The present invention relates to methods and materials useful for analyte sensor systems, such as glucose sensors used in the management of diabetes.
Sensors are used to monitor a wide variety of compounds in various environments, including in vivo analytes. The quantitative determination of analytes in humans and mammals is of great importance in the diagnoses and maintenance of a number of pathological conditions. Illustrative analytes that are commonly monitored in a large number of individuals include glucose, lactate, cholesterol, and bilirubin. The determination of glucose concentrations in body fluids is of particular importance to diabetic individuals, individuals who must frequently check glucose levels in their body fluids to regulate the glucose intake in their diets. The results of such tests can be crucial in determining what, if any, insulin and/or other medication need to be administered.
Analyte sensors typically include components that convert interactions with analytes into detectable signals that can be correlated with the concentrations of the analyte. For example, some glucose sensors use amperometric means to monitor glucose in vivo. Some amperometric glucose sensors incorporate electrodes coated with layers of materials such as glucose oxidase (GOx), an enzyme that catalyzes the reaction between glucose and oxygen to yield gluconic acid and hydrogen peroxide (H2O2). The H2O2 formed in this reaction alters an electrode current to form a detectable and measurable signal. Based on the signal, the concentration of glucose in the individual can then be measured. A typical glucose sensor works according to the following chemical reactions:
The glucose oxidase is used to catalyze the reaction between glucose and oxygen to yield gluconic acid and hydrogen peroxide as shown in equation 1. The H2O2 reacts electrochemically as shown in equation 2, and the current is measured by a potentiostat. The stoichiometry of the reaction provides challenges to developing in vivo sensors. In particular, for optimal sensor performance, sensor signal output should be determined only by the analyte of interest (glucose), and not by any co-substrates (O2) or kinetically controlled parameters such as diffusion. If oxygen and glucose are present in equimolar concentrations, then the H2O2 is stoichiometrically related to the amount of glucose that reacts at the enzyme; and the associated current that generates the sensor signal is proportional to the amount of glucose that reacts with the enzyme. If, however, there is insufficient oxygen for all of the glucose to react with the enzyme, then the current will be proportional to the oxygen concentration, not the glucose concentration. Consequently, for the sensor to provide a signal that depends solely on the concentrations of glucose, glucose must be the limiting reagent, i.e. the O2 concentration must be in excess for all potential glucose concentrations. A problem with using such glucose sensors in vivo, however, is that the oxygen concentration where the sensor is implanted in vivo is low relative to glucose, a phenomena which can compromise the accuracy of sensor readings.
Certain sensor designs address the oxygen deficit problem by using a series of layered materials selected to have specific function properties, for example an ability to selectively modulate the diffusion of analytes. Problems associated with such designs can include, for example, sensor layers delaminating and/or sensor degradation over time in a manner that limits the functional lifetime of the sensor. Methods and materials designed to address such challenges in this technology are desirable.
The invention disclosed herein includes polymeric compositions for use in layered sensor designs, methods form making and using such compositions as well as sensor systems that utilize such compositions. Embodiments of the invention include polyvinyl alcohol-styrylpyridinium (PVA-SbQ) compositions having a constellation of material properties that make them particularly useful for implantable glucose sensors of the type worn by diabetic individuals. As discussed below, working embodiments of the invention include amperometric glucose sensors having layers comprising these compositions in order to inhibit layer delamination as well as contribute to in vivo sensor stability and reliability.
The invention disclosed herein has a number of embodiments. An illustrative embodiment is an amperometric analyte sensor apparatus comprising a base layer that includes a working electrode, a reference electrode, and a counter electrode. In this embodiment an analyte sensing layer is disposed over the working electrode and this analyte sensing layer comprises glucose oxidase entrapped within a polyvinyl alcohol (PVA) network selected to inhibit sensor layer cracking and/or delamination. In this embodiment, an analyte modulating layer is disposed over this analyte sensing layer and functions to modulate the diffusion analytes such as glucose through the sensor layers. Optionally, the sensor apparatus also comprises an interference rejection layer disposed over the electrode; an adhesion promoting layer disposed between the analyte sensing layer and the analyte modulating layer; a protein layer disposed on the analyte sensing layer; and/or a cover layer disposed over the analyte modulating layer. In certain embodiments of the invention, the analyte sensor comprises a further layer disposed over the analyte modulating layer, wherein the further layer comprises polyvinyl alcohol polymer.
Embodiments of the invention can utilize different configurations and/or constituents that are particularly useful in implantable glucose sensors of the type worn by diabetic individuals. In some implantable glucose sensor embodiments of the invention, the analyte sensing layer comprises a polyvinyl alcohol polymer to which is chemically bonded to a styrylpyridinium group (SbQ) and formed to comprise between 1 mol % and 4 mol % SbQ. In certain embodiments of the invention, the molecular weight of the polyvinyl alcohol in this analyte sensing layer is between 25 kilodaltons and 125 kilodaltons. In some embodiments of the invention the analyte sensing layer is formed to comprise from 5% to 12% PVA by weight. In some embodiments of the invention the analyte sensing layer is formed to comprise glucose oxidase in an amount from 10 KU/mL to 20 KU/mL. In some embodiments of the invention the analyte sensing layer is formed to comprise human serum albumin in an amount from 0.5% to 5% by weight. Typically, this analyte sensing layer is between 1 μm and 8 μm in thickness (e.g. between 4 μm and 7 μm).
Embodiments of the invention also include methods for making and using the layered sensors disclosed herein. For example, another embodiment of the invention is a method of making an analyte sensor apparatus that includes the layered material disclosed herein. Typically such methods comprise the steps of providing a base layer on which is formed a conductive layer that includes a working electrode, a reference electrode and a counter electrode. In these methods, an analyte sensing layer is formed over the conductive layer, one that comprises glucose oxidase entrapped within a polyvinyl alcohol polymer. The methods further include forming an analyte modulating layer disposed over the analyte sensing layer, wherein the analyte modulating layer includes a composition that modulates the diffusion of an analyte (e.g. glucose) therethrough. These layers can be formed via a number of processes known in the art such as spin coating, slot-coating, screen-printing or photolithographic patterning process. Typically in these methods, the material comprising glucose oxidase entrapped within a polyvinyl alcohol polymer is rinsed prior to coating the composition with another layer of material (e.g. an analyte modulating layer). For example, in some embodiments of the invention, the analyte sensing layer is rinsed immediately after the glucose oxidase is entrapped within the PVA-SbQ polymer following this layer's exposure to UV light.
Another embodiment of the invention is a method of inhibiting delamination of a layered material within an analyte sensor apparatus that is designed to include a constellation of elements including a base layer, a working electrode, a reference electrode, and a counter electrode disposed on the base layer, an analyte sensing layer disposed over the working electrode; and an analyte modulating layer disposed over the analyte sensing layer. In such embodiments, the methods comprise forming the analyte sensing layer from a composition comprising glucose oxidase entrapped within a polyvinyl alcohol-styrylpyridinium (PVA-SbQ) polymer. By using polymers having selected material properties, delamination of the layered material within the analyte sensor apparatus is inhibited.
