Enzymatic treatment of pulp for lyocell manufacture

Information

  • Patent Application
  • 20090165969
  • Publication Number
    20090165969
  • Date Filed
    December 31, 2007
    16 years ago
  • Date Published
    July 02, 2009
    15 years ago
Abstract
Bleached and unbleached pulps are treated with an enzyme in one or more stages of the bleaching process to yield a low DP pulp suitable for lyocell manufacture. This allows higher throughput of fiber an economy of manufacture.
Description
FIELD

This application relates to the reduction in the degree of polymerization (DP) of cellulose with enzymes to provide a pulp with acceptable metals levels suitable for lyocell manufacture.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a 1 K magnification of a lyocell fiber spun from the low DP pulp in this application.





SPECIFICATION

In order to obtain a higher throughput in lyocell production (higher concentration of pulp in the solvent NMMO or higher throughput per hole per minute) it is necessary to use a lower DP pulp than currently used. Use of enzymes at various stages of the bleaching process can yield lower DP pulps which are suitable for lyocell.


Enzymes are used in the treatment of cellulosic pulp to improve the bleaching and to reduce the DP of the pulp. One use of enzymes is to control the viscosity of the pulp during the bleach treatment. A low uniform viscosity is needed for dissolving and non dissolving pulps useful for rayon or lyocell production. Enzymes may be used to control this viscosity.


Enzymes that are useful with cellulose include xylanases, cellulases, hemicellulases, peroxidases, mannases, laccases (oxidoreductases), lipases and combinations of these enzymes.


The cellulose pulp must be at the correct pH in order for the enzymes to work. The usual pH is 3 to 10. An acids such as sulfuric, nitric or hydrochloric acid, is usually used to adjust to the appropriate pH but there are problems associated with the use of these mineral acids. The mineral acids tend to harden the outside of the cellulose fibers and reduce the void volume within cellulose pulp fibers thus make it more difficult for the enzymes to interact with the cellulose pulp fibers. Mineral acids are applied as a liquid and the dispersion of the acid through the pulp can be non-uniform.


Carbon dioxide can be used to adjust the pH of the cellulose pulp fiber to the correct pH of 2 to 7.5 and does not create the problems that the use of mineral acids do. The carbon dioxide tends to maintain the openness of the cellulose pulp fiber or biomass and allow better interaction of the enzyme with both the outside and the inside of the cellulose pulp fiber or biomass. The carbon dioxide is applied as a gas and tends to disperse more uniformly throughout. Other organic acids such as acetic acid can also be used.


Various bleaching sequences can be used to make non dissolving pulp for lyocell. It is important that during the bleaching sequence that copper levels and total transition metals be kept low since this element adversely affects the NMMO which is used to dissolve the cellulose.


It has now been found that lyocell pulps with a low DP and suitable for lyocell production can be produced by the use of enzymes after oxygen delignification (before bleaching), intermediate in the bleaching sequence or alternatively at the end of the bleaching sequence. In one embodiment the bleaching sequence is OXDEpD where O is oxygen delignification stage, X is the enzyme treatment stage, D is the chlorine dioxide stage, Ep is the caustic extraction stage in the presence of peroxide and D is the bleaching stage with chlorine dioxide. In another embodiment the bleaching sequence is ODEpDX where O is oxygen delignification, D is bleaching with chlorine dioxide, Ep is caustic extraction in the presence of peroxide, D is chlorine dioxide bleaching and X is enzyme treatment. In yet another embodiment the bleaching sequence is OXDEpDX where O is oxygen delignification X is enzyme treatment, D is bleaching with chlorine dioxide, Ep is caustic extraction in the presence of peroxide, D is chlorine dioxide bleaching and X is enzyme treatment. Treatment of an unbleached kraft pulp with an IV of 6.2 and a Kappa of 28 to 30 using one of these bleach sequences, for example OXDEpD, can reduce the pulp to an acceptable D. P. range, and the pulp has an acceptable copper number and acceptable total transition metals levels.


Unbleached pulp with an IV (intrinsic viscosity) from 10 to 5 dl/g can be contacted in a bleaching sequence with at least one stage of an enzyme treatment and reduce the pulp by 8 to 2 units. The enzyme treatment can also occur after the bleach sequence or alternatively the enzyme treatment can be in the bleaching sequence and after the bleach sequence.


In one embodiment the pulp is reduced to 2 to 4 IV units; in another embodiment the pulp is reduced to 2.5 to 3.5 units.


