Bromo-1-naphthol, 4-Methoxy-1-naphthol, 2-Nitroso-1-naphthol, 1-Naphthol-3-sulfonamide, 1-Naphthol-8-sulfonamide, 4,8-Disulfonato-1-naphthol, 3-Sulfonato-6-amino-1-naphthol, 6,8-Disulfonato-2-naphthol, 4,5-Dihydroxynapthalene-2,7-disulfonic acid, 2-Amino-8-naphthol-6-sulfonic acid, 5-Amino-1-naphthol-3-sulfonic acid, 2-Naphthol-3,6-disulfonic acid, 1-Amino-8-naphthol-2,4-disulfonic acid, 1-Naphthol-4-sulfonic acid, N-Benzoyl acid, N-Phenyl J acid, Mordant Black 3 (CI 14640), 4-Amino-5-hydroxy-2,6-naphthalene disulphonic acid, Acid Black 52 (CI 15711), Palantine Chrome Black 6BN (CI 15705), Eriochrome Blue Black R, Mordant Black 11, Acid Black 1 (CI 20470), Acid Red 176 (CI 1657), Acid Red 29 (CI 16570), Acid Red 14 (CI 14720), and 1-Naphthol-3-sulfonic acid.
- 9. A method as defined in claim 1, wherein said aminonaphthalene is selected from the group consisting of 1-Amino-8-hydroxynaphthalene-4-sulfonic acid, 2-Amino-8-naphthol-6-sulfonic acid, 5-Amino-1-naphthol-3-sulfonic acid, 1-Amino-8-naphthol-2,4-disulfonic acid, 8-Amino-1-naphthalenesulfonic acid, 8-Anilino-1-naphthalenesulfonic acid, 8-Amino-2-naphthalenesulfonic acid, 5-Amino-2-naphthalenesulfonic acid, 4-Amino-5-hydroxy-2,6-naphthalenedisulphonic acid, 2,3-Diaminonaphthalene, 1,5-Diaminonaphthalene 1,8-Diaminonaphthalene, 6-Amino-2-naphthol, 3-Amino-2-naphthol, 5-Amino-1-naphthol, Acid Black 1 (CI 20470), 4-Amino-1-naphthalenesulfonic acid, 6-(p-Toluidino)-2-naphthalenesulfonic acid, 1,4-Diamino-2-naphthalenesulfonic acid, and 5,8-Diamino-2-naphthalenesulfonic acid.
- 10. A method as defined in claim 1, wherein the aromatic diamine of (a) (i) is selected from the group consisting of 2-methoxy-p-phenylenediamine, N-β-methoxyethyl-p-phenylenediamine, N,N-bis-(2-hydroxyethyl)-p-phenylenediamine, 1-N-methylsulfonato-4-aminobenzene, 1,4-Phenylenediamine, 2,5-Diaminotoluene, 2-Chloro-1,4-phenylenediamine, N-Phenyl-p-phenylenediamine, Disperse Black 9, N,N-Dimethyl-1,4-phenylenediamine, N,N-Diethyl-1,4-phenylenediamine, 4-aminodiphenylamine-2-sulfonic acid, N-(4′-aminophenyl)aminobenzene-4-sulfonic acid, N-phenyl-2-aminobenzene-4-sulfonic acid, 2,3-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 2,3-diaminobenzenesulfonic acid, 2,4-diaminobenzenesulfonic acid, 2,5-diaminobenzenesulfonic acid, 3,4-diaminobenzenesulfonic acid, and 3,5-diaminobenzenesulfonic acid; andthe compound of (a) (ii) is selected from the group consisting of 3-sulfonato-6-amino-1-naphthol, 4,5-Dihydroxynapthalene-2,7-disulfonic acid, 2-Amino-8-naphthol-6-sulfonic acid, 5-Amino-1-naphthol-3-sulfonic acid, 2-Naphthol-3,6-disulfonic acid, 1-Amino-8-naphthol-2,4-disulfonic acid, 1-Naphthol-4-sulfonic acid, N-Benzoyl acid, N-Phenyl acid, 4-Amino-5-hydroxy-2,6-naphthalene disulphonic acid, 1-Amino-8-hydroxynaphthalene-4-sulfonic acid, 8-amino-1-naphthalenesulfonic acid, 8-anilino-1-naphthalenesulfonic acid, 8-amino-2-naphthalenesulfonic acid, 5-amino-2-naphthalenesulfonic acid, 4,8-disulfonato-1-naphthol, and 6,8-disulfonato-2-naphthol.