Yet another embodiment of the invention is a method of sensing an analyte within the body of a mammal. Typically this method comprises implanting an analyte sensor as disclosed herein within the mammal (e.g. in the interstitial space of a diabetic individual), sensing an alteration in current at the working electrode in the presence of the analyte; and then correlating the alteration in current with the presence of the analyte, so that the analyte is sensed. While typical embodiments of the invention pertain to glucose sensors, the layered compositions disclosed herein can be adapted for use with a wide variety of devices known in the art.
Other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating some embodiments of the present invention are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.
Unless otherwise defined, all terms of art, notations, and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings may be defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted. A number of terms are defined below.
All numbers recited in the specification and associated claims that refer to values that can be numerically characterized with a value other than a whole number (e.g. a unit of measurement such as a concentration of a component in a composition) are understood to be modified by the term “about”. Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention. Furthermore, all publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. Publications cited herein are cited for their disclosure prior to the filing date of the present application. Nothing here is to be construed as an admission that the inventors are not entitled to antedate the publications by virtue of an earlier priority date or prior date of invention. Further the actual publication dates may be different from those shown and require independent verification.
The term “analyte” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a substance or chemical constituent in a fluid such as a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In common embodiments, the analyte is glucose. However, embodiments of the invention can be used with sensors designed for detecting a wide variety other analytes. Illustrative analytes include but are not limited to, lactate as well as salts, sugars, proteins fats, vitamins and hormones that naturally occur in vivo (e.g. in blood or interstitial fluids). The analyte can be naturally present in the biological fluid or endogenous; for example, a metabolic product, a hormone, an antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body or exogenous, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes.
The term “sensor” for example in “analyte sensor,” is used in its ordinary sense, including, without limitation, means used to detect a compound such as an analyte. A “sensor system” includes, for example, elements, structures and architectures (e.g. specific 3-dimensional constellations of molecular elements) designed to facilitate sensor use and function. Sensor systems can include, for example, compositions such as those having selected material properties, as well as electronic components such as elements and devices used in signal detection and analysis (e.g. current detectors, monitors, processors and the like).
As discussed in detail below, embodiments of the invention relate to the use of an electrochemical sensor that measures a concentration of an analyte of interest or a substance indicative of the concentration or presence of the analyte in fluid. In some embodiments, the sensor is a continuous device, for example a subcutaneous, transdermal, or intravascular device. In some embodiments, the device can analyze a plurality of intermittent blood samples. The sensor embodiments disclosed herein can use any known method, including invasive, minimally invasive, and non-invasive sensing techniques, to provide an output signal indicative of the concentration of the analyte of interest. Typically, the sensor is of the type that senses a product or reactant of an enzymatic reaction between an analyte and an enzyme in the presence of oxygen as a measure of the analyte in vivo or in vitro. Such sensors typically comprise a membrane surrounding the enzyme through which an analyte migrates. The product is then measured using electrochemical methods and thus the output of an electrode system functions as a measure of the analyte.
Embodiments of the invention disclosed herein provide sensors of the type used, for example, in subcutaneous or transcutaneous monitoring of blood glucose levels in a diabetic patient. A variety of implantable, electrochemical biosensors have been developed for the treatment of diabetes and other life-threatening diseases. Many existing sensor designs use some form of immobilized enzyme to achieve their bio-specificity. Embodiments of the invention described herein can be adapted and implemented with a wide variety of known electrochemical sensors, including for example, U.S. Patent Application No. 20050115832, U.S. Pat. Nos. 6,001,067, 6,702,857, 6,212,416, 6,119,028, 6,400,974, 6,595,919, 6,141,573, 6,122,536, 6,512,939 5,605,152, 4,431,004, 4,703,756, 6,514,718, 5,985,129, 5,390,691, 5,391,250, 5,482,473, 5,299,571, 5,568,806, 5,494,562, 6,120,676, 6,542,765, 7,033,336 as well as PCT International Publication Numbers WO 01/58348, WO 04/021877, WO 03/034902, WO 03/035117, WO 03/035891, WO 03/023388, WO 03/022128, WO 03/022352, WO 03/023708, WO 03/036255, WO03/036310 WO 08/042,625, and WO 03/074107, and European Patent Application EP 1153571, the contents of each of which are incorporated herein by reference.
Embodiments of the invention disclosed herein provide analyte sensors designed to include layered compositions that provide these sensors with enhanced functional and/or material properties. As discussed in detail below, typical embodiments of the invention relate to the use of a sensor that measures a concentration of an aqueous analyte of interest or a substance indicative of the concentration or presence of the analyte in vivo (e.g. glucose). In some embodiments of the invention, the sensor is a subcutaneous, intramuscular, intraperitoneal, intravascular or transdermal device. The sensor embodiments disclosed herein can use any known method, including invasive, minimally invasive, and non-invasive sensing techniques, to provide an output signal indicative of the concentration of the analyte of interest.
Compositions used in layered analyte sensors typically include functionally active polypeptides such as glucose oxidase (e.g. compositions comprising glucose oxidase combined with a carrier protein such as albumin). Such compositions exhibit a tendency to develop cracks when using certain formulations of constituents. Layers in amperometric glucose sensors become prone to developing cracks (e.g. as the concentration of glucose oxidase in the analyte sensing layer is increased), features that that can compromise sensor function. For example, cracks can cause the layered compositions to peel away from other sensor elements (e.g. electrodes, other proximal layered compositions and the like). Such layer delamination, a phenomenon that is difficult to control, can lead to unreliable and/or inconsistent sensor performance.
The invention disclosed herein uses selected polymeric enzyme matrices that designed to address problems associated with layer delamination in analyte sensors. One illustrative embodiment is an amperometric analyte sensor apparatus comprising a base layer that includes a working electrode, a reference electrode, and a counter electrode. In this embodiment an analyte sensing layer is disposed over the working electrode and this analyte sensing layer comprises glucose oxidase entrapped with a polymer comprising a polyvinyl alcohol polymer that is coupled to N-methyl-4(4′-formylstyryl)pyridinium (see, e.g. CAS No. 74401-04-0). As discussed below, such embodiments of the invention having such layers exhibit reduced sensor layer cracking and/or delamination. In this context, the term “entrapped” means the occlusion of glucose oxidase within a PVA polymeric network in a manner that allows fluids to pass through but retains the glucose oxidase. This entrapment method/system differs from methods/systems that covalently couple glucose oxidase to a polymer. In this embodiment, an analyte modulating layer is disposed over this analyte sensing layer and functions to modulates the diffusion analytes such as glucose through the layers of the analyte sensor. Optionally, the sensor apparatus also comprises an interference rejection layer disposed over the electrode; an adhesion promoting layer disposed between the analyte sensing layer and the analyte modulating layer; a protein layer disposed on the analyte sensing layer; and/or a cover layer disposed over the analyte modulating layer. In certain embodiments of the invention, the analyte sensor comprises a further layer disposed over the analyte modulating layer, wherein the further layer comprises polyvinyl alcohol polymer.