In one embodiment the enzyme is added at 0.045 to 4.5 kg/MT pulp. In another embodiment the enzyme is added at 0.136 g to 3.27 kg/MT pulp In yet another embodiment the enzyme is added at 0.227 g to 1.36 kg/MT pulp.


The term “degree of polymerization” (abbreviated as DP) refers to the number of D-glucose monomers in a cellulose molecule. Thus, the term “average degree of polymerization”, or “average DP”, refers to the average number of D-glucose molecules per cellulose polymer in a population of cellulose polymers. DP and IV were determined by ASTM 1795-96.


EXAMPLE 1

Pulp with a Kappa of 28 to 30 from the normal Kraft process underwent an oxygen stage delignification with H2O2 and sodium extraction at 121° C. (250° F.) to obtain unbleached pulp with an IV of 6.2 dl/g ( Falling Ball or FB of 86). This pulp was washed (POW, post oxygen washer) and the POW 3rd stage wash had an initial set point of 68° C. and stock exit pH of about 7 (CO2 adjusted), the pulp with the adjusted pH was treated with cellulase Biotouch C700 from Ashland Inc. (AB Enzymes) added at POW standpipe at a dosage of 0.45 kg/MT with a retention time of about three hours to lower viscosity the viscosity to an intrinsic viscosity (IV) of 5.5 (FB of 50) for DEpD bleaching. This bleached pulp (DEpD) had an intrinsic viscosity (IV) of 3.2 dl/g when taken from the couch trim (control sample in Table 1). This was the starting material for more treatment (Tables 1 to 5).


In one embodiment pulp with an IV of 6.2 dl/g is treated with an enzyme after the oxygen delignification stage followed by a chlorine dioxide (D), caustic extraction with peroxide (Ep), and then a chlorine dioxide stage. In another embodiment the pulp with an IV of 6.2 dl/g is treated with an enzyme after the oxygen delignification stage followed by a chlorine dioxide (D) stage, caustic extraction with peroxide (Ep), a chlorine dioxide stage and another enzyme stage, X, after bleaching.


The procedure for the preparation of the solution for the treatment is as follows. Table 1 gives the treatment conditions.

  • 1. Makeup DI water to pH 7.
  • 2. Dilution of the enzyme (Biotouch C-700) with water of pH of 7 to make a 1% solution. Dilution of the surfactant, (Tergitol), with water of pH 7 to make a 1% solution.
  • 3. Add water with a pH 7 to the never dried control pulp (40 g. oven dried basis) in sealed zipped plastic bags.
  • 4. Add 1% water cellulose solution or/and surfactant solution onto the never dried (ND) pulp slurry so the final pulp consistency is 10%.
  • 5. Set the bag in a 70° C. water bath and let it sit for a retention time of 1 hour.
  • 6. After one hour the treated pulp is washed with deionized water and then the pulp is air dried for analysis.









TABLE 1







Pulp Treatment Conditions











1 kg
4.53 kg
1 kg each of C 700



C 700/MT
C 700/MT
and 1 kg surfactant/



pulp
pulp
MT pulp














Sample No.
1
2
3


ND Pulp, g*
40
40
40


Cellulase, g
.04
.4
.04


1% Cellulase soln, g
4
40
4


1% surfactant soln., g


4


Water, g, pH 7
356
320
352


Consistency, %
10
10
10





*Never dried pulp, OD weight






The same procedure as used in Table 1was used to treat the same never dried pulp with 0.23, 0.34, 0.45 and 2.27 kg/ton of C-700 to obtain samples 4, 5, 6 and 7, respectively.


This same procedure with 1 kg/MT of Biotouch C-700 was used to treat 600 gram (OD) pulp (never dried) to make “trial” pulp. The treated pulp and control pulp had the properties listed in Table 2.









TABLE 2







Analytical Properties Of Cellulase Treated Peach ®












Cellulase,





Sample
kg/MT pulp
DP
Cu No.
IV, dl/g














Control

608
0.6
3.2


4
0.23
570
0.9
3.0


5
0.34
561
1
2.95


6
0.45
551
1.1
2.9


1
0.9
532
1.3
2.8


Trial
0.9
523
1.3
2.75


7
2.27
513
1.4
2.7


 3*
0.9
513
1.4
2.7


2
4.54
456
2.2
2.4





*With 0.9 kg surfactant/MT pulp (Tergitol)






The data indicates that cellulase treatment after bleaching can reduce viscosity; for example, at 0.9 kg/MT pulp the IV levels were reduced from 3.2 to 2.7 dl/g. High levels of enzyme have an adverse effect on copper number and increase it to unacceptable levels.