- 11. A method as defined in claim 1, wherein the aromatic diamine of (a) (i) is selected from the group consisting of: 1,4-Phenylenediamine, N-Phenyl-p-phenylenediamine, N,N-Diethyl-1,4-phenylenediamine, 4-aminodiphenylamine-2-sulfonic acid, N-(4′-aminophenyl)aminobenzene-4-sulfonic acid, and 2,5-diaminobenzenesulfonic acid; andthe compound of (a) (ii) is selected from the group consisting of: 1-Naphthol-4-sulfonic acid, N-Phenyl acid, 8-amino-1-naphthalenesulfonic acid, 8-anilino-1-naphthalenesulfonic acid, 8-amino-2-naphthalenesulfonic acid, and 5-amino-2-naphthalenesulfonic acid.
- 12. A method as defined in claim 1, wherein the aromatic diamine of (a)(i) is selected from the group consisting of: 2,3-diaminobenzoic acid, 2,4-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, 4-aminophenylamine-2-sulfonic acid, N-(4′-aminophenyl)aminobenzene-4-sulfonic acid, N-phenyl-2-aminobenzene-4-sulfonic acid, 2,3-diaminobenzenesulfonic acid, 2,4-diaminobenzenesulfonic acid, 3,5-diaminobenzenesulfonic acid, and 2,5-diaminobenzenesulfonic acid; andthe compound of (a)(ii) is selected from the group consisting of: 1-naphthol, 4-chloro-1-naphthol, 4-bromo-1-naphthol, 4-methoxy-1-naphthol, 2-nitro-1-naphthol, 1-naphthol-3-sulfonamide, and 1-naphthol-8-sulfonamide.
- 13. A method as defined in claim 1, wherein the enzyme of (b)(ii) is a laccase.
- 14. A method as defined in claim 1, wherein the enzyme of (b)(ii) is a peroxidase or haloperoxidase.
- 15. A method as defined in claim 1, wherein said material is contacted simultaneously with (a) and (b).
- 16. A method as defined in claim 1, wherein said material is contacted first with the compounds of (a), simultaneously or sequentially, and subsequently with the oxidation system of (b).
- 17. A method as defined in claim 1, wherein said material is contacted first with the oxidation system of (b) and subsequently with the mixture of (a).
- 18. A method as defined in claim 1, wherein said material is contacted first with said aromatic diamine of (a)(i) and subsequently with a compound of (a)(ii) and the oxidation system of (b).
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of application Ser. No. 10/160,676, filed on Aug. 28, 2002 (now abandoned), which is a continuation of application Ser. No. 09/802,190, filed on Mar. 8, 2002 (now abandoned), which is a continuation of application Ser. No. 09/461,441, filed Dec. 14, 1999 (now U.S. Pat. No. 6,296,672), which is a continuation-in-part of application Ser. No. 08/770,760, filed Dec. 19, 1996 (now U.S. Pat. No. 6,036,729,), which claims priority under 35 U.S.C. 119 of U.S. Provisional Applications Nos. 60/016,729, filed May 2, 1996, and 60/009,198, filed Dec. 22, 1995, which are incorporated herein by reference.
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
5667531 |
Yaver et al. |
Sep 1997 |
A |
5667561 |
Suzuki et al. |
Sep 1997 |
A |
5849041 |
Kunz et al. |
Dec 1998 |
A |
5925148 |
Barfoed et al. |
Jul 1999 |
A |
6296672 |
Barfoed et al. |
Oct 2001 |
B1 |
Foreign Referenced Citations (10)
Number |
Date |
Country |
0 431 682 |
Jun 1991 |
EP |
0 504 005 |
Sep 1992 |
EP |
2112549 |
Jun 1972 |
FR |
2694018 |
Jan 1994 |
FR |
WO 9218683 |
Oct 1992 |
WO |
WO 9400100 |
Jan 1994 |
WO |
WO 9533836 |
Dec 1995 |
WO |
WO 9723684 |
Jul 1997 |
WO |
WO 9737633 |
Nov 1997 |
WO |
WO 9805816 |
Feb 1998 |
WO |
Non-Patent Literature Citations (4)
Entry |
Derwent Publication Ltd., 90-161489 (Apr. 17, 1990). |
Derwent Publication Ltd., 91-143144 (Apr. 3, 1991). |
Derwent Publication Ltd., 95-033019 (Nov. 15, 1994). |
Derwent Publication Ltd., 96-295885 (May 21, 1996). |
Provisional Applications (2)
|
Number |
Date |
Country |
|
60/016729 |
May 1996 |
US |
|
60/009198 |
Dec 1995 |
US |
Continuations (3)
|
Number |
Date |
Country |
Parent |
10/160676 |
Jun 2002 |
US |
Child |
10/375495 |
|
US |
Parent |
09/802190 |
Mar 2001 |
US |
Child |
10/160676 |
|
US |
Parent |
09/461441 |
Dec 1999 |
US |
Child |
09/802190 |
|
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
08/770760 |
Dec 1996 |
US |
Child |
09/461441 |
|
US |