ENZYMES AND MICROBES FOR XANTHAN GUM PROCESSING

Information

  • Patent Application
  • 20240026406
  • Publication Number
    20240026406
  • Date Filed
    September 15, 2021
    3 years ago
  • Date Published
    January 25, 2024
    a year ago
Abstract
The present disclosure provides polypeptides having xanthan gum hydrolytic activity, compositions, and uses thereof. The present disclosure also provides, polynucleotides, expression vectors, host cells, and genetically modified bacteria encoding xanthanases or xanthan-utilizing gene loci.
Description
SEQUENCE LISTING STATEMENT

The text of the computer readable sequence listing filed herewith, titled “38573-601_SEQUENCE_LISTING_ST25”, created Sep. 15, 2021, having a file size of 388,374 bytes, is hereby incorporated by reference in its entirety.


FIELD

The present disclosure provides xanthanase polypeptides, compositions, and uses thereof. The present disclosure also provides polynucleotides, expression vectors, host cells, and genetically modified organisms (e.g., bacteria) encoding xanthanase or xanthan-utilizing gene loci.


BACKGROUND

Xanthan gum (XG) is an exopolysaccharide produced by Xanthamonas campestris that has been increasingly used as a food additive at concentrations of 0.05-0.5% (w/w) to increase stability, viscosity, and other properties of processed foods. Xanthan gum may also be included in foods as a replacement for gluten at up to gram quantities per serving. The polymer backbone is similar to (mean cellulose, having β-1,4-linked glucose residues, however, xanthan gum contains trisaccharide branches on alternating glucose residues consisting of an α-1,3-mannose, β-1,2-glucuronic acid, and terminal β-1,4-mannose. Xanthan gum has also been used extensively in non-food industries. For example, the oil and gas industry uses xanthan gum in drilling fluid or mud for its rheological properties and in the secondary and tertiary recovery of petroleum.


SUMMARY

Disclosed herein are polypeptides comprising a truncated xanthanase, wherein the truncated xanthanase comprises a glycoside hydrolase family 5 endoglucanase domain and three carbohydrate binding domains. In some embodiments, the polypeptides comprise an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 2. In some embodiments, the polypeptides comprise an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 33. Also disclosed herein are polynucleotides comprising a nucleic acid sequence encoding the polypeptides, expression vectors comprising the polynucleotides operably linked with a promoter and host cells comprising the polynucleotides or expression vectors.


Further disclosed herein are compositions comprising the polypeptides disclosed herein. In some embodiments the compositions are cleaning compositions. In some embodiments the compositions are wellbore servicing compositions. The compositions may be liquids, gels, powders, granulates, pastes, sprays, bars, or unit doses. Also disclosed are methods comprising contacting an object or a surface with the polypeptide disclosed herein or a composition thereof.


Additionally, methods of making intermediate sized xanthan gums and/or pentasaccharide repeating units of xanthan gum are disclosed. The methods comprise contacting xanthan gum or a composition comprising xanthan gum with the polypeptides disclosed herein or compositions thereof.


Additionally, genetically modified organisms (e.g., bacteria) and compositions thereof are disclosed. In some embodiments, the genetically modified organisms comprise the polypeptides or polynucleotides disclosed herein. In some embodiments the genetically modified organisms comprise a heterologous xanthan-utilization gene or gene locus, wherein the heterologous xanthan-utilization gene or gene locus comprises one or more nucleic acids encoding a xanthan or xanthan oligonucleotide degrading enzyme. In some embodiments, the xanthan or xanthan oligonucleotide degrading enzyme comprises a glycoside hydrolase family 5 enzyme from Ruminococcaceae UCG13. The bacteria, for example, may be in the genus Bacteroides, Parabacteroides, Alistipes, Prevotella, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus, Peptostreptococcus, Bifidobacteria, Escherichia, or Lactobacillus.


Other aspects and embodiments of the disclosure will be apparent in light of the following detailed description and accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A is a representation of xanthan gum structure showing the β-1,4-linked glucose backbone residues (blue circles) with branches of mannose (green circles) and glucuronic acid (blue and white diamond). The inner and outer mannose residues are variably modified by acetylation and pyruvylation, respectively. FIGS. 1B-11D show growth characteristics of the xanthan-degrading cultures. FIG. 1B is growth curves of the original xanthan-degrading culture showing that increases in xanthan gum concentration resulted in increases in culture density. The original culture displayed relatively stable composition over sequential passaging (FIG. 1C). An additional 20 samples (FIG. 1D) were sequentially passaged in xanthan containing media (10×) and analyzed for composition by 16S rRNA sequencing (16 of the most abundant genus are displayed for clarity). All cultures shared an abundant operational taxonomic unit (OTU), classified as Ruminococcaceae uncultured genus 13 (R. UCG13).



FIG. 2 is schematics of putative xanthan utilization loci color-coded and annotated by predicted protein family. The four boxes below each gene are colored to represent expression levels of each gene at timepoints taken throughout the culture's growth on xanthan gum.



FIG. 3A is a schematic showing the annotated domains, signal peptide (SP), three carbohydrate binding modules (CBMs), and multiple Listeria-Bacteroides repeat domains, of the xanthan-degrading GH5 in R. UCG13. FIG. 3B is the extracted ion chromatograms showing various acetylated and pyruvylated penta- and deca-saccharides produced by GH5 degradation of xanthan gum—841 for the pentamer, 883 for the acetylated pentamer, 925 for the di-acetylated pentamer, 953 for the acetylated and pyruvylated pentamer, 1665 for the decamer, 1707 for the decamer with a single acetylation, 1749 for the decamer with two acetylations, 1847 for the decamer with one acetylation and two pyruvylations and 1889 for the decamer with two acetylations and two pyruvylations. Retention times are shown above each extracted peak. FIG. 3C is the proton NMR contrasting tetrameric products obtained from incubating lyase-treated xanthan gum with either R. UCG13 GH5 or P. nanensis GH9. FIG. 3D is a graph showing the kinetics of R. UCG13 GH5 on native and lyase-treated xanthan gum (error bars represent mean and standard deviation, n=4)



FIGS. 4A-4B show that a strain of B. intestinalis cross-feeds on xanthan oligosaccharides. FIG. 4A is a graph of the growth curves of B. intestinalis isolated from the original xanthan-degrading culture. (curves represent mean SEM, n=2) for a variety of feed sources. FIG. 4B shows the fold-change in expression of B. intestinalis genes when grown on xanthan oligosaccharides relative to glucose.



FIG. 5 is a schematic showing that xanthan degrading loci are present in modern human microbiomes but not in the microbiome of hunter-gatherers. Multiple microbiome metagenome datasets were searched for the presence or absence of the R. UCG13 and B. intestinalis xanthan loci. Map colors correspond to where populations were sampled for each dataset displayed on the outside of the figure. Circle segments are sized proportionately to total number of individuals sampled for each dataset. Lines represent presence of either the R. UCG13 xanthan locus (green) or the B. intestinalis xanthan locus (red). Percentages display the total abundance of R. UCG13 or B. intestinalis locus in each dataset.



FIG. 6 is a graph of an extinction dilution series with either XG or an equal amount of its component monosaccharides as growth medium.



FIGS. 7A-7C are metagenomic, metatranscriptomic and monosaccharide analysis of residual polysaccharide of two replicates of the original culture grown in liquid medium with XG. FIG. 7A are growth curves indicating timepoints for residual polysaccharide analysis (FIG. 7B) and metatranscriptomic analysis (FIG. 7C).



FIGS. 8A and 8B show the results from three independent cultures fractionated with a variety of purification methods (FIG. 8A) and the respective proteome analysis (FIG. 8B).



FIG. 9 is a schematic of the Ruminococcacea UCG13 XG PUL and B. intestinalis XG PUL loci in 16 additional XG-degrading identified communities.



FIG. 10 is a graph of the growth curves of the original xanthan-degrading culture showing greater culture density as xanthan gum concentration was increased (n=12, SEM≤3%).



FIG. 11 is extracted ion chromatograms showing various acetylated and pyruvylated penta- and deca-saccharides produced by incubating culture supernatant with XG.



FIG. 12 shows that Xanthan degrading loci are present in modern human microbiomes but not in hunter-gatherers'. Multiple microbiome metagenome datasets were searched for the presence or absence of the R. UCG13 and B. intestinalis xanthan loci. Map colors correspond to where populations were sampled for each dataset displayed on the outside of the figure. Circle segments are sized proportionately to total number of individuals sampled for each dataset. Lines represent presence



FIG. 13 is a schematic of an exemplary cellular model of xanthan degradation.



FIG. 14 is thin layer chromatography of xanthan gum incubated with different fractions of an active xanthan gum culture (supernatant, washed cell pellet, lysed cell pellet, or lysed culture). Negative controls were prepared by heating fractions at 95° C. for 15 minutes prior to initiating with xanthan gum. EDTA was added to a final concentration of ˜50 mM to determine the necessity of divalent cations for enzyme activity. Strong color development in circles at baseline is undigested polysaccharide while bands that migrated with solvent are digested oligosaccharides and monosaccharides.