Cellulase treated Peach® had a low viscosity and still sugar content as starting control implying minimal yield loss The R10 and R18 are decreased.









TABLE 3







Sugar and R10, R18 In Cellulase Treated Peach ®














Sample
Arabinan, %
Galactan, %
Glucan, %
Xylan, %
Mannan, %
R10, %
R18, %

















Control′
0.45
0.24
82.19
7.15
5.01
84.1
87.0


(Peach ®)


1
0.3 
0.24
83.24
6.85
5.30
76.6
84.5


2
0.37
0.24
84.53
6.82
5.30
73.8
84.1


3
0.41
0.26
82.86
7.42
5.71
76.4
84.6


4
0.32
0.20
82.30
7.42
5.25


5
0.31
0.19
87.86
7.18
5.15


6
0.31
0.20
83.00
7.29
5.21


7
0.30
0.19
82.69
7.154
5.18


Trial
0.31
0.19
84.14
7.13
4.99









R10 refers to the residual undissolved material that is left after attempting to dissolve the pulp in a 10% caustic solution. R18 refers to the residual amount of undissolved material left after attempting to dissolve the pulp in an 18% caustic solution. Generally, in a 10% caustic solution, hemicellulose and chemically degraded short chain cellulose are dissolved and removed in solution. In contrast, generally only hemicellulose is dissolved and removed in an 18% caustic solution.Thus, the difference between the R10 value and the R18 value represents the amount of chemically degraded short chained cellulose that is present in the pulp sample. Providing a pulp having a relatively broad molecular weight distribution of at least equal to or greater than about 2.8 is desirable from the standpoint of being able to provide customers with pulp which may not require blending with pulps of other molecular weight distribution to arrive at the desired composition. Sugar analysis was determined by the method described below.









TABLE 4







Metals (ppm) In Cellulase Treated Peach ®
























Control



Sample
4
5
6
1
Trial
7
2
(Peach ®)
3



















Ca
60
50
60
50
60
50
30
60
40


Cu
0.2
0.2
0.3
0.4
0.2
0.2
0.3
0.3
0.2


Fe
4
4
2
5
2
3
3
3
3


Mg
20
10
20
10
10
10
<10
20
10


Mn
2.7
2.8
2.8
2.5
2.4
2.6
1.8
3.4
2.2


Na
290
320
280
280
300
290
250
1300
250









The data indicate that Cellulase treated pulps still have acceptable transition metals (eg. copper, manganese and iron) and other metals content (metals such as calcium, sodium and magnesium) for lyocell manufacture. Metal levels were determined by EPA 3050 and EPA 200.8M.


Both the control Peach(D and cellulose treated pulp (trial) were dissolved in lyocell solvent (NMMO (N-methylmolptioline N-oxide) in a lab kneading machine at different concentrations and the viscosity, Pas, at different shear rates (zero shear, 1 and 10 l/s were measured at different dissolution times (2, 4, and 6 hours) at different temperatures. The results are presented in Table 5.









TABLE 5







Rheology of Low DP pulp Compared with Peach ® Solution In NMMO















Viscosity



Dope
Kneading
Visc. 80° C. (Pas)
100° C. (Pas)



conc.
time
shear rate, 1/s
shear rate 1/s















Pulp
(%)
(hr)
0
1
10
0
1
10


















Control
8
2
403
286
140
157
126
67




4
173
152
105
77
48
37




6
72
71
65
27
26
25


Trial
8
2
168
137
84
78
62
42




4
160
135
84
58
53
39




6
84
79
64
29
27
24


Trial
10
2
503
363
195
148
133
95




4
434
338
192
165
141
95




6
211
201
152
67
64
56


Trial
12
2.5
1343
928

607
420
195




4.5
1169
837

379
320
201




6.5
670
550

199
179
144









The low DP pulp (trial) had lower viscosity at all shear rates compared with Peach® (control). This indicates that higher throughput (higher concentration at the same viscosity or higher throughput per hole per minute) for meltblowing is possible with lower DP pulp due to lower solution viscosity.