Embodiments of the invention can utilize different configurations of elements and/or different composition constituents and/or composition forming processes in their analyte sensing layers in order to enhance their material properties. For example, certain embodiments of the invention involve further crosslinking procedures (e.g. to further localize entrapped glucose oxidase enzymes to a particular region of a PVA matrix). Briefly, as is known in the art, crosslinking is the process of chemically joining two or more molecules by a covalent bond. Crosslinking reagents (or crosslinkers) are molecules that contain two or more reactive ends/moieties capable of chemically attaching to specific functional groups (e.g. primary amines, sulfhydryls, etc.) on proteins or other molecules. Attachment between two groups on a single protein results in intramolecular bonds that stabilize the protein tertiary or quaternary structure. Attachment between groups on two different proteins results in intermolecular bonds/bridges that can stabilize a protein-protein interaction. In compositions formed from a mixture of purified proteins (e.g. human serum albumin and an enzyme such as glucose oxidase), the intermolecular bonds/bridges create a specific conjugate that can be useful in detection procedures.
Glutaraldehyde is a common crosslinking agent. The reaction of glutaraldehyde with enzymes to give insoluble products has been extensively studied, and the reaction is known to be pH-dependent. In this context, the optimum pH for glutaraldehyde insolubilization can vary from protein to protein. Protein isoelectric points (pIs) can be the pH values for the most rapid insolubilization for some but not all proteins. The existence of an optimal crosslinking pH suggests an important role for protein charge on the intermolecular crosslinking required for insolubilization. Such charges on proteins may regulate crosslinking, which, for example, may be maximal when the repulsive charges are minimized. Similarly, the ionic strength of the composition/medium can also play some role (e.g. the lower, the better for some systems).
Certain embodiments of the invention include entrapped and crosslinked polypeptides such as glucose oxidase crosslinked to polyvinyl alcohol (PVA, see, e.g. CAS number 9002-89-5) polymers. As is known in the art, polyvinyl alcohol reacts with aldehydes to form water insoluble polyacetals. In a pure PVA medium having a pH around 5.0, polymer reaction with dialdehydes is expected to form an acetal cross-linked structure. In certain embodiments of the invention, such crosslinking reactions are performed using a chemical vapor deposition (CVD) process. Due to the acidity of the PVA polymer solution, crosslinking reactions in CVD systems are simple and routine. Moreover, acidic conditions can be created by introducing compounds such as acetic acid into glutaraldehyde solutions, so a CVD system can provide an acid vapor condition. In addition the pH of the polymer medium can be adjusted by adding acidic compounds such as citric acid, polymer additives such as polylysine, HBr and the like.
Embodiments of the invention include compositions having properties that make them particularly well suited for use in ambulatory glucose sensors of the type worn by diabetic individuals. Such embodiments of the invention include PVA-SbQ compositions for use in layered analyte sensor structures that comprise between 1 mol % and 12.5 mol % SbQ. In certain embodiments of the invention that are adapted or use in glucose sensors, the constituents in this layer are selected so that the molecular weight of the polyvinyl alcohol is between 30 kilodaltons and 150 kilodaltons and the SbQ in the polyvinyl alcohol is present in an amount between 1 mol % and 4 mol %. In some embodiments of the invention the analyte sensing layer is formed to comprise from 5% to 12% PVA by weight. In some embodiments of the invention the analyte sensing layer is formed to comprise glucose oxidase in an amount from 10 KU/mL to 20 KU/mL. In some embodiments of the invention the analyte sensing layer is formed to comprise human serum albumin in an amount from 1% to 5% by weight.
As noted above, in some embodiments of the invention, the polyvinyl alcohol polymer can be covalently coupled to entrapped glucose oxidase via a glutaraldehyde crosslinking moiety (see, e.g. U.S. Pat. No. 7,678,767, the contents of which are incorporated by reference). In some embodiments of the invention, glucose oxidase is covalently coupled to another polypeptide within the layer, for example via a glutaraldehyde crosslinking moiety. Illustrative second polypeptides include glucose oxidase (i.e. two glucose oxidase polypeptides crosslinked together) and/or albumin (i.e. a glucose oxidase polypeptide crosslinked to a human serum albumin polypeptide). Optionally, the crosslinked analyte sensing layer is of a specific dimension or shape, for example less than 5, 4, 3, 2 or 1 microns in thickness. In another example, the analyte sensing layer is formed to be between 1 μm and 8 μm in thickness (e.g. between 2 μm and 5 μm).
Embodiments of the invention include analyte sensing layers selected for their ability to provide desirable characteristics for implantable sensors. In certain embodiments of the invention an amount or ratio of PVA within the composition is used to modulate the water adsorption of the composition, the crosslinking density of the composition etc. Such formulations can readily be evaluated for their effects on phenomena such as H2O adsorption, sensor isig drift and in vivo start up profiles. Sufficient H2O adsorption can help to maintain a normal chemical and electrochemical reaction within amperometric analyte sensors. Consequently, it is desirable to form such sensors from compositions having an appropriate hydrophilic chemistry. In this context, the PVA-GOx compositions disclosed herein can be used to create electrolyte hydrogels that are useful in internal coating/membrane layers and can also be coated on top of an analyte modulating layer (e.g. a glucose limiting membrane or “GLM”) in order to improve the biocompatibility and hydrophilicity of the GLM layer.
Embodiments of the invention also include methods for making and using the layered sensors disclosed herein. For example another embodiment of the invention is a method of making an analyte sensor apparatus. Typically such methods comprise the steps of providing a base layer on which is formed a conductive layer that includes a working electrode, a reference electrode and a counter electrode. In these methods, an analyte sensing layer is formed over the conductive layer, one that comprises glucose oxidase entrapped within a polyvinyl alcohol layer. The methods further include forming an analyte modulating layer disposed over the analyte sensing layer, wherein the analyte modulating layer includes a composition that modulates the diffusion of an analyte (e.g. glucose) therethrough. In certain embodiments of the invention, the polyvinyl alcohol polymer is further covalently coupled to glucose oxidase, for example using a process that includes a glutaraldehyde crosslinking step. Optionally, the glutaraldehyde crosslinking step is performed using a chemical vapor deposition (CVD) process, for example one that utilizes a vapor having a pH less than 6, 5 or 4.