FIGS. 15A-15G show activity of R. UCG13 GH5 enzymes on various polysaccharides. FIG. 15A is an SDS-PAGE gel of purified GH5 constructs and their resultant activity as assessed by TLC, xanthan gum (FIG. 15B), carboxymethyl cellulose (CMC, FIGS. 15B-15C), hydroxyethyl cellulose (HEC, FIG. 15C), barley β-glucan (FIG. 15D), yeast β-glucan (FIGS. 15D-15E), tamarind xyloglucan (FIG. 15E), xylan (FIG. 15F), and wheat arabinoxylan (FIGS. 15F-15G). Enzymes are 1, RuGH5b (GH5 only); 2, RuGH5b (GH5 with CBM-A); 3, RuGH5b (GH5 with CBM-A/B); 4, RuGH5b (full protein); 5, RuGH5a (GH5 only); 6, RuGH5a (GH5 with CBM-A); 7, RuGH5a (GH5 with CBM-A/B); 8, RuGH5a (GH5 with CBM-A/B/C); 9, RuGH5a (full protein); 10, replicate of 8. Strong color development in circles at baseline is undigested polysaccharide while bands or streaking that migrated with solvent are digested oligosaccharides and monosaccharides. Although minor streaking appears in some substrates due to residual oligosaccharides, comparing untreated substrate with enzyme incubated substrate allows determination of enzyme activity. RuGH5a constructs with all 3 CBMs (8-10) showed clear activity on XG.



FIGS. 16A-16J are LC-MS analysis used to track relative increases and decreases of intermediate oligosaccharides with the addition of enzymes, verifying their abilities to successively cleave XG pentasaccharides to their substituent monosaccharides. Integrated extracted ion counts (n=4, SEM) that correlate with compound abundance are shown for acetylated pentasaccharide (FIG. 16A; M-H ions: 883.26, 953.26, 925.27), deacetylated pentasaccharide (FIG. 16B; M-H ions: 841.25, 911.25), acetylated tetrasaccharide (FIG. 16C; 2M-H ion: 1407.39), tetrasaccharide (FIG. 16D; M−H ion: 661.18), acetylated trisaccharide (FIG. 16E; M+Cl ion: 581.15), trisaccharide (FIG. 16F; M+Cl ion: 539.14), cellobiose (FIG. 16G; M+Cl ion: 377.09), and pyruvylated mannose (FIG. 16H; M−H ion: 249.06). Reactions were carried out using xanthan oligosaccharides produced by the RuGH5a to test activities of the R. UCG13 (A-I) and B. intestinalis (J-O) enzymes. R. UCG13 enzymes were tested in reactions that included (A) no enzyme, (B) R. UCG13 CE-A, (C) R. UCG13 CE-B, (D) R. UCG13 PL8, (E) R. UCG13 PL8 and CE-A, (F) R. UCG13 PL8 and CE-B, (G) R. UCG13 PL8, both CEs, and GH88, (H) R. UCG13 PL8, both CEs, GH88, and GH38-A, (I) R. UCG13 PL8, both CEs, GH88, and GH38-B. B. intestinalis enzymes were tested in reactions that included (J) no enzyme, (K) Bi PL-only, (L) Bi PL-CE, (M) Bi PL-CE and Bacillus PL8, (N) Bi PL-CE and GH88 and Bacillus PL8, (O) Bi PL-CE, GH88, and GH92 and Bacillus PL8. A legend of enzymes included in each reaction is shown in FIG. 16I. FIG. 16J is an SDS-PAGE gel of purified enzymes with 4.5 μg loaded, including (1-2) ladder, (3) B. intestinalis GH3, (4) B. intestinalis GH5, (5) B. intestinalis PL-only, (6) B. intestinalis PL-CE, (7) B. intestinalis GH88, (8) B. intestinalis GH92, (9) R. UCG 13 GH38-A, (10) R. UCG13 GH38-B, (11) R. UCG13 GH94, (12) R. UCG13 PL8, (13) R. UCG13 CE-A. FIG. 16K is an SDS-PAGE gel of purified enzymes with 4.5 μg loaded, including (1) ladder, (2) B. intestinalis PL-only, (3) B. intestinalis PL-CE, (4) B. intestinalis GH88, (5) B. intestinalis GH92, (6) R. UCG13 GH38-A, (7) R. UCG13 GH38-B, (8) R. UCG13 CE-A, (9) R. UCG13 GH88, (10) R. UCG13 CE-B, (11) R. UCG13 PL8. FIG. 16L is TLC analysis of R. UCG13 GH94 and B. intestinalis GH3 activity on cellobiose. From left to right lanes show (A) RuGH5b (full protein), (B) RuGH5a (full protein), (C) B. intestinalis GH3, (D) B. intestinalis GH5, (E) R. UCG13 GH94, (F) odd standards, (G) even standards, (H) cellobiose. Odd and even standards are maltooligosaccharides with 1, 3, 5, and 7 hexoses or 2, 4, and 6 hexoses, respectively. While the B. intestinalis GH3 only produced one product, the R. UCG13 GH94 produced two, one matching the approximate Rf of glucose while the other had a much lower Rf which presumably is phosphorylated glucose (matching the known phosphorylase activity of the GH94 family).



FIG. 17A is traces of RNA-seq expression data from triplicates of the original culture grown on either XG or polygalacturonic acid (PGA), illustrating overexpression of the XG PUL. FIGS. 17B and 17C are growth curves for Bacteroides clarus (FIG. 17B) and Parabacteroides distasonis (FIG. 17C) isolated from the original culture showing a lack of growth on XG oligosaccharides (XGOs). FIG. 17D is growth curves for Bacteroides intestinalis showing lack of growth on tetramer generated with P. nanensis GH9 and PL8 (Psp Tetramer) even in the presence of 1 mg/mL RuGH5a generated XGOs to activate the PUL. Growth on glucose confirmed that the Psp Tetramer was not inherently toxic to cells. All substrates were used at 5 mg/mL unless otherwise noted. Growths are n≥2, error bars show SEM (in most cases, smaller than the marker). FIG. 17E is traces of RNA-seq expression data from triplicates of B. intestinalis grown on either glucose (Glu) or XG oligosaccharides (XGOs), illustrating overexpression of the XGO PUL.



FIG. 18A is a schematic of the metagenomic sequencing of additional 16 cultures (S, human fecal sample) that actively grew on and degraded xanthan gum revealed two architectures of the R. UCG13. The more prevalent locus contained a GH125 insertion. The 10 additional samples with this locus architecture include: S22, S25, S39, S43, S44, S45, S49, S53, S58, and S59. FIG. 18B is a schematic of the B. intestinalis xanthan locus present in 3 additional cultures. FIG. 18C is a schematic of additional members of the Bacteroideceae family harbor a PUL with a GH88, GH92 and GH3 that could potentially enable utilization of XG-oligosaccharides. FIG. 18D is a schematic of the GH125-containing version of the R. UCG13 xanthan locus was detected in two mouse fecal samples (M, mouse fecal sample). FIG. 18E is a comparison of the human and mouse RuGH5a amino acid sequence, showing the annotated signal peptide (SP), GH5 domain, three carbohydrate binding modules (CBMs), and multiple Listeria-Bacteroides repeat domains. FIG. 18F a schematic of the genetic organization and amino acid identity (%) between the B. intestinalis xanthan locus in the original human sample and a PUL detected in a fracking water microbial community (FWMC) using LAST-searches. FIG. 18G is an SDS-PAGE gel of purified enzymes with 4.5 μg loaded, including ladder and the different mouse RuGH5a constructs. A, B, and C are all versions of the GH5 domain alone, D is a construct designed to terminate at a site homologous to the last CBM in the human RuGH5a, and E is a full-length construct of the mouse RuGH5a. FIG. 18H is TLC of each mouse RuGH5a construct incubated with XG and also odd (1, 3, 5, and 7 residues) and even (2, 4, and 6 residues) malto-oligosaccharide standards. The GH5-only constructs did not degrade XG but constructs D and E (with regions homologous to the human RuGH5a CBMs) were able to hydrolyze XG.



FIG. 19 is a graph of B. salyersiae WAL 10018 (DSM 18765=JCM 12988) grown in minimal media with various substrates. All substrates were provided at a final concentration of 5 mg/mL. The monosaccharide mix consisted of 2:2:1 glucose:mannose:glucuronic acid. The xanthan gum tetramer was produced by incubating Megazyme xanthan lyase (E-XANLB) with xanthan gum oligosaccharides produced with RuGH5a.



FIG. 20 is a schematic of the PUL29 identified from B. salyersiae WAL 10018 as the putative locus responsible for catabolizing xanthan gum oligosaccharides.



FIG. 21 is a graph of gene expression analysis of B. salyersiae grown on PL8 treated xanthan oligosaccharides or glucose. qRT-PCR demonstrated overexpression of the identified enzymes PUL29 when grown on PL8 treated xanthan oligosaccharides, providing evidence for these enzymes' role in catabolizing xanthan gum oligosaccharides.





DETAILED DESCRIPTION

The present disclosure provides a polypeptide comprising a xanthanase (an enzyme capable of degrading xanthan gum) which can hydrolyze xanthan gum in a single step compared to known xanthanase enzymes which typically require two enzymes. The enzyme generates xanthan degradation products, including pentasaccharide repeating units and intermediate sized xanthan gums, poly- and oligo-saccharides of average molecular weight less than native xanthan gum but more than a single pentasaccharide repeating unit. Additionally, two genetic loci from two microbes have been identified as having xanthan-degrading activity which may be introduced alone or with the xanthanase polypeptide to into heterologous bacteria for use as probiotics in subjects who suffer from gastrointestinal or metabolic diseases or inject a larger than average level of xanthan gum.


Section headings as used in this section and the entire disclosure herein are merely for organizational purposes and are not intended to be limiting.


1. Definitions

The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not preclude the possibility of additional acts or structures. The singular forms “a,” “and” and “the” include plural references unless the context clearly dictates otherwise. The present disclosure also contemplates other embodiments “comprising,” “consisting of” and “consisting essentially of,” the embodiments or elements presented herein, whether explicitly set forth or not.


For the recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the number 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are explicitly contemplated.


Unless otherwise defined herein, scientific, and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. For example, any nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry described herein are those that are well known and commonly used in the art. The meaning and scope of the terms should be clear; in the event, however of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.