Cellulase treatment can lower pulp viscosity. The treated pulp has acceptable copper number and metal content for the lyocell process. Certain surfactants also help cellulase treatment. Treated pulp can have similar hemicellulose as a control (Peach®) pulp implying minimal yield loss. The lower DP pulp has lower solution viscosity in NMMO, thus it is possible to use lower DP pulp at higher throughput (higher concentration or higher thoughtput per hole per minute during lyocell production) to improve economics for lyocell production.


EXAMPLE 2

Weyerhaeuser Port Wentworth never dried pulp with bleaching sequence of DEDED with a intrinsic viscosity of 7.1 or FB viscosity of 140 was treated with 0.91 kg/MT or 0.9 lb/MT of Biotouch C-700 with the same condition listed in Table 1 and the treated pulp had intrinsic viscosity of 5.9 or FB of 72.


EXAMPLE 3

Kamloops never dried pulp with a bleaching sequence of DEDED with a intrinsic viscosity of 3.7 or FB viscosity of 22 was treated with 0.91 kg MT of Biotouch C-700 at the same condition as listed in Table 1 and the treated pulp had intrinsic viscosity (IV) of 3.4 dl/g or FB of 19 and a copper number of 0.9.


EXAMPLE 4

Weyerhaeuser Flint River Peach® (never dried) with an IV of 3.2 (OXDEpD) was treated with another Ep stage (2.0% NaOH, 3% H2O2, at 10% consistency, at 88° C. for 90 minutes). The treated sample has an IV viscosity of 2.6 and a copper number of 0.8. Part of the same sample from above treatment was dried and then treated with Biotouch C-700 again (same condition as sample 1 in Table 1) to obtain a sample with an IV of 2.5 and copper number of 0.8. Part of the same sample above from the Ep stage was not dried and then treated with C-700 (same condition as sample 1 in Table 1) again to obtain another samples having IV of 2.5 and copper number of 0.8.


Never dried pulp after DEpD bleaching with different DP levels were treated with 0.5% cellulase (Celluclast from Novozyme, on pulp) with or without surfactant (0.1% Tergitol on pulp);the conditions are shown in Table 6.









TABLE 6







Celluclast Treatment Condition















Starting
Treatment
Enzyme
Tergitol


Pulp



water
Time
%
%

IV,
slurry


Sample
pH
hours
(wt)
(wt)
DP
dl/g
pH

















Control 1




897
4.7
5.9


Control 2




782
4.1
5.2


 8*
3.44
1.5
0.5

850
4.5
5.3


 9**
3.44
1.5
0.5

728
3.8
5


10*
3.44
1.5
0.5
0.1%
831
4.4
5.2


11**
3.44
1.5
0.5
0.1%
704
3.7
4.7





*from control 1;


**from control 2






The analytical properties of the pulp are given in Table 7.









TABLE 7







Analytical Properties Of Cellulase Treated Pulp





















Mannan,


Sample
Alpha
Hemi
Cu No.
R10
R18
Xylan, %
%

















8
85
15
0.6
84.7
87.2
6.22
4.86


9
84.8
15.2
0.8
84.1
87
6.21
5.09


10
84.6
15.4
0.7
84.1
86.9
6.45
4.91


11
84.1
15.9
0.8
83.6
86.7
6.43
5.04





alpha cellulose was measured by TAPPI method 203






EXAMPLE 6

In a representative example, Peach®, a never dried bleached kraft southern pine pulp, available from Weyerhaeuser, Federal Way, Wash., was treated with cellulase (1% Ashland Biotouch 700) on air dry pulp weight with the same condition as sample 1 in Table 1) to yield a pulp having an average degree of polymerization of about 500 (IV of 2.63), a hemicellulose content of 12.0% by weight hemicellulose in pulp (6.8% and 5.3% by weight xylan and mannan, respectively) and an R10 and R18, of about 76.6 and 84.5, respectively. The pulp was dissolved in NMMO (N-methyl morpholine N-oxide)/water mixture as follows. A 250 mL three necked flask was charged with, for example, 66.4 g of 97% NMMO, 24.7 g of 50% NMMO, 10.4 g pulp, 0.1 g of propyl gallate. The flask was immersed in an oil bath at 105° C., a stirrer inserted and stirring continued for about 1 hr. A readily flowable dope resulted that was suitable for spinning. The cellulose concentration in the dope was about 12% by weight. The dope was extruded from a melt blowing die that had 3 nozzles having an orifice diameter of 457 microns at a rate of 1.0 gram/hole/minute. The orifices had a length/diameter ratio of 5. The nozzle was maintained at a temperature of 95° C. The dope was extruded into an air gap 30 cm long before coagulation in water and collected on a screen as either continuous or discontinuous filaments depending on dope rheology and meltblown conditions. Air, at a temperature of 95° C. and a pressure of about 10 psi, was supplied to the head. Air pressures of from 8 to 30 psi were used to achieve varying fibers diameters shown in Table 8.