Embodiments of these methods can include forming a plurality of additional layers over the analyte modulating layer, for example one that also includes a polyvinyl alcohol polymer that increases the biocompatibility and/or the hydrophilicity of the analyte sensor apparatus (e.g. in in vivo environments). Typically in these methods, the material comprising glucose oxidase entrapped within a polyvinyl alcohol polymer is rinsed prior to coating the composition with another layer of material (e.g. an analyte modulating layer). For example, in some embodiments of the invention, the analyte sensing layer is rinsed immediately after the glucose oxidase is entrapped within the PVA-SbQ polymer following this layer's exposure to UV light. Such embodiments of the invention can also include the steps of forming a protein layer on the analyte sensing layer and/or forming an adhesion promoting layer on the analyte sensing layer (or the protein layer); and/or forming a cover layer disposed on at least a portion of the analyte modulating layer, wherein the cover layer further includes an aperture over at least a portion of the analyte modulating layer. Optionally in these methods, the analyte modulating layer comprises a polyurethane/polyurea polymer formed from a mixture comprising a diisocyanate, a hydrophilic polymer comprising a hydrophilic diol or hydrophilic diamine; and a siloxane having an amino, hydroxyl or carboxylic acid functional group at a terminus; and/or a branched acrylate polymer formed from a mixture comprising a butyl, propyl, ethyl or methyl-acrylate, an amino-acrylate, a siloxane-acrylate; and/or a poly(ethylene oxide)-acrylate.
Yet another embodiment of the invention is a method of inhibiting delamination of a layered material within an analyte sensor apparatus that is designed to include a constellation of elements including a base layer, a working electrode, a reference electrode, and a counter electrode disposed on the base layer, an analyte sensing layer disposed over the working electrode (e.g. one less than 5, 4, 3, 2 or 1 microns in thickness); and an analyte modulating layer disposed over the analyte sensing layer. In such embodiments, the methods comprise forming the analyte sensing layer from a composition comprising glucose oxidase entrapped within a PVA-SbQ polymer. Typically in these methods, the PVA-SbQ polymer comprises between 1 mol % and 4.5 mol % SbQ, has molecular weight between 25 kilodaltons and 125 kilodaltons, and inhibits the formation of cracks in the analyte sensing layer and/or delamination of layered material within the analyte sensing apparatus. By using a layer having these selected material properties delamination of layered materials within the analyte sensor apparatus is inhibited. This methodology can work with a number of layered sensor apparatuses such as those that comprise layers such as an interference rejection layer (e.g. one disposed directly on top of the electrode surface), an adhesion promoting layer disposed between the analyte sensing layer and the analyte modulating layer; and/or a protein layer disposed on the analyte sensing layer.
Yet another embodiment of the invention is a method of sensing an analyte within the body of a mammal. Typically this method comprises implanting an analyte sensor as disclosed herein within the mammal (e.g. in the interstitial space of a diabetic individual), sensing an alteration in current at the working electrode in the presence of the analyte; and then correlating the alteration in current with the presence of the analyte, so that the analyte is sensed. While typical embodiments of the invention pertain to glucose sensors, the layered compositions disclosed herein can be adapted for use with a wide variety of devices known in the art.
Sensors formed from a variety of analyte sensing compositions under various process conditions all showed a desired Isig level with good consistency. The pO2 effect in these sensors is very low. HMW PVAs were observed to usually produce layers/membranes with a dense structure and lower Isig than LMW PVAs. Moreover, with a 5% PVA matrix, GOx thickness did not significantly effect in vitro sensor performance. Sensors formed with analyte sensing compositions having a higher PVA content did show higher Isig and pO2 effect (perhaps due to higher H2O absorption and less crosslinking density). This data provides evidence that highly desirable sensor embodiments include those formed from analyte sensing compositions having about 5% PVA (typically LMW PVA) and designed to be between 1 and 7 μm in thickness. PVA molecular weights can also be selected to control the desired Isig level for in vivo uses. Additionally, the material stability provided by the analyte sensing compositions disclosed herein further benefits subsequent layer coatings disposed over this layer by providing a smoother and more uniform surface on which to dispose these coatings, thereby facilitating further layer coating adherence and lamination.
Embodiments of the invention comprise PVA-SbQ polymers having selected molecular weights and constituent ratios. In general, the structure of the PVA-SbQ materials useful in analyte sensors is one that is dense and stable enough to maintain its integrity over the time in aqueous medium (e.g. in vivo). For glucose sensor performance, a series of phenomena such as glucose permeability, temperature effect, O2 permeability etc. are also key considerations. As part of an effort to determine PVA-SbQ material parameters that effect glucose sensor function, we performed experiments where properties of the PVA-SbQ materials (e.g. MW and SbQ content) were varied and then tested in sensors. In working embodiments of the invention, PVAs of different molecular weights were dissolved in 90-98° C. hot H2O for 4 hours. Low molecular weight “LMW” PVA having a molecular weight range of 31 k to 50 kd can be purchased commercially (e.g. Aldrich#36313-8) as well as high molecular weight “HMW” PVA having a molecular weight range from 85 kd to 146 kd (of (Aldrich#36314-6). GOx purchased from BIOZYME at 0.1 mu/mL was mixed with PVA solution to make the desired enzyme concentration. This solution was then applied to the sensor via spin coating with 200-300 rpm of GOx solution to form 1.0 to 3 um layer, followed by application of a human serum albumin layer and a CVD process. The final analyte modulating (GLM) layer was then slot coated onto the sensor at a desired thickness.
PVA-SbQ methods and materials are known in the art (see, e.g. U.S. Pat. Nos. 7,638,157, 7,415,299 and 6,379,883, and Ichimura et al., Journal of Polymer Science Part A: Polymer Chemistry, Volume 50, Issue 19, pages 4094-4102 (2012)). For example, as is known in the art, PVA can be acetalized with N-methyl-4-(p-formyl styryl) Pyridinium methosulfate (SbQ). Photosensitive compound, 1-methyl-4-[2-(4-diethylacetylphenyl)ethenyl]pyridinium methosulfate (SbQ-A salt), was synthesized from dimethyl sulfate, terephthalaldehyde mono-(diethylacetal) and 4-picoline. SbQ-A salts were reacted with poly (vinyl alcohol)s, (PVA) in aqueous solution with phosphoric acid as catalyst to give photosensitive PVA-SbQ with different SbQ content and molecular weight.
In the working examples disclosed herein, GOx solutions were mixed into PVA-SbQ photo-sensitive polymer solutions. After exposure to UV light for an appropriate time period (from 10 seconds to 3 minutes, and typically from between 1 to 2 minutes), the PVA and SbQ were crosslinked so as to entrap GOx within the matrix. Sensors designed to include this material structure are observed to give a very stable Isig over time and further exhibit enhanced linearity of sensor response as compared to sensors formed with conventional materials. Without being bound by a specific theory or scientific principle, using this material structure within glucose sensors is believed to provide a better Isig quality in vivo because of the hydrogel being in close proximity to the electrode. Another advantage of the matrices disclosed herein (and methodology for making them) is that there is no need for crosslinkers and/or photo-initiators. Consequently, these methods and materials can avoid introducing potentially toxic substances to implantable sensor systems as well as provide better biocompatibility and an easier process control.