“Polynucleotide” or “oligonucleotide” or “nucleic acid,” as used herein, means at least two nucleotides covalently linked together. The polynucleotide may be DNA, both genomic and cDNA, RNA, or a hybrid, where the polynucleotide may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine. Nucleic acids may be obtained by chemical synthesis methods or by recombinant methods. Polynucleotides may be single- or double-stranded or may contain portions of both double stranded and single stranded sequence. The depiction of a single strand also defines the sequence of the complementary strand. Thus, a nucleic acid also encompasses the complementary strand of a depicted single strand. Many variants of a nucleic acid may be used for the same purpose as a given nucleic acid. Thus, a nucleic acid also encompasses substantially identical nucleic acids and complements thereof.


A “peptide” or “polypeptide” is a linked sequence of two or more amino acids linked by peptide bonds. The polypeptide can be natural, synthetic, or a modification or combination of natural and synthetic. Peptides and polypeptides include proteins such as binding proteins, receptors, and antibodies. The proteins may be modified by the addition of sugars, lipids or other moieties not included in the amino acid chain. The terms “polypeptide” and “protein” are used interchangeably herein.


A “polysaccharide” or “oligosaccharide” is a linked sequence of two or more monomeric carbohydrates connected by glycosidic bonds. The polysaccharides can be natural, synthetic, or a modification or combination of natural and synthetic. polysaccharide may be modified by the addition of sugars, lipids or other moieties not included in the main chain of the polysaccharide.


An “expression vector,” as used herein, refers to a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide and is operably linked to control sequences that provide for its expression. The term “operably linked” means a configuration in which a control sequence (e.g., a promoter) is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.


The term “bacterial artificial chromosome” or “BAC” as used herein refers to a bacterial DNA vector. BACs, such as those derived from E. coli, may be utilized for introducing, deleting, or replacing DNA sequences of non-human mammalian cells or animals via homologous recombination. E. coli can maintain complex genomic DNA as large as 500 kb or greater in the form of BACs (see Shizuya and Kouros-Mehr, Keio J Med. 2001, 50(1):26-30), with greater DNA stability than cosmids or yeast artificial chromosomes. In addition, BAC libraries of human DNA genomic DNA have more complete and accurate representation of the human genome than libraries in cosmids or yeast artificial chromosomes. BACs are described in further detail in U.S. application Ser. Nos. 10/659,034 and 61/012,701, which are hereby incorporated by reference in their entireties.


The term “host cell,” as used herein, refers to any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention. The term “host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.


As used herein, “genetically modified” refers to an organism (e.g., a bacterium) which has a modification to introduce a nucleic acid that does not naturally occur in the organism or to introduce additional copies or modified forms of nucleic acids that naturally occur in the organism. The nucleic acid can be integrated in one or more copies into a genome or one or more copies of the nucleic acid can remain episomal, e.g., in a plasmid, phagemid or artificial chromosome.


The term “textile,” as used herein, refers to any textile material including yarns, yarn intermediates, fibers, non-woven materials, natural materials, synthetic materials, and any other textile material, fabrics made of these materials and products made from fabrics (e.g., garments and other articles). The textile or fabric may be in the form of knits, wovens, denims, non-wovens, felts, yarns, and towelling. The textile may be cellulose based such as natural cellulosics, including cotton, flax/linen, jute, ramie, sisal or coir, or manmade cellulosics (e.g., originating from wood pulp) including viscose/rayon, ramie, cellulose acetate fibers (tricell), lyocell or blends thereof. The textile or fabric may also be non-cellulose based such as natural polyamides including wool, camel, cashmere, mohair, rabbit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylene, and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibers. Examples of blends are blends of cotton and/or rayon/viscose with one or more companion material such as wool, synthetic fibers (e.g., polyamide fibers, acrylic fibers, polyester fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyurethane fibers, polyurea fibers, aramid fibers), and cellulose-containing fibers (e.g., rayon/viscose, ramie, flax/linen, jute, cellulose acetate fibers, lyocell).


A “wellbore,” as used herein, refers to any hole drilled to aid in the exploration and/or recovery of natural resources, including oil, gas, or water. For example, a wellbore may be the hole that forms a well. A wellbore can be encased, for example by materials such as steel and cement, or it may be uncased.


As used herein, “treat,” “treating” and the like means a slowing, stopping, or reversing of progression of a disease or disorder when provided a composition described herein to an appropriate control subject. The term also means a reversing of the progression of such a disease or disorder to a point of eliminating or greatly reducing the cell proliferation. As such, “treating” means an application or administration of the compositions described herein to a subject, where the subject has a disease or a symptom of a disease, where the purpose is to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease or symptoms of the disease.


A “subject” or “patient” may be human or non-human and may include, for example, animal strains or species used as “model systems” for research purposes, such a mouse model as described herein. Likewise, patient may include either adults or juveniles (e.g., children). Moreover, patient may mean any living organism, preferably a mammal (e.g., human or non-human) that may benefit from the administration of compositions contemplated herein. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. Examples of non-mammals include, but are not limited to, birds, fish, and the like. In one embodiment of the methods and compositions provided herein, the mammal is a human.


As used herein, the terms “providing,” “administering,” “introducing,” are used interchangeably herein and refer to the placement of the compositions of the disclosure into a subject by a method or route which results in at least partial localization of the composition to a desired site. The compositions can be administered by any appropriate route which results in delivery to a desired location in the subject.


Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing of the present disclosure. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting.


2. Xanthanase Polypeptides and Polynucleotides

The present disclosure provides a polypeptide comprising a truncated xanthanase. The xanthanase has activity on xanthan gum, both native and lyase-treated xanthan gum. In contrast to other known xanthanases, the truncated xanthanase cleaves the reducing end of the non-branching backbone glucosyl residue of xanthan gum (FIGS. 1A and 3C). The truncated xanthanase does not comprise SEQ ID NO: 3.


The truncated xanthanase may comprise a glycosyl hydrolase 5 endoglucanase domain and three carbohydrate binding domains. The glycosyl hydrolase 5 endoglucanase domain comprises an amino acid sequence having at least 70% (e.g., 70%, 75%, 80%, 85%, 90%, 95%, or 95%) sequence identity to SEQ ID NO: 1. In some embodiments, the polypeptide comprises an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 2. In some embodiments, the polypeptide comprises an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 33.


The present disclosure also provides nucleic acids encoding the polypeptides described herein. In some embodiments, the polynucleotides disclosed herein can be introduced into an expression vector, such that the expression vector comprises a promoter operably linked to the polynucleotides encoding the peptides or polypeptides described herein. The expression vector may allow expression of the peptides or polypeptides in a suitable expression system using techniques well known in the art, followed by isolation or purification of the expressed peptide or polypeptide of interest. A variety of bacterial, yeast, plant, mammalian, and insect expression systems are available in the art and any such expression system can be used. Alternatively, a polynucleotide encoding a peptide of the invention can be translated in a cell-free translation system.


The selection of promoter will depend on the expression system being used. For example, suitable promoters for directing the transcription of the nucleic acid constructs of the present invention, especially in a bacterial host cell, are the promoters obtained from the E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), Bacillus subtilis levansucrase gene (sacB), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus amyloliquefaciens alpha-amylase gene (amyQ), Bacillus lichemformis penicillinase gene (penP), Bacillus subtilis xylA and xylB genes, and prokaryotic beta-lactamase gene.


The expression vector may contain other control, selectable marker, or tag sequences. Control sequences include additional components necessary for the expression of a polynucleotide, including but not limited to, a leader, a polyadenylation sequence, a propeptide sequence, a signal peptide sequence, and a transcription or translation terminator. The control sequence(s) may be native or foreign to the nucleotide sequence encoding the polypeptide or native or foreign to each other. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the nucleotide sequence encoding a polypeptide.


The selectable marker and any other parts of the expression construct may be chosen from those available in the art. In some embodiments, the selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophy, and the like and thereby permits easy selection of transformed, transfected, transduced, or the like cells. The selectable markers are primarily dictated by the host cell being used. For example, bacterial selectable markers commonly include markers that confer resistance to antibiotics, for example ampicillin, kanamycin, chloramphenicol, or tetracycline.


Various types of expression vectors are available in the art and include, but are not limited to, bacterial, viral, and yeast vectors. For example, the vector may include a plasmid, cosmid, bacteriophage, p1-derived artificial chromosome (PAC), bacterial artificial chromosome (BAC), yeast artificial chromosome (YAC), or mammalian artificial chromosome (MAC). The various vectors may be selected based on the size of polynucleotide inserted in the construct.


Also provided is a host cell comprising the polynucleotides or the expression vectors described herein. The host cell may be any cell useful in the recombinant production of a polypeptide of the present invention, e.g., a prokaryote or a eukaryote. The prokaryotic host cell may be any Gram-positive or Gram-negative bacterium. Gram-positive bacteria include, but are not limited to, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, and Streptomyces. Gram-negative bacteria include, but are not limited to, Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, Ilyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma. The host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.


In some embodiments, the host cell is a gastrointestinal microbiota (gut flora) microorganism that is modified to express and/or secrete the polypeptides described herein. Such host cells find use in populating gastrointestinal systems of host organisms (e.g., people, livestock, etc.) to regulate (e.g., increase) that ability of the host organism to digest or otherwise process xanthan gum. These host cells find particular use in subject that have a high dietary intake of xanthan gum (e.g., human subject on a low gluten or gluten-free diet). Host cells that find use in such application include, for example, bacteria belonging to the genera Bacteroides, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus, Peptostreptococcus, and/or Bifidobacterium. Such host cells may be introduced into a subject by any suitable methodology including, but not limited to, administration of probiotics containing the host cells and fecal microbiota transplantation. In some embodiments, endogenous gastrointestinal microbiota are genetically modified.