FIG. 1 shows a longitudinal section of the fiber and indicates the fiber spun from a low DP pulp has a smooth surface.









TABLE 8







Lyocell Fiber Properties













Control





Meltblown lyocell
1
2
3
















97% NMMO g
66.4
66.4
66.4



50% NMMO g
24.7
24.7
24.7



Propyl Gallate g
0.2
0.2
0.2



Pulp DP
532
532
532



Pulp g
10.5
10.5
10.5



Cellulose %
10.33
10.33
10.33



Air Pressure (psi)
5
10.00
20.00



Diameter (micron)
20.0
15.2
9.1



Birefringence
0.018
0.025
0.030



Xylan, %
5.0
5.2
5.1



Mannan, %
4.4
4.3
4.2










Sugar Analysis

This method is applicable for the preparation and analysis of pulp and wood samples for the determination of the amounts of the following pulp sugars: fucose, arabinose, galactose, rhamnose, glucose, xylose and mannose using high performance anion exchange chromatography and pulsed amperometric detection (HPAEC/PAD).


Summary of Method


Polymers of pulp sugars are converted to monomers by hydrolysis using sulfuric acid. Samples are ground, weighed, hydrolyzed, diluted to 200-mL final volume, filtered, diluted again (1.0 mL+8.0 mL H2O) in preparation for analysis by HPAEC/PAD.


Sampling, Sample Handling and Preservation


Wet samples are air-dried or oven-dried at 25±5° C.


Equipment Required

  • Autoclave, Market Forge, Model # STM-E, Serial # C-1808
  • 100×10 mL Polyvials, septa, caps, Dionex Cat #55058
  • Gyrotory Water-Bath Shaker, Model G76 or some equivalent.
  • Balance capable of weighing to ±0.01 mg, such as Mettler HL52 Analytical Balance.
  • Intermediate Thomas-Wiley Laboratory Mill, 40 mesh screen.
  • NAC 1506 vacuum oven or equivalent.
  • 0.45-μ GHP filters, Gelman type A/E, (4.7-cm glass fiber filter discs, without organic binder)
  • Heavy-walled test tubes with pouring lip, 2.5×20 cm.
  • Comply SteriGage Steam Chemical Integrator
  • GP 50 Dionex metal-free gradient pump with four solvent inlets
  • Dionex ED 40 pulsed amperometric detector with gold working electrode and solid state reference electrode
  • Dionex autosampler AS 50 with a thermal compartment containing the columns, the ED 40 cell and the injector loop
  • Dionex PC10 Pneumatic Solvent Addition apparatus with 1-L plastic bottle 3 2-L Dionex polyethylene solvent bottles with solvent outlet and helium gas inlet caps
  • CarboPac PA1 (Dionex P/N 035391) ion-exchange column, 4 mm×250 mm
  • CarboPac PA1 guard column (Dionex P/N 043096), 4 mm×50 mm
  • Millipore solvent filtration apparatus with Type HA 0.45u filters or equivalent


Reagents Required


All references to H2O is Millipore H2O


72% Sulfuric Acid Solution (H2SO4)—Transfer 183 mL of water into a 2-L Erlenmeyer flask. Pack the flask in ice in a Rubbermaid tub in a hood and allow the flask to cool. Slowly and cautiously pour, with swirling, 470 mL of 96.6% H2SO4 into the flask. Allow solution to cool. Carefully transfer into the bottle holding 5-mL dispenser. Set dispenser for 1 mL.


J T Baker 50% sodium hydroxide solution, Cat. No. Baker 3727-01, [1310-73-2]Dionex sodium acetate, anhydrous (82.0±0.5 grams/1 L H20), Cat. No. 59326, [127-09-31.


Standards


Internal Standards


Fucose is used for the kraft and dissolving pulp samples. 2-Deoxy-D-glucose is used for the wood pulp samples.