Typically, the amount of SbQ attached to PVA in glucose oxidase based sensors can vary from about 1 mol % to about 4.5 mol %. The relative photosensitivity of PVA-SbQ increased with increasing amount of bound SbQ in the case of high molecular weight (mw 77 kd to 79 kd), and decreased with decreasing molecular weight of PVA with about constant amount of bound SbQ (1.3 mol %). Photosensitive polymers were obtained when SbQ content reached about 2.63% in case of high MW (77 kd-79 kd) of PVA. The molecular weight of suitable polymers in such sensors is typically from 27 kd to 92 kd. Lower molecular weight macro porous polymer tends to be leachable from sensors (e.g. if not fully crosslinked). Higher molecular weight macro porous polymer are believed to be too viscous for use in glucose sensors (and may form a dense membrane structure that causes problematical glucose or oxygen mass-transport issues in glucose oxidase based sensors).
Polymer concentration and UV exposure condition and time also affect the cross linking density. Typically, the greater the SbQ content in the PVA-based polymer, the faster the UV cure and the greater the cross-linking density of the resultant polymer membrane. In addition a denser of membrane structure can be formed by increasing the MW of the polymer matrix. Suitable PVA-SbQ polymers useful in glucose sensor are typically designed to exhibit a neutral pH range. Embodiments of the invention can comprise analyte sensing layers (e.g. for use in an ambulatory glucose sensor) comprising a delineated amount of polymer, for example between 3% and 12.5% polyvinyl alcohol polymer.
Saponification is the hydrolysis of an ester under basic conditions to form an alcohol and the salt of a carboxylic acid (carboxylates). The degree of saponification is a factor that influences the solubility of a polyvinyl alcohol. In this context, another material parameter observed was the degree of saponification (DS %), that is the percentage of acetate groups present on the starting polymer (polyvinyl acetate) that are subsequently replaced by OH-groups. The higher the degree of the saponification degree, the higher the solubility and the speed of dissolution. In certain embodiments of the invention, PVA-SbQ polymers used in the sensor layers are selected to exhibit a degree of saponification of between 78% and 90%.
The SbQ content attached to the polymer determines the cross-linking density. Consequently, a higher crosslinking density could be helpful to retain GOx within the matrix and better structure integrity, but can also resulted in a less hydrophilic structure and other mass transport issues. Macroporous polymers tested that having a relatively high mw and relatively low SbQ content showed higher and more stable Isigs than control counterparts in a 5-day dog experiment. For example, a macroporous polymer having a SbQ content of 2.5% did show lower Isig level in vivo from the same sensor configuration having a SbQ content of 1.6%.
In the studies on working embodiments of the invention, it was discovered that certain constellations of elements unexpectedly produce sensors material properties that are very useful for amperometric glucose sensors that are disposed in in vivo environments. In this context, embodiments of the invention include a glucose sensor comprising a base layer and a working electrode, a reference electrode, and a counter electrode disposed on the base layer. This embodiment includes an analyte sensing layer that is between 1 μm and 5 μm in thickness disposed over the working electrode, wherein the analyte sensing layer comprises glucose oxidase entrapped within a PVA-SbQ polymer. In this optimized embodiment, the molecular weight of the polyvinyl alcohol in this layer is between 25 kilodaltons and 125 kilodaltons, and the SbQ in the layer comprises between 1 mol % and 4.5 mol % of the polymer. Typically the analyte sensing layer comprises PVA in an amount from 5% to 12% by weight; glucose oxidase in an amount from 10 KU/mL to 20 KU/mL; and human serum albumin in an amount from 1% to 5% by weight. As shown in
An exemplary working embodiment of the invention comprises a sensor designed to include a 4-pin distributed substrate on which the layers are disposed (e.g. 2 working electrodes, a counter electrode and a reference electrode). Embodiments of the invention include base designed to allow 360 degree sensing by fold, for example by using an analyte sensor comprising 20 ku/mL GOx layered onto a base substrate comprising planar sheet of a flexible material adapted to transition from a first configuration to a second configuration when the base substrate is folded to form a fixed bend (see, e.g. U.S. patent application Ser. No. 13/779,271). Such glucose sensors can be made by preparing a composition that combines a 20 ku/mL GOx 5% solution with a PVA-SbQ polymer (e.g. SAATI # MPP-Lab-2009) solution and then exposing this composition to UV light for 2 min at 7 mw/cm2 @360 nm wavelength, and 18 mw/cm2 @ 400 nm. One can then spray a protein layer comprising Human serum albumin on to the PVA-SbQ polymer composition layer (e.g. without using a chemical vapor deposition process). An adhesion promoting layer is then applied to the sensor stack using a dynamic spin coating process (“DSAP”) followed by a chemical vapor deposition process. The analyte modulating layer is then applied to the sensor stack (e.g. using a slot coating process).
In typical embodiments of the invention, electrochemical sensors are operatively coupled to a sensor input capable of receiving signals from the electrochemical sensor; and a processor coupled to the sensor input, wherein the processor is capable of characterizing one or more signals received from the electrochemical sensor. In certain embodiments of the invention, the electrical conduit of the electrode is coupled to a potentiostat. Optionally, a pulsed voltage is used to obtain a signal from an electrode. In certain embodiments of the invention, the processor is capable of comparing a first signal received from a working electrode in response to a first working potential with a second signal received from a working electrode in response to a second working potential. Optionally, the electrode is coupled to a processor adapted to convert data obtained from observing fluctuations in electrical current from a first format into a second format. Such embodiments include, for example, processors designed to convert a sensor current Input Signal (e.g. ISIG measured in nA) to a blood glucose concentration.
In many embodiments of the invention, the sensors comprise a biocompatible region adapted to be implanted in vivo. In some embodiments, the sensor comprises a discreet probe that pierces an in vivo environment. In embodiments of the invention, the biocompatible region can comprise a polymer that contacts an in vivo tissue. Optionally, the polymer is a hydrophilic polymer (e.g. one that absorbs water). In this way, sensors used in the systems of the invention can be used to sense a wide variety of analytes in different aqueous environments. In some embodiments of the invention, the electrode is coupled to a piercing member (e.g. a needle) adapted to be implanted in vivo. While sensor embodiments of the invention can comprise one or two piercing members, optionally such sensor apparatuses can include 3 or 4 or 5 or more piercing members that are coupled to and extend from a base element and are operatively coupled to 3 or 4 or 5 or more electrochemical sensors (e.g. microneedle arrays, embodiments of which are disclosed for example in U.S. Pat. Nos. 7,291,497 and 7,027,478, and U.S. patent Application No. 20080015494, the contents of which are incorporated by reference).