3. Compositions and Methods of Use

The present disclosure further provides compositions comprising the polypeptides described herein and methods of use thereof. The composition may take on any desired form (e.g., liquid, gel, powder, granulate, paste, spray, bar, unit dose, microcapsule, and the like). The compositions and the polypeptides described herein may be used in any application which requires or it is beneficial to degrade or remove xanthan gum.


In some embodiments, the composition is a cleaning composition. The cleaning composition includes, but is not limited to, detergent compositions (e.g., liquid and/or solid laundry detergents and dish washing detergents); hard surface cleaning formulations, such as for glass, wood, ceramic and metal counter tops, floors, tables, walls, and windows; carpet cleaners; oven cleaners; fabric fresheners; fabric softeners; and textile and laundry pre-treaters.


The cleaning compositions may comprise one or more additional enzymes, such as proteases, amylases, lipases, cellulases, endoglucanases, xyloglucanases, pectinases, pectin lyases, peroxidaes, catalases, mannanases, redox enzymes, or any mixture thereof. The cleaning compositions may also comprise one or more components selected from surfactants, builders, chelating agents, bleaching components (e.g., precursors, activators, catalysts), antibacterial agents, antifungal agents, polymers, degreasers, corrosion inhibitors, stabilizers, antioxidants, colorants, fragrances, foaming agents, emulsifiers, moisturizers, abrasives, binders, viscosity controlling agents, and pH controlling agents. One of skill in the art is capable of selecting the additional components based on the desired functionality of the composition.


In some embodiments, the composition is a well treatment composition or a wellbore servicing composition. Xanthan gum is commonly used for increasing the viscosity of drilling fluids (e.g., drilling mud, drill-in fluids, or completion fluids). Compositions comprising a xanthanase, such as those disclosed herein, may be used to decrease viscosity of the fluids and/or clean well bores and wellbore filter cakes. Filter cakes are coatings on the walls of the wellbore that limit drilling fluid losses, preserve the integrity of the drilling fluid, prevent formation damage, and provide a balanced density. To form a filter cake, the drilling fluid is often intentionally modified with a weighting material including barite, iron oxide, or calcium carbonate and some particles of a size slightly smaller than the pore openings of the formation. It is these particles which may contain xanthan gum and improve viscosity and emulsification properties of the drilling fluid.


The well treatment composition or wellbore servicing composition may also comprise one or more additional components selected from chelating agents; converting agents (carbonate, nitrate, chloride, formate, or hydroxide salts); other polymer removal agents (persulfate salt, a perborate salt, a peroxide salt, and other enzymes, for example, amylases, glucanases, mannanases, cellulases, oxidoreductases, hydrolases, lyases); organic solvents; surfactants; binders; an aqueous liquid, which may be water, brine, seawater, or freshwater; fragrances; colorants; dispersants; pH control agents or acidifying agents; water softeners or scale inhibitors; bleaching agents; crosslinking agents; antifouling agents; antifoaming agents; anti-sludge agents; corrosion inhibitors; viscosity modifying agents; friction reducers; freeze point depressants, iron-reducing agents; and biocides. One of skill in the art is capable of selecting the additional components based on the desired functionality of the components. Exemplary compositions and methods of using well treatment or wellbore servicing compositions can be found in U.S. Pat. Nos. 5,881,813, 6,110,875, and 9,890,321 and U.S. Patent Publications 2020/0131432 and 2020/0115609; each incorporated herein by reference in its entirety.


The present disclosure provides methods of cleaning utilizing the polypeptides or compositions disclosed herein. The methods comprise contacting an object or a surface with the polypeptides or compositions disclosed herein. In some embodiments, the methods further comprise at least one or both of rinsing the object or surface and drying the object or surface. In some embodiments, the object or surface comprises a textile, a plate, tile, dishware, silverware, glass, a wellbore, or wellbore filter cake.


The process of contacting can be done in a variety of different ways, depending on the composition and the subject or object being cleaned. For example, the composition can be diluted into water to for a cleaning solution which is then contacting the surface or object as commonly done in dishwashing, laundry, and floor cleaning applications. The composition may be directly applied to the surface or object as a spray, liquid, foam, or solid, as is common for fabric spot treatments and hard surface cleansers. The contacting may be carried out for any period of time and may include a soaking period in which the object or surface remains in contact with the composition for a period of time, for example, for at least about 1 hour, at least about 4 hours, at least about 8 hours, at least about 16 hours, or at least about 24 hours.


For cleaning of a wellbore or wellbore filter cake, the composition can be injected into the wellbore to dissolve the filter cake within, the composition can be injected directly at the site of a filter cake, the composition can circulate in the wellbore for a period of time, or the composition may be left in the wellbore in a static manner to soak the wellbore or filter cake.


The present disclosure provides methods of modifying xanthan gum in a subject (e.g., in a digestive tract of a subject). In some embodiments, polypeptides are provided to the subject. In some embodiments, the polypeptides are provided orally such that they are made available in the digestive tract (e.g., mouth, stomach, small intestine, large intestine, etc.) at a concentration sufficient to digest xanthan gum present in the subject. In some such embodiments, purified polypeptides are provided in a capsule or other carrier that releases the peptides at a desired location in the digestive tract. In some embodiments, polypeptides are made available by expressing them in a host cell in a subject. In some embodiments, the host cell is a gastrointestinal microbiota microorganism. The polypeptide may be transiently or stably expressed in the microorganism. A nucleic sequence encoding the polypeptide may be under the control of a promoter that provides optimized expression (e.g., overexpression) of the polypeptide. In some embodiments, the promoter is an inducible promoter that permits control over the timing and/or level of expression. In some embodiments, the polypeptide is encoded by a nucleic acid sequence that further encodes a signal sequence such that the translated polypeptide contains the signal sequence. Signal sequences find use, for example to increase extracellular secretion of the polypeptide.


The present disclosure also provides methods of making intermediate sized xanthan gums and/or pentasaccharide repeating units of xanthan gum. The methods comprise contacting xanthan gum or a composition comprising xanthan gum with the disclosed truncated xanthanase or compositions thereof. The contacting may be done for various lengths of time or under various conditions which facilitate activity of the xanthanase. One of skill in the art can monitor the reaction and the products produced by using any carbohydrate analysis method known in the art, including but not limited to, liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), gas chromatography (GC), high performance liquid chromatography (HPLC), and quantitative size exclusion or molecular sieve chromatography.


The truncated xanthanase cleaves the reducing end of the non-branching backbone glucosyl residue of xanthan gum. The length or molecular weight of the intermediate sized xanthan gums and/or the relative percentage of pentasaccharide repeating units of xanthan gum formed can be regulated by changing the length of time in which the enzyme is in contact with the xanthan gum, the temperature of the reaction, and/or the quantity of the enzyme.


The intermediate sized xanthan gums and/or pentasaccharide repeating units of xanthan gum may be purified and employed in a number of applications or, alternatively, further modified using chemical modifications known in the art for xanthan gum and other starches. The intermediate sized xanthan gums and/or pentasaccharide repeating units of xanthan gum may be utilized in applications in which rheological and viscosity characteristics different from those conferred by native xanthan gum are desired. For example, the intermediate sized xanthan gums and/or pentasaccharide repeating units of xanthan gum may be employed in drilling fluids/muds, cosmetics, water-based paints, construction and building materials, food products, drug delivery compositions, hydrogels, and tissue engineering (See Kumar, A., et al., Carbohydr Polym 180:128-144 (2018) and Ramburrun, et al., Expert Opin. Drug Deliv. 14, 291-306 (2017), both incorporated herein by reference in their entirety).


4. Genetically Modified Bacteria

The present disclosure provides genetically modified bacteria. In some embodiments, the genetically modified bacteria comprise the truncated xanthanase polypeptides or polynucleotides disclosed herein. In some embodiments, the genetically modified bacteria comprise a heterologous xanthan-utilization gene or gene locus.


The heterologous xanthan-utilization gene or gene locus may comprise one or more nucleic acids encoding a xanthan or xanthan oligosaccharide degrading enzyme. The xanthan or xanthan oligosaccharide degrading enzyme may comprise a glycoside hydrolase, a xanthan or polysaccharide lyase, a mannanase, or a carbohydrate esterase.


In some embodiments, the xanthan-utilization gene or gene locus comprises a gene encoding a glycoside hydrolase family 5 enzyme from Ruminococcaceae UCG13. In some embodiments, the glycoside hydrolase family 5 enzyme may comprise an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 2 or 3. In some embodiments, the glycoside hydrolase family 5 enzyme may comprise an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 33.


The heterologous xanthan-utilization gene or gene locus may further comprise one or more nucleic acids encoding at least one or all of: one or more carbohydrate uptake proteins; one or more carbohydrate esterases; a polysaccharide lyase family protein (PL); a glycoside hydrolase family 88 (GH88); a glycoside hydrolase family 94 (GH94); and a glycoside hydrolase family 38 (GH38). In some embodiments, the heterologous xanthan-utilization gene or gene locus further comprises one or more nucleic acids encoding each of: one or more carbohydrate uptake proteins; one or more carbohydrate esterases; a polysaccharide lyase family protein (PL); a glycoside hydrolase family 88 (GH88); a glycoside hydrolase family 94 (GH94); and a glycoside hydrolase family 38 (GH38).


Carbohydrate uptake proteins include any proteins or enzymes necessary for the import of carbohydrates, including xanthan oligosaccharides, into the bacterial cell. Carbohydrate uptake proteins may include, but are not limited to, carbohydrate binding proteins and carbohydrate transporters. In some embodiments, the carbohydrate uptake proteins include transporters capable of transporting xanthan oligosaccharides produced by the xanthanase described herein.


Polysaccharide lyases (or eliminases) are a class of enzymes that act to cleave certain activated glycosidic linkages present in polysaccharides. These enzymes act through an eliminase mechanism, rather than through hydrolysis, resulting in unsaturated oligosaccharide products. Polysaccharide lyases are endogenous to various microorganisms, bacteriophages, and some eukaryotes. The polysaccharide lyases have been classified into approximately 40 families available through the Carbohydrate Active enZyme (CAZy) database.