Fucose, internal standard. 12.00±0.005 g of Fucose, Sigma Cat. No. F 2252, [2438-80-4], is dissolved in 200.0 mL H2O giving a concentration of 60.00±0.005 mg/mL. This standard is stored in the refrigerator.


2-Deoxy-D-glucose, internal standard. 12.00±0.005 g of 2-Deoxy-D-glucose, Fluka Cat. No. 32948 g [101-77-9] is dissolved in 200.0 mL H2O giving a concentration of 60.00±0.005 mg/mL. This standard is stored in the refrigerator.


Kraft Pulp Stock Standard Solution












KRAFT PULP SUGAR STANDARD CONCENTRATIONS












Sugar
Manufacturer
Purity
g/200 mL







Arabinose
Sigma
99%
0.070



Galactose
Sigma
99%
0.060



Glucose
Sigma
99%
4.800



Xylose
Sigma
99%
0.640



Mannose
Sigma
99%
0.560










Kraft Pulp Working Solution


Weigh each sugar separately to 4 significant digits and transfer to the same 200-mL volumetric flask. Dissolve sugars in a small amount of water. Take to volume with water, mix well, and transfer contents to two clean, 4-oz. amber bottles. Label and store in the refrigerator. Make working standards as in the following table.












PULP SUGAR STANDARD CONCENTRATIONS FOR KRAFT PULPS















mL/200 mL
mL/200 mL
mL/200 mL
mL/200 mL
mL/200 mL


Fucose

0.70
1.40
2.10
2.80
3.50


Sugar
mg/mL
ug/mL
ug/mL
ug/mL
ug/mL
ug/mL
















Fucose
60.00
300.00
300.00
300.00
300.00
300.00


Arabinose
0.36
1.2
2.5
3.8
5.00
6.508


Galactose
0.30
1.1
2.2
3.30
4.40
5.555


Glucose
24.0
84
168.0
252.0
336.0
420.7


Xylose
3.20
11
22.0
33.80
45.00
56.05


Mannose
2.80
9.80
19.0
29.0
39.0
49.07









Dissolving Pulp Stock Standard Solution












DISSOLVING PULP SUGAR STANDARD CONCENTRATIONS












Sugar
Manufacturer
Purity
g/100 mL
















Glucose
Sigma
99%
6.40



Xylose
Sigma
99%
0.120



Mannose
Sigma
99%
0.080










Dissolving Pulp Working Solution


Weigh each sugar separately to 4 significant digits and transfer to the same 200-mL volumetric flask. Dissolve sugars in a small amount of water. Take to volume with water, mix well, and transfer contents to two clean, 4-oz. amber bottles. Label and store in the refrigerator. Make working standards as in the following table.












PULP SUGAR STANDARD CONCENTRATIONS FOR DISSOLVING PULPS















mL/200 mL
mL/200 mL
mL/200 mL
mL/200 mL
mL/200 mL


Fucose

0.70
1.40
2.10
2.80
3.50


Sugar
mg/mL
ug/mL
ug/mL
ug/mL
ug/mL
ug/mL
















Fucose
60.00
300.00
300.00
300.00
300.00
300.00


Glucose
64.64
226.24
452.48
678.72
904.96
1131.20


Xylose
1.266
4.43
8.86
13.29
17.72
22.16


Mannose
0.8070
2.82
5.65
8.47
11.30
14.12









Wood Pulp Stock Standard Solution












WOOD PULP SUGAR STANDARD CONCENTRATIONS












Sugar
Manufacturer
Purity
g/200 mL
















Fucose
Sigma
99%
12.00



Rhamnose
Sigma
99%
0.0701










Dispense 1 mL of the fucose solution into a 200-mL flask and bring to final volume. Final concentration will be 0.3 mg/mL.


Wood Pulp Working Solution


Use the Kraft Pulp Stock solution and the fucose and rhamnose stock solutions. Make working standards as in the following table.