Embodiments of the invention include analyte sensor apparatus designed to utilize the compositions disclosed herein. Such apparatuses typically include a base on which an electrode is formed (e.g. an array of electrically conductive members configured to form a working electrode). Optionally this base comprises a plurality of indentations and the plurality of electrically conductive members are individually positioned within the plurality of indentations and the electrically conductive members comprise an electroactive surface adapted to sense fluctuations in electrical current at the electroactive surface.
In some embodiments of the invention where an electrode is formed from an array of electrically conductive members, the plurality of electrically conductive members are formed from shapes selected to avoid sharp edges and corners, electrode structures where electric charges can accumulate. In typical embodiments of the invention, the electrically conductive members can be formed to exhibit an ellipsoid geometry. For example, in some embodiments of the invention, the electrically conductive members comprise ellipses, circular discs, or combinations of ellipses and circular discs. Typically, such electrically conductive members are formed to have a diameter of at least 1 μm, for example, a diameter from 1 μm to 100 μm (e.g. circular discs having a diameter of 30, 40 or 50 μm). Optionally, the array comprises at least 5, 10, 20, 50 or 100 electrically conductive members.
In some embodiments of the invention, the array of electrically conductive members is coupled to a common electrical conduit (e.g. so that the conductive members of the array are not separately wired, and are instead electrically linked as a group). Optionally, the electrical conduit is coupled to a power source adapted to sense fluctuations in electrical current of the array of the working electrode. Typically the apparatus include a reference electrode; and a counter electrode. Optionally one or more of these electrodes also comprises a plurality of electrically conductive members disposed on the base in an array. In some embodiments, each of the electrically conductive members of the electrode (e.g. the counter electrode) comprises an electroactive surface adapted to sense fluctuations in electrical current at the electroactive surface; and the group of electrically conductive members are coupled to a power source (e.g. a potentiostat or the like).
In some embodiments of the invention, the apparatus comprises a plurality of working electrodes, counter electrodes and reference electrodes clustered together in units consisting essentially of one working electrode, one counter electrode and one reference electrode; and the clustered units are longitudinally distributed on the base layer in a repeating pattern of units. In some sensor embodiments, the distributed electrodes are organized/disposed within a flex-circuit assembly (i.e. a circuitry assembly that utilizes flexible rather than rigid materials). Such flex-circuit assembly embodiments provide an interconnected assembly of elements (e.g. electrodes, electrical conduits, contact pads and the like) configured to facilitate wearer comfort (for example by reducing pad stiffness and wearer discomfort).
Typically, the sensor electrodes of the invention are coated with a plurality of materials having properties that, for example, facilitate analyte sensing. In some embodiments of the invention, an analyte sensing layer is disposed over electrically conductive members, and includes an agent that is selected for its ability to detectably alter the electrical current at the working electrode in the presence of an analyte. In the working embodiments of the invention that are disclosed herein, the agent is glucose oxidase, a protein that undergoes a chemical reaction in the presence of glucose that results in an alteration in the electrical current at the working electrode. These working embodiments further include an analyte modulating layer disposed over the analyte sensing layer, wherein the analyte modulating layer modulates the diffusion of glucose as it migrates from an in vivo environment to the analyte sensing layer. In certain embodiments of the invention, the analyte modulating layer comprises a hydrophilic comb-copolymer having a central chain and a plurality of side chains coupled to the central chain, wherein at least one side chain comprises a silicone moiety. In certain embodiments of the invention, the analyte modulating layer comprises a blended mixture of: a linear polyurethane/polyurea polymer, and a branched acrylate polymer; and the linear polyurethane/polyurea polymer and the branched acrylate polymer are blended at a ratio of between 1:1 and 1:20 (e.g. 1:2) by weight %. Typically, this analyte modulating layer composition comprises a first polymer formed from a mixture comprising a diisocyanate; at least one hydrophilic diol or hydrophilic diamine; and a siloxane; that is blended with a second polymer formed from a mixture comprising: a 2-(dimethylamino) ethyl methacrylate; a methyl methacrylate; a polydimethyl siloxane monomethacryloxypropyl; a poly(ethylene oxide) methyl ether methacrylate; and a 2-hydroxyethyl methacrylate. Additional material layers can be included in such apparatuses. For example, in some embodiments of the invention, the apparatus comprises an adhesion promoting layer disposed between the analyte sensing layer and the analyte modulating layer.
Embodiments of the invention include dry plasma processes form making adhesion promoting (AP) layers in sensors comprising a plurality of layered materials (see, e.g. International Patent Application No. PCT/US2013/049138). The dry plasma processes disclosed PCT/US2013/049138 have a number of advantages over conventional wet chemistry processes used to form adhesion promoting layers, including reducing and/or eliminating the use of certain hazardous compounds, thereby reducing toxic wastes that can result from such processes. Embodiments of the invention also include adhesion promoting compositions formed from these processes, compositions that exhibit a combination of desirable material properties including relatively thin and highly uniform structural profiles.
One sensor embodiment shown in
Yet another embodiment of the invention is a method of sensing an analyte within the body of a mammal. Typically this method comprises implanting an analyte sensor having a PVA-SbQ compositions disclosed herein within the mammal (e.g. in the interstitial space of a diabetic individual), sensing an alteration in current at the working electrode in the presence of the analyte; and then correlating the alteration in current with the presence of the analyte, so that the analyte is sensed.
Embodiments of the invention also provide articles of manufacture and kits for observing a concentration of an analyte. In an illustrative embodiment, the kit includes a sensor comprising a composition as disclosed herein. In typical embodiments, the sensors are disposed in the kit within a sealed sterile dry package. Optionally the kit comprises an insertion device that facilitates insertion of the sensor. The kit and/or sensor set typically comprises a container, a label and an analyte sensor as described above. Suitable containers include, for example, an easy to open package made from a material such as a metal foil, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as metals (e.g. foils) paper products, glass or plastic. The label on, or associated with, the container indicates that the sensor is used for assaying the analyte of choice. The kit and/or sensor set may include other materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
Specific aspects of embodiments of the invention are discussed in detail in the following sections.
The embodiment shown in
As discussed in detail below, the base layer 102 and/or conductive layer 104 can be generated using many known techniques and materials. In certain embodiments of the invention, the electrical circuit of the sensor is defined by etching the disposed conductive layer 104 into a desired pattern of conductive paths. A typical electrical circuit for the sensor 100 comprises two or more adjacent conductive paths with regions at a proximal end to form contact pads and regions at a distal end to form sensor electrodes. An electrically insulating cover layer 106 such as a polymer coating can be disposed on portions of the sensor 100. Acceptable polymer coatings for use as the insulating protective cover layer 106 can include, but are not limited to, non-toxic biocompatible polymers such as silicone compounds, polyimides, biocompatible solder masks, epoxy acrylate copolymers, or the like. In the sensors of the present invention, one or more exposed regions or apertures 108 can be made through the cover layer 106 to open the conductive layer 104 to the external environment and to, for example, allow an analyte such as glucose to permeate the layers of the sensor and be sensed by the sensing elements. Apertures 108 can be formed by a number of techniques, including laser ablation, tape masking, chemical milling or etching or photolithographic development or the like. In certain embodiments of the invention, during manufacture, a secondary photoresist can also be applied to the protective layer 106 to define the regions of the protective layer to be removed to form the aperture(s) 108. The exposed electrodes and/or contact pads can also undergo secondary processing (e.g. through the apertures 108), such as additional plating processing, to prepare the surfaces and/or strengthen the conductive regions.