In some embodiments, the polysaccharide lyase family protein comprises a polysaccharide lysase family 8 protein. In some embodiments, the polysaccharide lyase family protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 4.


Glycoside hydrolases are enzymes that catalyze the hydrolysis of the glycosidic linkage of glycosides, leading to formation of sugar hemiacetal or hemiketal products. Glycoside hydrolases are also referred to as glycosidases, and sometimes also as glycosyl hydrolases. The glycoside hydrolases have been classified into more than 100 families available through the Carbohydrate Active enZyme database. Each family contains proteins that are related by sequence, and by extension, tertiary structure. A number of glycoside hydrolases may be used in the heterologous xanthan-utilization gene or gene locus disclosed herein.


In some embodiments, the glycoside hydrolase is from the glycoside hydrolase family 88 (GH88). In some embodiments, the glycoside hydrolase family 88 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 8.


In some embodiments, the glycoside hydrolase is from the glycoside hydrolase family 94 (GH94). In some embodiments, the glycoside hydrolase family 94 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 5.


In some embodiments, the glycoside hydrolase is from the glycoside hydrolase family 38 (GH38). In some embodiments, the glycoside hydrolase family 38 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 6 or SEQ ID NO: 7.


Carbohydrate esterases are a group of enzymes which release acyl or alkyl groups attached by ester linkage to carbohydrates. The carbohydrate esterases catalyze deacetylation of both O-linked and N-linked acetylated saccharide residues (esters or amides). The carbohydrate active enzyme database has 16 classified families of carbohydrate esterases. In some embodiments, the carbohydrate esterase used herein is capable of deacetylating xanthan oligosaccharides produced by the xanthanase described herein. The heterologous xanthan-utilization gene or gene locus may include one or more carbohydrate esterases. In some embodiments, the one or more carbohydrate esterases independently comprise an amino acid sequence having at least 70% identity to SEQ ID NO: 9 or SEQ ID NO: 10. In some embodiments, the heterologous xanthan-utilization gene or gene locus includes two carbohydrate esterases, ones having an amino acid sequence having at least 70% identity to SEQ ID NO: 9 and the other having an amino acid sequence having at least 70% identity to SEQ ID NO: 10.


The heterologous xanthan-utilization gene or gene locus may further comprise, in addition or alternatively, one or more nucleic acids encoding at least one or all of: one or more carbohydrate uptake proteins; a polysaccharide lyase family protein (PL); a glycoside hydrolase family 88 (GH88); a glycoside hydrolase family 92 (GH92); and a glycoside hydrolase family 3 (GH3). In some embodiments, the heterologous xanthan-utilization gene or gene locus further comprises two carbohydrate uptake proteins. In some embodiments, the heterologous xanthan-utilization gene or gene locus further comprises each of two carbohydrate uptake proteins and at least one or all of: a polysaccharide lyase family protein (PL); a glycoside hydrolase family 88 (GH88); a glycoside hydrolase family 92 (GH92); and a glycoside hydrolase family 3 (GH3). In some embodiments, the heterologous xanthan-utilization gene or gene locus further comprises each of two carbohydrate uptake proteins, a polysaccharide lyase family protein (PL), a glycoside hydrolase family 88 (GH88), a glycoside hydrolase family 92 (GH92), and a glycoside hydrolase family 3 (GH3).


The carbohydrate uptake proteins may include members of the starch utilization system (Sus) of Bacteroides. The Sus includes the requisite proteins for binding and processing carbohydrates at the surface of the cell and, the subsequent oligosaccharide transport across the membrane for further degradation. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. The carbohydrate uptake protein may include SusC or SusD or homologs or variants thereof from Bacteroides known in the art (See, for example, Xu, et al., PLoS Biol. 2007 July; 5(7): e156 and Foley, et al., Cell Mol Life Sci. 2016 July; 73(14): 2603-2617, both incorporated by reference herein in their entirety. In some embodiments, the one or more carbohydrate uptake proteins independently comprise an amino acid sequence having at least 70% identity to SEQ ID NO: 11 or SEQ ID NO: 12. In some embodiments, the one or more carbohydrate uptake proteins independently comprise an amino acid sequence having at least 70% identity to SEQ ID NO: 43 or SEQ ID NO: 44.


In some embodiments, the polysaccharide lyase family protein comprises a polysaccharide lysase family 2 protein. In some embodiments, the polysaccharide lyase family protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 14. In some embodiments, the polysaccharide lyase family protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 42.


In some embodiments, the glycoside hydrolase is from the glycoside hydrolase family 88 (GH88). In some embodiments, the glycoside hydrolase family 88 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 16. In some embodiments, the glycoside hydrolase family 88 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 38.


In some embodiments, the glycoside hydrolase is from the glycoside hydrolase family 92 (GH92). In some embodiments, the glycoside hydrolase family 92 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 17. In some embodiments, the glycoside hydrolase family 92 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 39.


In some embodiments, the glycoside hydrolase is from the glycoside hydrolase family 3 (GH3). In some embodiments, the glycoside hydrolase family 3 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 13. In some embodiments, the glycoside hydrolase family 3 protein comprises an amino acid sequence having at least 70% identity to SEQ ID NO: 35 or SEQ ID NO: 36.


The heterologous xanthan-utilization gene or gene locus may further comprise additional genes encoding proteins and enzymes involved in xanthan-utilization including, but not limited to, glucokinases, mannose-6-phophate isomerases, phosphoglucomutases, other glycoside hydrolases (e.g., other glycoside hydrolase family 5 proteins), environmental sensors, and signaling proteins (e.g., response regulators). For example the gene locus may further comprise a glucokinase protein having an amino acid sequence having at least 70% identity to SEQ ID NO: 18 or 20, a transporter protein having an amino acid sequence having at least 70% identity to SEQ ID NO: 26-29, a transcriptional regulator having an amino acid sequence having at least 70% identity to SEQ ID NO: 25, a response regulator having an amino acid sequence having at least 70% identity to SEQ ID NO: 24, an isomerase having an amino acid sequence having at least 70% identity to SEQ ID NO: 22 or 23, a kinase having an amino acid sequence having at least 70% identity to SEQ ID NO: 21, a carbohydrate-binding module protein (e.g. Carbohydrate-binding module family 11 protein) having an amino acid sequence having at least 70% identity to SEQ ID NO: 19, and/or an environmental sensor (e.g. hybrid two-component system (HTCS) protein) having an amino acid sequence having at least 70% identity to SEQ ID NO: 30 or 40.


The heterologous xanthan-utilization gene locus may comprise a nucleic acid sequence having an amino acid sequence having at least 70% identity to SEQ ID NO: 31, 32, or 45.


The bacteria may be from the genus Bacteroides, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus, Peptostreptococcus, Bifidobacteria, Escherichia, and/or Lactobacillus.


In some embodiments, the genetically modified bacterium is in the genus Bacteroides, including but not limited to, B. acidifaciens, B. amylophilus, B. asaccharolyticus, B. barnesiae, B. bivius, B. buccae, B. buccalis, B. caccae, B. capillosus, B. capillus, B. cellulosilyticus, B. chinchilla, B. clarus, B. coagulans, B. coprocola, B. coprophilus, B. coprosuis, B. corporis, B. denticola, B. disiens, B. distasonis, B. dorei, B. eggerthii, B. endodontalis, B. faecichinchillae, B. faecis, B. finegoldii, B. fluxus, B. forsythus, B. fragilis, B. furcosus, B. galacturonicus, B. gallinarum, B. gingivalis, B. goldsteinii, B. gracilis, B. graminisolvens, B. helcogenes, B. heparinolyticus, B. hypermegas, B. intermedius, B. intestinalis, B. johnsonii, B. levvi, B. loescheii, B. macacae, B. massiliensis, B. melaninogenicus, B. merdae, B. microfusus, B. multiacidus, B. nodosus, B. nordii, B. ochraceus, B. oleiciplenus, B. oralis, B. oris, B. oulorum, B. ovatus, B. paurosaccharolyticus, B. pectinophilus, B. pentosaceus, B. plebeius, B. pneumosintes, B. polypragmatus, B. praeacutus, B. propionicifaciens, B. putredinis, B. pyogenes, B. reticulotermitis, B. rodentium, B. ruminicola, B. salanitronis, B. salivosus, B. salyersiae, B. sartorii, B. splanchnicus, B. stercorirosoris, B. stercoris, B. succinogenes, B. suis, B. tectus, B. termitidis, B. thetaiotaomicron, B. uniformis, B. ureolyticus, B. veroralis, B. vulgatus, B. xylanisolvens, B. xylanolyticus, B. zoogleoformans, and any combination thereof.


In some embodiments, the genetically modified bacterium is a gram-positive gut commensal bacteria. The gram-positive gut commensal bacteria may be from the genus Enterococcus, Staphylococcus, Lactobacillus, Clostridium, Peptostreptococcus, Peptococcus, Streptococcus, Bifidobacterium, and/or Faecalibacterium. In some embodiments, the gram-positive gut commensal bacteria may be Lactobacillus reuteri or Clostridium scindens.


In some embodiments, the genetically modified bacteria may comprise the polynucleotide on a plasmid, a bacterial artificial chromosome or integrated into the genome of the bacterium.


Also provided are compositions comprising the genetically modified bacteria described herein. In some embodiments, the composition is a pharmaceutical composition (e.g., probiotic composition) further comprising excipients and/or pharmaceutically acceptable carriers. The excipients and/or pharmaceutically acceptable carriers may facilitate delivery of the genetically modified bacteria to a subject, for example a subject's gastro-intestinal tract, in a viable and metabolically-active condition, for example in a condition capable of colonizing and/or metabolizing and/or proliferating in the gastrointestinal tract.