PULP SUGAR STANDARD CONCENTRATIONS FOR KRAFT PULPS













2-Deoxy-

mL/200 mL
mL/200 mL
mL/200 mL
mL/200 mL
mL/200 mL


D-glucose

0.70
1.40
2.10
2.80
3.50


Sugar
mg/mL
ug/mL
ug/mL
ug/mL
ug/mL
ug/mL
















2-DG
60.00
300.00
300.00
300.00
300.00
300.00


Fucose
0.300
1.05
2.10
3.15
4.20
6.50


Arabinose
0.36
1.2
2.5
3.8
5.00
6.508


Galactose
0.30
1.1
2.2
3.30
4.40
5.555


Rhamnose
0.3500
1.225
2.450
3.675
4.900
6.125


Glucose
24.00
84
168.0
252.0
336.0
420.7


Xylose
3.20
11
22.0
33.80
45.00
56.05


Mannose
2.80
9.80
19.0
29.0
39.0
49.07









Procedure


Sample Preparation


Grind 0.2±05 g sample with Wiley Mill 40 Mesh screen size. Transfer ˜200 mg of sample into 40-mL Teflon container and cap. Dry overnight in the vacuum oven at 50° C. Add 1.0 mL 72% H2SO4 to test tube with the Brinklman. dispenser. Stir and crush with the rounded end of a glass or Teflon stirring rod for one minute. Turn on heat for Gyrotory Water-Bath Shaker. The settings are as follows:

  • Heat: High
  • Control Thermostat: 7° C.
  • Safety thermostat: 25° C.
  • Speed: Off
  • Shaker: Off


Place the test tube rack in gyrotory water-bath shaker. Stir each sample 3 times, once between 20-40 min, again between 40-60 min, and again between 60-80 min. Remove the sample after 90 min. Dispense 1.00 mL of internal standard (Fucose) into Kraft samples.


Tightly cover samples and standard flasks with aluminum foil to be sure that the foil does not come off in the autoclave.


Place a Comply SteriGage Steam Chemical Integrator on the rack in the autoclave. Autoclave for 60 minutes at a pressure of 14-16 psi (95-105 kPa) and temperature >260° F. (127° C.).


Remove the samples from the autoclave. Cool the samples. Transfer samples to the 200-mL volumetric flasks. Add 2-deoxy-D-glucose to wood samples. Bring the flask to final volume with water.


For Kraft and Dissolving pulp samples:


Filter an aliquot of the sample through GHP 0.45 μ filter into a 16-mL amber vial.


For Wood pulp samples:


Allow particulates to settle. Draw off approximately 10 mL of sample from the top, trying not to disturb particles and filter the aliquot of the sample through GHP 0.45 μ filter into a 16-mL amber vial. Transfer the label from the volumetric flask to the vial. Add 1.00 mL aliquot of the filtered sample with to 8.0 mL of water in the Dionex vial. Samples are run on the Dionex AS/500 system. See Chromatography procedure below.


Chromatography Procedure


Solvent Preparation


Solvent A is distilled and deionized water (18 meg-ohm), sparged with helium while stirring for a minimum of 20 minutes, before installing under a blanket of helium, which is to be maintained regardless of whether the system is on or off. Solvent B is 400 mM NaOH. Fill Solvent B bottle to mark with water and sparge with helium while stirring for 20 minutes. Add appropriate amount of 50% NaOH.


(50.0 g NaOH/100 g solution)*(1 mol NaOH/40.0 g NaOH)*(1.53 g solution/1 mL solution)*(1000 mL solution/1 L solution)=19.1 M NaOH in the container of 50/50 w/w NaOH.

  • 0.400 M NaOH*(1000 mL H2O/19.1 NaOH)=20.8 mL NaOH
  • Round 20.8 mL down for convenience:
  • 19.1 M*(20.0 mL×mL)=0.400 M NaOH
  • x mL=956 mL


Solvent D is 200 mM sodium acetate. Using 18 meg-ohm water, add approximately 450 mL deionized water to the Dionex sodium acetate container. Replace the top and shake until the contents are completely dissolved. Transfer the sodium acetate solution to a 1-L volumetric flask. Rinse the 500-mL sodium acetate container with approximately 100 mL water, transferring the rinse water into the volumetric flask. Repeat rinse twice. After the rinse, fill the contents of the volumetric flask to the 1-L mark with water. Thoroughly mix the eluent solution. Measure 360±10 mL into a 2-L graduated cylinder. Bring to 1800±10 mL. Filter this into a 2000-mL sidearm flask using the Millipore filtration apparatus with a 0.45 pm, Type HA membrane. Add this to the solvent D bottle and sparge with helium while stirring for 20 minutes.


The post column addition solvent is 300 mM NaOH. This is added postcolumn to enable the detection of sugars as anions at pH >12.3. Transfer 15±0.5 mL of 50% NaOH to a graduated cylinder and bring to 960±10 mL in water.