In the sensor configuration shown in
In embodiments of the invention, the analyte sensing layer 110 can be applied over portions of the conductive layer or over the entire region of the conductive layer. Typically the analyte sensing layer 110 is disposed on the working electrode which can be the anode or the cathode. Optionally, the analyte sensing layer 110 is also disposed on a counter and/or reference electrode. Methods for generating a thin analyte sensing layer 110 include brushing the layer onto a substrate (e.g. the reactive surface of a platinum black electrode), as well as spin coating processes, dip and dry processes, low shear spraying processes, ink-jet printing processes, silk screen processes and the like. In certain embodiments of the invention, brushing is used to: (1) allow for a precise localization of the layer; and (2) push the layer deep into the architecture of the reactive surface of an electrode (e.g. platinum black produced by an electrodeposition process).
Typically, the analyte sensing layer 110 is coated and or disposed next to one or more additional layers. Optionally, the one or more additional layers includes a protein layer 116 disposed upon the analyte sensing layer 110. Typically, the protein layer 116 comprises a protein such as human serum albumin, bovine serum albumin or the like. Typically, the protein layer 116 comprises human serum albumin. In some embodiments of the invention, an additional layer includes an analyte modulating layer 112 that is disposed above the analyte sensing layer 110 to regulate analyte contact with the analyte sensing layer 110. For example, the analyte modulating membrane layer 112 can comprise a glucose limiting membrane, which regulates the amount of glucose that contacts an enzyme such as glucose oxidase that is present in the analyte sensing layer. Such glucose limiting membranes can be made from a wide variety of materials known to be suitable for such purposes, e.g., silicone compounds such as polydimethyl siloxanes, polyurethanes, polyurea cellulose acetates, Nafion, polyester sulfonic acids (e.g. Kodak AQ), hydrogels or any other suitable hydrophilic membranes known to those skilled in the art.
In typical embodiments of the invention, an adhesion promoter layer 114 is disposed between the analyte modulating layer 112 and the analyte sensing layer 110 as shown in
The following disclosure provides examples of typical elements/constituents used in sensor embodiments of the invention. While these elements can be described as discreet units (e.g. layers), those of skill in the art understand that sensors can be designed to contain elements having a combination of some or all of the material properties and/or functions of the elements/constituents discussed below (e.g. an element that serves both as a supporting base constituent and/or a conductive constituent and/or a matrix for the analyte sensing constituent and which further functions as an electrode in the sensor). Those in the art understand that these thin film analyte sensors can be adapted for use in a number of sensor systems such as those described below.
Sensors of the invention typically include a base constituent (see, e.g. element 102 in
The electrochemical sensors of the invention typically include a conductive constituent disposed upon the base constituent that includes at least one electrode for contacting an analyte or its byproduct (e.g. oxygen and/or hydrogen peroxide) to be assayed (see, e.g. element 104 in
In addition to the working electrode, the analyte sensors of the invention typically include a reference electrode or a combined reference and counter electrode (also termed a quasi-reference electrode or a counter/reference electrode). If the sensor does not have a counter/reference electrode then it may include a separate counter electrode, which may be made from the same or different materials as the working electrode. Typical sensors of the present invention have one or more working electrodes and one or more counter, reference, and/or counter/reference electrodes. One embodiment of the sensor of the present invention has two, three or four or more working electrodes. These working electrodes in the sensor may be integrally connected or they may be kept separate. Optionally, the electrodes can be disposed on a single surface or side of the sensor structure. Alternatively, the electrodes can be disposed on a multiple surfaces or sides of the sensor structure (and can for example be connected by vias through the sensor material(s) to the surfaces on which the electrodes are disposed). In certain embodiments of the invention, the reactive surfaces of the electrodes are of different relative areas/sizes, for example a 1X reference electrode, a 2.6X working electrode and a 3.6X counter electrode.
The electrochemical sensors of the invention optionally include an interference rejection constituent disposed between the surface of the electrode and the environment to be assayed. In particular, certain sensor embodiments rely on the oxidation and/or reduction of hydrogen peroxide generated by enzymatic reactions on the surface of a working electrode at a constant potential applied. Because amperometric detection based on direct oxidation of hydrogen peroxide requires a relatively high oxidation potential, sensors employing this detection scheme may suffer interference from oxidizable species that are present in biological fluids such as ascorbic acid, uric acid and acetaminophen. In this context, the term “interference rejection constituent” is used herein according to art accepted terminology and refers to a coating or membrane in the sensor that functions to inhibit spurious signals generated by such oxidizable species which interfere with the detection of the signal generated by the analyte to be sensed. Certain interference rejection constituents function via size exclusion (e.g. by excluding interfering species of a specific size). Examples of interference rejection constituents include one or more layers or coatings of compounds such as hydrophilic polyurethanes, cellulose acetate (including cellulose acetate incorporating agents such as poly(ethylene glycol), polyethersulfones, polytetra-fluoroethylenes, the perfluoronated ionomer Nafion™, polyphenylenediamine, epoxy and the like.
The electrochemical sensors of the invention include an analyte sensing constituent disposed on the electrodes of the sensor (see, e.g. element 110 in
Typical sensor embodiments of this element of the invention utilize an enzyme (e.g. glucose oxidase) that has been combined with a second protein (e.g. albumin) in a fixed ratio (e.g. one that is typically optimized for glucose oxidase stabilizing properties) and then applied on the surface of an electrode to form a thin enzyme constituent. In a typical embodiment, the analyte sensing constituent comprises a GOx and HSA mixture. In a typical embodiment of an analyte sensing constituent having GOx, the GOx reacts with glucose present in the sensing environment (e.g. the body of a mammal) and generates hydrogen peroxide.
As noted above, the enzyme and the second protein (e.g. an albumin) are typically treated to form a crosslinked matrix (e.g. by adding a cross-linking agent to the protein mixture). As is known in the art, crosslinking conditions may be manipulated to modulate factors such as the retained biological activity of the enzyme, its mechanical and/or operational stability. Illustrative crosslinking procedures are described in U.S. patent application Ser. No. 10/335,506 and PCT publication WO 03/035891 which are incorporated herein by reference. For example, an amine cross-linking reagent, such as, but not limited to, glutaraldehyde, can be added to the protein mixture. The addition of a cross-linking reagent to the protein mixture creates a protein paste. The concentration of the cross-linking reagent to be added may vary according to the concentration of the protein mixture. While glutaraldehyde is an illustrative crosslinking reagent, other cross-linking reagents may also be used or may be used in place of glutaraldehyde. Other suitable cross-linkers also may be used, as will be evident to those skilled in the art.