The choice of excipients or pharmaceutically acceptable carriers will depend on factors including, but not limited to, the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.


Excipients and carriers may include any and all solvents, dispersion media, coatings, and isotonic and absorption delaying agents. Some examples of materials which can serve as excipients and/or carriers are sugars including, but not limited to, lactose, glucose and sucrose; starches including, but not limited to, corn starch and potato starch; cellulose and its derivatives including, but not limited to, sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients including, but not limited to, cocoa butter and suppository waxes; oils including, but not limited to, peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; including propylene glycol; esters including, but not limited to, ethyl oleate and ethyl laurate; agar; buffering agents including, but not limited to, magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants including, but not limited to, sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants. The compositions of the present invention and methods for their preparation will be readily apparent to those skilled in the art. Techniques and formulations may be found, for example, in Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company, 1995). The composition can comprise additional components, such as vitamins, minerals, carbohydrates, and a mixture thereof.


The composition may take on many forms. In some embodiments, the composition comprises encapsulating (e.g., in tablets, caplets, microcapsules) the genetically modified bacteria for enhanced delivery and survival in the gastric and/or gastrointestinal tract of a subject. In some embodiments, the composition is a foodstuff including liquids (e.g., drinks), semi-solids (e.g., jellies, yogurts, puddings, smoothies, and the like) and solids.


The disclosure also provides, a method of treating a disease or disorder comprising administering a therapeutically or prophylactically effective dose of the genetically modified bacteria or compositions thereof to a subject in need thereof. The specific dose level may depend upon a variety of factors including the age, body weight, and general health of the subject, time of administration, and route of administration. An “effective amount” is an amount that is delivered to a subject, either in a single dose or as part of a series, which achieves a medically desirable effect. For therapeutic purposes, and effect amount is the quantity which, when administered to a subject in need of treatment, improves the prognosis and/or state of the subject and/or that reduces or inhibits one or more symptoms to a level that is below that observed and accepted as clinically diagnostic or clinically characteristic of the disease or disorder. For prophylaxis purposes, an effective amount is that amount which induces a protective result without significant adverse side effects.


The frequency of dosing the effective amount can vary, but typically the effective amount is delivered daily, either as a single dose, multiple doses throughout the day, or depending on the dosage form, dosed continuously for part or all of the treatment period.


The genetically modified bacteria may be administered at about 104 to about 1010 cfu per dose, about 105 to about 109 cfu per dose, about 105 to about 107 cfu per dose, or about 109 cfu per dose.


The disease or disorder may comprise a gastrointestinal disease or disorder including diseases and disorders that cause inflammation in the gastrointestinal system including, but not limited to, Irritable Bowel Syndrome, diarrhea, Crohn's disease, ulcerative colitis, and gluten intolerance or Celiac's disease. The treatment may be combined with gluten-free or low carbohydrate diets that are high in xanthan gum.


In some embodiments, the administration is oral. The genetically modified bacteria may be administered with food (e.g., concomitantly with food, within an hour of before or after consuming food).


5. Examples
Materials and Methods

Culturing and phylogenetic analysis of xanthan degrading cultures Xanthan degrading cultures were grown in Defined Medium (DM), which was generally prepared as a 2×stock then mixed 1:1 with 10 mg/mL carbon source (e.g., xanthan gum). Cultures were grown in an anaerobic chamber (10% H2, 5% CO2, and 85% N2) maintained at 37° C. Each liter of prepared DM medium (pH=7.2) contained 13.6 g KH2PO4, 0.875 g NaCl, 1.125 g (NH4)2SO4, 2 mg each of adenine, guanine, thymine, cytosine, and uracil, 2 mg of each of the 20 essential amino acids, 1 mg vitamin K3, 0.4 mg FeSO4, 9.5 mg MgCl2, 8 mg CaCl2, 5 μg Vitamin B12, 1 g L-cysteine, 1.2 mg hematin with 31 mg histidine, 1 mL of Balch's vitamins, 1 mL of trace mineral solution, and 2.5 g beef extract.


Each liter of Balch's vitamins was prepared with 5 mg p-Aminobenzoic acid, 2 mg folic acid, 2 mg biotin, 5 mg nicotinic acid, 5 mg calcium pantothenate, 5 mg riboflavin, 5 mg thiamine HCl, 10 mg pyridoxine HCl, 0.1 mg cyanocobalamin, 5 mg thioctic acid. Prepared Balch's vitamins adjusted to pH 7.0, filter sterilized with 0.22 μm PES filters, and stored in the dark at 4° C.


Each L of trace mineral solution was prepared with 0.5 g EDTA (Sigma, ED4SS), 3 g MgSO4·7H2O, 0.5 g MnSO4·H2O, 1 g NaCl (Sigma, S7653), 0.1 g FeSO4·7H2O (Sigma, 215422), 0.1 g CaCl2, 0.1 g ZnSO4·7H2O, 0.01 g CuSO4·5H20, 0.01 g H3BO3 (Sigma, B6768), 0.01 g Na2MoO4·2H2O, 0.02 g NiCl2·6H2O. Prepared trace mineral solution was adjusted to pH 7.0, filter sterilized with 0.22 μm PES filters, and stored at room temperature.


Samples that showed growth on xanthan gum, as evidenced by loss of viscosity and increased culture density, were subcultured 10 times by diluting an active culture 1:100 into fresh DM-XG medium. For the original culture, multiple samples were stored for gDNA extraction and analysis while for the larger sample set, samples were stored after 10 passages; samples were harvested by centrifugation, decanted, and stored at −20° C. until further processing.


Frozen cell pellets were resuspended in 500 μL Buffer A (200 mM NaCl, 200 mM Tris-HCl, 20 mM EDTA) and combined with 210 μL SDS (20% w/v, filter-sterilized), 500 μL phenol:chloroform (alkaline pH), and ˜250 μL acid-washed glass beads (212-300 μm; Sigma). Samples were bead beaten on high for 2-3 minutes with a Mini-BeadBeater-16 (Biospec Products, USA), then centrifuged at 18,000 g for 5 mins. The aqueous phase was recovered and mixed by inversion with 500 μL of phenol:chloroform, centrifuged at 18,000 g for 3 mins, and the aqueous phase was recovered again. The sample was mixed with 500 μL chloroform, centrifuged, and then the aqueous phase was recovered and mixed with 0.1 volumes of 3 M sodium acetate (pH 5.2) and 1 volume isopropanol. The sample was stored at −80° C. for ≥30 mins, then centrifuged at ≥20,000 g for 20 mins at 4° C. The pellet was washes with 1 mL room temperature 70% ethanol, centrifuged for 3 mins, decanted, and allowed to air dry before resuspension in 100 μL sterile water. Resulting samples were additionally purified using the DNeasy Blood & Tissue Kit (QIAGEN, USA). Illumina sequencing, including PCR and library preparation, were performed by the University of Michigan Microbial Systems Molecular Biology lab as described by Kozich et al (Appl. Environ. Microbiol. 79, 5112-5120 (2013), incorporated herein by reference in its entirety). Barcoded dual-index primers specific to the 16S rRNA V4 region were used to amplify the DNA. PCR reactions consisted of 5 μL of 4 μM equimolar primer set, 0.15 μL of AccuPrime Taq DNA High Fidelity Polymerase, 2 μL of 10× AccuPrime PCR Buffer II (Thermo Fisher Scientific, catalog no. 12346094), 11.85 μL of PCR-grade water, and 1 μL of DNA template. The PCR conditions used consisted of 2 min at 95° C., followed by 30 cycles of 95° C. for 20 s, 55° C. for 15 s, and 72° C. for 5 min, followed by 72° C. for 10 min. Each reaction was normalized using the SequalPrep Normalization Plate Kit (Thermo Fisher Scientific, catalog no. A1051001), then pooled and quantified using the Kapa Biosystems Library qPCR MasterMix (ROX Low) Quantification kit for Illumina platforms (catalog no. KK4873). After confirming the size of the amplicon library using an Agilent Bioanalyzer and a high-sensitive DNA analysis kit (catalog no. 5067-4626), the amplicon library was sequenced on an Ilumina MiSeq platform using the 500 cycle MiSeq V2 Reagent kit (catalog no. MS-102-2003) according to the manufacturer's instructions with modifications of the primer set with custom read 1/read 2 and index primers added to the reagent cartridge. The “Preparing Libraries for Sequencing on the MiSeq” (part 15039740, Rev. D) protocol was used to prepare libraries with a final load concentration of 5.5 μM, spiked with 15% PhiX to create diversity within the run.


MPN/Dilution to extinction experiment An overnight culture was serially diluted in 2× DM. Serial dilutions were split into two 50 mL tubes and mixed 1:1 with either 10 mg/mL xanthan gum or 10 mg/mL monosaccharide mixture (4 mg/mL glucose, 4 mg/mL mannose, 2 mg/mL sodium glucuronate), both of which also had 1 mg/mL L-cysteine. Each dilution and carbon source was aliquoted to fill a full 96-well culture plate (Costar 3370) with 200 p L per well. Plates were sealed with Breathe-Easy gas permeable sealing membrane for microtiter plates (Diversified Biotech, cat #BEM-1). Microbial growth was measured at least 60 hours by monitoring OD600 using a Synergy HT plate reader (Biotek Instruments) and BIOSTACK2WR plate handler (Biotek Instruments).


Maximum OD for each substrate was measured for each culture. Full growth on substrates was conservatively defined as a maximum OD600 of >0.7. For each unique 96 well plate of substrate and dilution factor, the fraction of wells exhibiting full growth was calculated. Fractional growth was plotted against dilution factor for each substrate. Data were fit to the Hill equation by minimizing squared differences between the model and experimental values using Solver (GRG nonlinear) in Excel. For each experiment, a 50% growth dilution factor (GDF 50) was calculated for each substrate at which half of the wells would be predicted to exhibit full growth.