(50.0 g NaOH/100 g Solution)*(1 mol NaOH/40.0 g NaOH)*(1.53 g Solution/1 mL Solution) (1000 mL Solution/1 L solution)=19.1 M NaOH in the container of 50/50 w/w NaOH.

  • 0300 M NaOH*(1000 ml H2O/19.1 M NaOH)=15.7 mL NaOH
  • Round 15.7 mL down:
  • 19.1M*(15.0 mL/x mL)=0.300 M NaOH
  • x mL=956 mL
  • (Round 956 mL to 960 mL. As the pH value in the area of 0.300 M NaOH is steady, an exact 956 mL of water is not necessary.)
  • Set up the AS 50 schedule.
  • Injection volume is 5 uL for all samples, injection type is “Full”, cut volume is 10 uL, syringe speed is 3, all samples and standards are of Sample Type “Sample”. Weight and Int. Std. values are all set equal to 1.
  • Run the five standards at the beginning of the run.
  • After the last sample is run, run the mid-level standard again as a continuing calibration verification
  • Run the control sample at any sample spot between the beginning and ending standard runs.
  • Run the samples.


Calculations

  • Calculations for Weight Percent of the Pulp Sugars







Normalized





area





for





sugar

=



(

Area





sugar

)

*

(

µ





g


/


mL





fucose

)



(

Area





Fucose

)








IS





Corrected





sugar





amount






(


µg


/


mL

=




(


(

Normalized





area





for





sugar

)

-

(
intercept
)


)


(
slope
)







Monomer





Sugar





Weight





%

=



IS
-

Corrected





sugar





amt






(

µ





g


/


mL

)




Sample






wt
.





(
mg
)




*
20








Example for arabinose:







Monomer





Sugar





Weight





%

=




0.15





µg


/


mL





arabinose


70.71





mg





arabinose


*
20

=

0.043

%









Polymer





Weight





%

=


(

Weight





%





of





Sample





sugar

)

*

(
0.88
)






Example for arabinan:


Polymer Sugar Weight %=(0.043 wt %)*(0.88)=0.038 Weight Note: Xylose and arabinose amounts are corrected by 88% and fucose, galactose, rhamnose, glucose, and mannose are corrected by 90%. Report results as percent sugars on an oven-dried basis.

Claims
  • 1. A method for making a lyocell pulp comprising the steps of providing an unbleached pulp;wherein said pulp has a IV of from 10 to 5 dl/g;contacting said pulp in a bleaching sequence;wherein said bleach sequence has at least one stage of an enzyme treatment;wherein said bleach sequence having at least one enzyme treatment reduces said pulp by 8 to 2 IV units;and wherein said bleached pulp is suitable for lyocell manufacture.
  • 2. The method of claim 1 wherein the enzyme treatment is immediately after the oxygen delignification stage.
  • 3. The method of claim 1 wherein the enzyme treatment is after the last bleaching stage.
  • 4. The method of claim 1 wherein the enzyme treatment is immediately after the oxygen delignification stage and after the last bleaching stage.
  • 5. The method of claim 1 wherein the enzyme is added at 0.045 to 4.5 kg/MT pulp.
  • 6. The method of claim 1 wherein the enzyme is added at 0.136 to 3.27 kg/MT pulp.
  • 7. The method of claim 1 wherein the enzyme is added at 0.227 to 1.3 kg/MT pulp.
  • 8. The method of claim 1 wherein the IV is reduced to 2 to 4 IV units
  • 9. The method of claim 1 wherein the IV is reduced to 2.5 to 3.5 IV units.
  • 10. The method of claim 1 wherein the pH is adjusted after the oxygen delignification stage and before the bleaching stage.
  • 11. The method of claim 10 wherein the pH is adjusted in the range of a pH of 3 to a pH of 10.
  • 12. The method of claim 1 wherein the pH is adjusted after the last bleaching stage.
  • 13. The method of claim 12 wherein the pH is adjusted in the range from a pH of 3 to a pH of 10.
  • 14. The method as in any one of claims 10 or 12 wherein the pH is adjusted with carbon dioxide.
  • 15. The method as in any one of claims 10 or 12 wherein the pH is adjusted with a mineral acid.
  • 16. The method as in any one of claims 10 or 12 wherein the pH is adjusted with an organic acid.
  • 17. The method of claim 1 wherein the enzyme is selected from the group consisting of xylanases, cellulases, hemicellulases, peroxidases, mannases, laccases, lipases and combinations thereof.