As noted above, in some embodiments of the invention, the analyte sensing constituent includes an agent (e.g. glucose oxidase) capable of producing a signal (e.g. a change in oxygen and/or hydrogen peroxide concentrations) that can be sensed by the electrically conductive elements (e.g. electrodes which sense changes in oxygen and/or hydrogen peroxide concentrations). However, other useful analyte sensing constituents can be formed from any composition that is capable of producing a detectable signal that can be sensed by the electrically conductive elements after interacting with a target analyte whose presence is to be detected. In some embodiments, the composition comprises an enzyme that modulates hydrogen peroxide concentrations upon reaction with an analyte to be sensed. Alternatively, the composition comprises an enzyme that modulates oxygen concentrations upon reaction with an analyte to be sensed. In this context, a wide variety of enzymes that either use or produce hydrogen peroxide and/or oxygen in a reaction with a physiological analyte are known in the art and these enzymes can be readily incorporated into the analyte sensing constituent composition. A variety of other enzymes known in the art can produce and/or utilize compounds whose modulation can be detected by electrically conductive elements such as the electrodes that are incorporated into the sensor designs described herein. Such enzymes include for example, enzymes specifically described in Table 1, pages 15-29 and/or Table 18, pages 111-112 of Protein Immobilization: Fundamentals and Applications (Bioprocess Technology, Vol 14) by Richard F. Taylor (Editor) Publisher: Marcel Dekker; Jan. 7, 1991) the entire contents of which are incorporated herein by reference.
The electrochemical sensors of the invention optionally include a protein constituent disposed between the analyte sensing constituent and the analyte modulating constituent (see, e.g. element 116 in
The electrochemical sensors of the invention can include one or more adhesion promoting (AP) constituents (see, e.g. element 114 in
The electrochemical sensors of the invention include an analyte modulating constituent disposed on the sensor (see, e.g. element 112 in
With respect to glucose sensors, in known enzyme electrodes, glucose and oxygen from blood, as well as some interferants, such as ascorbic acid and uric acid, diffuse through a primary membrane of the sensor. As the glucose, oxygen and interferants reach the analyte sensing constituent, an enzyme, such as glucose oxidase, catalyzes the conversion of glucose to hydrogen peroxide and gluconolactone. The hydrogen peroxide may diffuse back through the analyte modulating constituent, or it may diffuse to an electrode where it can be reacted to form oxygen and a proton to produce a current that is proportional to the glucose concentration. The analyte modulating sensor membrane assembly serves several functions, including selectively allowing the passage of glucose therethrough (see, e.g. U.S. Patent Application No. 2011-0152654).
The electrochemical sensors of the invention can include one or more cover constituents, which are typically electrically insulating protective constituents (see, e.g. element 106 in
Embodiments of the sensor elements and sensors can be operatively coupled to a variety of other system elements typically used with analyte sensors (e.g. structural elements such as piercing members, insertion sets and the like as well as electronic components such as processors, monitors, medication infusion pumps and the like), for example to adapt them for use in various contexts (e.g. implantation within a mammal). One embodiment of the invention includes a method of monitoring a physiological characteristic of a user using an embodiment of the invention that includes an input element capable of receiving a signal from a sensor that is based on a sensed physiological characteristic value of the user, and a processor for analyzing the received signal. In typical embodiments of the invention, the processor determines a dynamic behavior of the physiological characteristic value and provides an observable indicator based upon the dynamic behavior of the physiological characteristic value so determined. In some embodiments, the physiological characteristic value is a measure of the concentration of blood glucose in the user. In other embodiments, the process of analyzing the received signal and determining a dynamic behavior includes repeatedly measuring the physiological characteristic value to obtain a series of physiological characteristic values in order to, for example, incorporate comparative redundancies into a sensor apparatus in a manner designed to provide confirmatory information on sensor function, analyte concentration measurements, the presence of interferences and the like.
Embodiments of the invention include devices which process display data from measurements of a sensed physiological characteristic (e.g. blood glucose concentrations) in a manner and format tailored to allow a user of the device to easily monitor and, if necessary, modulate the physiological status of that characteristic (e.g. modulation of blood glucose concentrations via insulin administration). An illustrative embodiment of the invention is a device comprising a sensor input capable of receiving a signal from a sensor, the signal being based on a sensed physiological characteristic value of a user; a memory for storing a plurality of measurements of the sensed physiological characteristic value of the user from the received signal from the sensor; and a display for presenting a text and/or graphical representation of the plurality of measurements of the sensed physiological characteristic value (e.g. text, a line graph or the like, a bar graph or the like, a grid pattern or the like or a combination thereof). Typically, the graphical representation displays real time measurements of the sensed physiological characteristic value. Such devices can be used in a variety of contexts, for example in combination with other medical apparatuses. In some embodiments of the invention, the device is used in combination with at least one other medical device (e.g. a glucose sensor).
An illustrative system embodiment consists of a glucose sensor, a transmitter and pump receiver and a glucose meter. In this system, radio signals from the transmitter can be sent to the pump receiver every 5 minutes to provide providing real-time sensor glucose (SG) values. Values/graphs are displayed on a monitor of the pump receiver so that a user can self monitor blood glucose and deliver insulin using their own insulin pump. Typically an embodiment of device disclosed herein communicates with a second medical device via a wired or wireless connection. Wireless communication can include for example the reception of emitted radiation signals as occurs with the transmission of signals via RF telemetry, infrared transmissions, optical transmission, sonic and ultrasonic transmissions and the like. Optionally, the device is an integral part of a medication infusion pump (e.g. an insulin pump). Typically in such devices, the physiological characteristic values include a plurality of measurements of blood glucose.
As shown in
In the embodiment shown in
In the illustrative embodiment shown in
In the illustrative embodiment shown in
In the embodiment of the invention shown in
While the analyte sensor and sensor systems disclosed herein are typically designed to be implantable within the body of a mammal, the inventions disclosed herein are not limited to any particular environment and can instead be used in a wide variety of contexts, for example for the analysis of most in vivo and in vitro liquid samples including biological fluids such as interstitial fluids, whole-blood, lymph, plasma, serum, saliva, urine, stool, perspiration, mucus, tears, cerebrospinal fluid, nasal secretion, cervical or vaginal secretion, semen, pleural fluid, amniotic fluid, peritoneal fluid, middle ear fluid, joint fluid, gastric aspirate or the like. In addition, solid or desiccated samples may be dissolved in an appropriate solvent to provide a liquid mixture suitable for analysis.
It is to be understood that this invention is not limited to the particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims. In the description of the preferred embodiment, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.