Neutral Monosaccharide analysis. The hot-phenol extraction method originally described by Massie & Zimm (Proc. Natl. Acad. Sci. 54, 1641-1643 (1965), incorporated herein by reference) and modified by Nie (ProQuest Diss. Theses 136 (2016), incorporated herein by reference) was used for collecting and purifying the polysaccharides remaining at different timepoints. Samples were heated to 65° C. for 5 mins, combined with an equal volume of phenol, incubated at 65° C. for 10 mins, then cooled to 4° C. and centrifuged at 4° C. for 15 min at 12,000 g. The upper aqueous layer was collected and re-extracted using the same procedure, dialyzed extensively against deionized water (2000 Da cutoff), and freeze-dried. Neutral monosaccharide composition was obtained using the method described by Tuncil et al. (Sci. Rep. 8, 1-13 (2018), incorporated herein by reference). Briefly, sugar alditol acetates were quantified by gas chromatography using a capillary column SP-2330 (SUPELCO, Bellefonte, PA) with the following conditions: injector volume, 2 μl; injector temperature, 240° C.; detector temperature, 300° C.; carrier gas (helium), velocity 1.9 meter/second; split ratio, 1:2; temperature program was 160° C. for 6 min, then 4° C./min to 220° C. for 4 min, then 3° C./min to 240° C. for 5 min, and then 11° C./min to 255° C. for 5 min.


Thin Layer Chromatography for Localization of Enzyme Activity Overnight cultures were harvested at 13,000 g for 10 minutes. Supernatant fractions were prepared by vacuum filtration through 0.22 μm PES filters. Cell pellet fractions were prepared by decanting supernatant, washing with phosphate buffered saline (PBS), spinning at 13,000 g for 3 mins, decanting, and resuspending in PBS. Intracellular fractions were prepared by taking cell pellet fractions and bead beating for 90 s with acid-washed glass beads (G1277, Sigma) in a Biospec Mini Beadbeater. Lysed culture fractions were prepared by directly bead beating unprocessed culture.


Each culture fraction was mixed 1:1 with 5 mg/mL xanthan gum and incubated at 37° C. for 24 hours. Negative controls were prepared by heating culture fractions to 95° C. for 15 mins, then centrifuging at 13,000 g for 10 mins before the addition of xanthan gum. All reactions were halted by heating to ≥85° C. for 15 mins, then spun at 20,000 g for 15 mins at 4° C. Supernatants were stored at −20° C. until analysis by thin layer chromatography.


Samples (3 μL) were spotted twice onto a 10×20 cm thin layer chromatography plate (Millipore TLC Silica gel 60, 20×20 cm aluminum sheets), with intermediate drying using a Conair 1875 hairdryer. Standards included malto-oligosaccharides of varying lengths (Even: 2, 4, 6, Odd: 1, 3, 5, 7), glucuronic acid, and mannose. Standards were prepared at 10 mM and 3 uL of each was spotted onto the TLC plate. Plates were run in ˜100 mL of 2:1:1 butanol, acetic acid, water, dried, then run an additional time. After drying, plates were incubated in developing solution (100 mL ethyl acetate, 2 g diphenylamine, 2 mL aniline, 10 mL of ˜80% phosphoric acid, 1 mL of ˜38% hydrochloric acid) for ˜30 seconds, then dried, and developed by holding over a flame until colors were observed.


Proteomic analysis Approximately 1 L of xanthan gum culture was grown until it had completely liquified (˜2-3 days). Supernatant was collected by centrifuging at 18,000 g and vacuum filtering through a 0.2 μm PES filter. 4M ammonium sulfate was added to 200-400 mL of filtrate to a final concentration of 2.4M and incubated for 30-60 mins at RT or, for one sample, overnight at 4° C. Precipitated proteins were harvested by centrifugation at 18,000 g for 30-60 mins, then resuspended in 50 mM sodium phosphate (pH 7.5). Three different fractionation protocols were followed, but after every fractionation step, active fractions were identified by mixing ˜500 μL with 10 mg/mL xanthan and incubating at 37° C. overnight; active-fractions were identified by loss of viscosity or production of xanthan oligosaccharides as visualized by TLC.


1. Resuspended protein was filtered and applied to a HiTrapQ column, running a gradient from β-100% B (Buffer A: 50 mM sodium phosphate, pH 7.5; Buffer B: 50 mM sodium phosphate, 1 M NaCl, pH 7.5). Active fractions were pooled and concentrated with a 10 kDa MWCO centricon and injected onto an S-200 16/60 column equilibrated in 50 mM sodium phosphate, 200 mM NaCl, pH 7.5. The earliest fractions to elute with significant A280 absorbance were also the most active fractions; these were pooled and submitted for proteomics.


2. Resuspended protein was filtered and applied to an S-500 column equilibrated in 50 mM sodium phosphate, 200 mM NaCl, pH 7.5. Active fractions eluted in the middle of the separation were pooled and submitted for proteomics.


3. Resuspended protein was filtered and applied to an S-500 column equilibrated in 50 mM sodium phosphate, 200 mM NaCl, pH 7.5. Pooled fractions were applied to a 20 mL strong anion exchange column running a gradient from β-100% B (Buffer A: 50 mM sodium phosphate, pH 7.5; Buffer B: 50 mM sodium phosphate, 1 M NaCl, pH 7.5). Active fractions were pooled and applied to a 1 mL weak anion exchange column (ANX) running a gradient from β-100% B (Buffer A: 50 mM sodium phosphate, 10% glycerol, pH 7.5; Buffer B: 50 mM sodium phosphate, 1 M NaCl, 10% glycerol, pH 7.5). Active fractions were pooled and submitted for proteomics.


Cysteines were reduced by adding 50 ml of 10 mM DTT and incubating at 45° C. for 30 min. Samples were cooled to room temperature and alkylation of cysteines was achieved by incubating with 65 mM 2-Chloroacetamide, under darkness, for 30 min at room temperature. An overnight digestion with 1 μg sequencing grade, modified trypsin was carried out at 37° C. with constant shaking in a Thermomixer. Digestion was stopped by acidification and peptides were desalted using SepPak C18 cartridges using manufacturer's protocol (Waters). Samples were completely dried using vacufuge. Resulting peptides were dissolved in 8 ml of 0.1% formic acid/2% acetonitrile solution and 2 μls of the peptide solution were resolved on a nano-capillary reverse phase column (Acclaim PepMap C18, 2 micron, 50 cm, ThermoScientific) using a 0.1% formic acid/2% acetonitrile (Buffer A) and 0.1% formic acid/95% acetonitrile (Buffer B) gradient at 300 nl/min over a period of 180 min (2-25% buffer B in 110 min, 25-40% in 20 min, 40-90% in 5 min followed by holding at 90% buffer B for 10 min and re-equilibration with Buffer A for 30 min). Eluent was directly introduced into Q exactive HF mass spectrometer (Thermo Scientific, San Jose CA) using an EasySpray source. MS1 scans were acquired at 60K resolution (AGC target=3×106; max IT=50 ms). Data-dependent collision induced dissociation MS/MS spectra were acquired using Top speed method (3 seconds) following each MS1 scan (NCE˜28%; 15K resolution; AGC target 1×105; max IT 45 ms).


Proteins were identified by searching the MS/MS data against a database of all proteins identified in the original culture metagenomes using Proteome Discoverer (v2.1, Thermo Scientific). Search parameters included MS1 mass tolerance of 10 ppm and fragment tolerance of 0.2 Da; two missed cleavages were allowed; carbamidomethylation of cysteine was considered fixed modification and oxidation of methionine, deamidation of asparagine and glutamine were considered as potential modifications. False discovery rate (FDR) was determined using Percolator and proteins/peptides with a FDR of ≤1% were retained for further analysis.


Kinetics of GH5-30 Lyase-treated xanthan gum was generated by mixing 5 mg/mL xanthan gum with 0.5 U/mL of Bacillus sp. Xanthan lyase (E-XANLB, Megazyme) in 30 mM potassium phosphate buffer (pH 6.5). After incubating overnight at 37° C., an addition 0.5 U/mL of xanthan lyase was added. Both lyase-treated and native xanthan gum were dialyzed extensively against deionized water, heated in an 80° C. water bath to inactivate the lyase, and centrifuged at 10,000 g for 20 mins to remove particulate. Supernatants were collected and stored at 4° C. until use. Kinetic measurements were conducted using a slightly modified version of the low-volume bicinchoninic acid (BCA) assay for glycoside hydrolases used by Arnal et al (Protein-Carbohydrate Interactions. Methods and Protocols (eds. Abbott, D. W. & Lammerts van Bueren, A.) 1588, 209-214 (2017), incorporated herein by reference). Briefly, AEX and SEC purified GH5 was diluted to a 10× stock of 5 μM enzyme, 50 mM sodium phosphate, 300 mM sodium chloride, and 0.1 mg/mL bovine serum albumin, pH=7.5. Reactions were 20 μL of enzyme stock mixed with 180 μL of various concentrations 37° C. xanthan gum. Negative controls were conducted with heat-inactivated enzyme stock. Timepoints were taken by quenching reactions with dilute, ice-cold, BCA working reagent. Reactions and controls were run with 4 independent replicates and compared to a glucose standard curve. Enzyme released reducing sugars were calculated by subtracting controls from reaction measurements.


Growth curves of isolates on XG oligos Pure isolates from the xanthan culture were obtained by streaking an active culture onto a variety of agar plates including LB and brain heart infusion with the optional addition of 10% defibrinated horse blood (Colorado Serum Co.) and gentamycin. After passaging isolates twice on agar plates, individual colonies were picked and grown overnight in tryptone-yeast extract-glucose (TYG) broth medium, then stocked by mixing with 0.5 volumes each of TYG and molecular biology grade glycerol and storing at −80° C. DM without beef extract (DM−BE), with the addition of a defined carbon source, was used to test isolates for growth on xanthan oligosaccharides. Some isolates (e.g., Parabacteroides distasonis) required the inclusion of 5 mg/mL beef extract (Sigma, B4888) to achieve robust growth on simple monosaccharides; in these cases, beef extract was included across all carbon conditions. Unless otherwise specified, carbon sources were provided at a final concentration of 5 mg/mL. Isolates were grown overnight in TYG media, subcultured 1:50 into DM−BE-glucose and grown overnight, then subcultured 1:50 into DM−BE with either various carbon sources. Final cultures were monitored for growth by measuring increase in absorbance (600 nm) using 96-well plates.


Extended metagenome analysis/comparison methodology Individual MAGs in each sample were searched by BlastP for the presence of proteins similar to those encoded by the XG-degrading PUL of R. UCG13 and B. intestinalis. This was done using the amino acid sequences of the proteins in the R. UCG13 and B. intestinalis PULs as the search homologs; both BlastP probes were searched against all the individual MAGs in the different samples with the default threshold e-value of le-5.


R. UCG13 and B. intestinalis/cell. XG Loci in Metagenomes Available cohorts of human gut metagenomic sequence data (National Center for Biotechnology Information projects: PRJNA422434, PRJEB10878, PRJEB12123, PRJEB12124, PRJEB15371, PRJEB6997, PRJDB3601, PRJNA48479, PRJEB4336, PRJEB2054, PRJNA392180, and PRJNA527208) were searched for the presence of xanthan locus nucleotide sequences from R. UCG13 (92.7 kb) and B. intestinalis (17.9kb) using the following workflow: Each xanthan locus nucleotide sequence was used separately as a template and then magic-blast v1.5.0 was used to recruit raw Illumina reads from the available metagenomic datasets with an identity cutoff of 97%. Next, the alignment files were used to generate a coverage map using bedtools v2.29.0 to calculate the percentage coverage of each sample against each individual reference. Metagenomic data sample was considered a to be positive for a particular xanthan locus if it had at least 70% of the corresponding xanthan locus nucleotide sequence covered.


The R. UCG13 locus and B. intestinalis XG locus were used as the query in a large-scale search against the assembled scaffolds of isolates, metagenome assembled genomes (bins), and metagenomes included into the Integrated Microbial Genomes & Microbiomes (IMG/M) comparative analysis system. Within the LAST software package, version 1066, the ‘lastal’ tool was used with default thresholds to search the 2 loci against 72,491 public high-quality isolate genomes, and 102,860 bins from 13,415 public metagenomes, and 21,762 public metagenomes in IMG/M. Metagenome bins were generated using the binning analysis method described in Clum, A. et al. The DOE JGI Metagenome Workflow. bioRxiv (2020), incorporated herein by reference.



Ruminococcaceae UCG13 —Glycosyl Hydrolase 5 (aka XGD26-15, aka GH5-30) Following 16s rDNA gene content determination and metagenomic sequencing of a multi-species xanthan-degrading community, sequence-specific oligonucleotide primers were designed and used to amplify the GH5 sequence from genomic DNA isolated from the multi-species culture. The PCR product for the protein was inserted into a C-terminal His-tagged expression construct using the Lucigen Expresso™ T7 Cloning and Expression System. The engineered plasmid containing the GH5-30 His-tagged sequence was transformed into BL21 (DE3) chemically competent cells. Seed cultures were grown overnight, followed by inoculation of 1 L of either LB or TB media, grown at 37° C. to an OD of ˜0.6-0.8, then induced with 250 μM IPTG and cooled to 18° C. for overnight (12-18 hr) expression. Cells were harvested by centrifugation, lysed with sonication, and recombinant protein was purified using standard His-tagged affinity protein purification protocols employing sodium phosphate buffers and either nickel or cobalt resin for immobilized metal affinity chromatography.


In general, pentameric xanthan oligosaccharides were produced by incubating ≥0.1 mg/mL GH5 with 5 mg/mL xanthan gum in PBS in approximately 1L total volume. For xanthan tetrasaccharides, ˜0.5 U/mL of Xanthan lyase (E-XANLB, Megazyme) was included. After incubating 2-3 days at 37° C. to allow complete liquefication, reactions were heat-inactivated, centrifuged at ≥10,000 g for 30 mins, and the supernatant was vacuum filtered through 0.22 μm PES sterile filters. Supernatants were loaded onto a column containing ˜10 g of graphitized carbon (Supelclean™ ENVI-Carb™, 57210-U Supelco), washed extensively with water to remove salt and unbound material, then eluted in a stepwise fashion with increasing concentrations of acetonitrile. Fractions were dried, weighed, and analyzed by LC-MS and fractions that contained the most significant yield of desired products were combined.


Highly pure products were obtained by reconstituting samples in 50% water:acetonitrile and applying to a Luna® 5 μm HILIC 200 Å LC column (250×10 mm) (OOG-4450-NO, Phenomenex). A gradient was run from 90-20% acetonitrile, with peaks determined through a combination of evaporative light scattering, UV, and post-run analytical LC-MS (Agilent qToF 6545) of resulting fractions.


NMR spectra were collected using an Agilent 600 NMR spectrometer (1H: 600 MHz, 13C: 150 MHz) equipped with a 5 mm DB AUTOX PFG broadband probe and a Varian NMR System console. All data analysis was performed using MestReNova NMR software. All chemical shifts were referenced to residual solvent peaks [1H (D2O): 4.79 ppm].


Enzyme Reaction Analysis All enzyme reactions were similar to preparative methods. carried out in 15-25 mM sodium phosphate buffer, 100-150 mM sodium chloride, and sometimes included up to 0.01 mg/mL bovine serum albumin (B9000S, NEB) to limit enzyme adsorption to pipettes and tubes. All R. UCG13 or B. intestinalis enzymes were tested at concentrations from 1-10 μM. Cellobiose reactions were tested using 1 mM cellobiose at pH 7.5, while all other reactions used 2.5 mg/mL pentasaccharide (produced using RuGH5a) and were carried out at pH 6.0. Reactions were heat-inactivated and centrifuged incubated overnight at 37° C., halted by heating at ≥95° C. for 5-10 minutes, and centrifugation at ≥20,000 g for 10 mins. Supernatants were mixed 1:1 with 4 parts acetonitrile and to yield an 80% acetonitrile solution, centrifuged for 10 mins at ≥20,000 g, and transferred into sample vials. 15 μL of each sample was injected onto a Luna® Omega 3 μm HILIC 200 Å, LC column (100×4.6 mm) (00D-4449-E0, Phenomenex). An Agilent 1290 Infinity II HPLC system was used to separate the sample using solvent A gradient was run from 90-20(100% water, 0.1% formic acid) and solvent B (95% acetonitrile, 5% water, with 0.1% formic acid added) at a flow rate of 0.4 mL/min over the course of ˜10-40 mins. Products were detected by collecting mass spectra. Prior to injection and following each sample the column was equilibrated with 80% B. After injection, samples were eluted with a 30 minute isocratic step at 80% B, a 10 minute gradient decreasing B from 80% to 10%, and a final column wash for 2 min at 10% B. Spectra were collected in negative mode on a MS Detector info, using an Agilent 6545 LC/Q-TOF.


Metagenomics analysis Seven samples (15-mL) were collected at four time points (referred to as T1, T2, T3 and T4) during growth of two biological replicates of the original XG-degrading culture. Cells were harvested by centrifugation at 14,000×g for 5 min and stored a −20° C. until further use. A phenol:chloroform:isoamyl alcohol and chloroform extraction method was used to obtain high molecular weight DNA. The gDNA was quantified using a Qubit™ fluorimeter and the Quant-iT™ dsDNA BR Assay Kit (Invitrogen, USA), and the quality was assessed with a NanoDrop One instrument (Thermo Fisher Scientific, USA). Samples were subjected to metagenomic shotgun sequencing using the Illumina HiSeq 3000 platform at the Norwegian Sequencing Center (NSC, Oslo, Norway). Samples were prepared with the TrueSeq DNA PCR-free preparation and sequenced with paired ends (2×150 bp) on one lane. Quality trimming of the raw reads was performed using Cutadapt v1.3, to remove all bases on the 3′-end with a Phred score lower than 20 and exclude all reads shorter than 100 nucleotides, followed by a quality filtering using the FASTX-Toolkit v.0.0.14 (hannonlab.cshl.edu/fastx_toolkit/). Retained reads had a minimum Phred score of 30 over 90% of the read length. Reads were co-assembled using metaSPAdes v3.10.1 with default parameters and k-mer sizes of 21, 33, 55, 77 and 99. The resulting contigs were binned with MetaBAT v0.26.3 in “very sensitive mode”. The quality (completeness, contamination, and strain heterogeneity) of the metagenome assembled genomes (MAGs) was assessed by CheckM v1.0.7 with default parameters. Contigs were submitted to the Integrated Microbial Genomes and Microbiomes system for open reading frames (ORFs) prediction and annotation. Additionally, the resulting ORF were annotated for CAZymes using the CAZy annotation pipeline. This MAG collection was used as a reference database for mapping of the metatranscriptome data, as described below. Taxonomic classifications of MAGs were determined using both MiGA and GTDB-Tk.


Human fecal samples (20) from a second enrichment experiment (unbiased towards the cultivation of Bacteroides) as well as two enrichments with mouse fecal samples were processed for gDNA extraction and library preparation exactly as described above. Metagenomic shotgun sequencing was conducted on two lanes of both Illumina HiSeq 4000 and Illumina HiSeq X Ten platforms (Illumina, Inc.) at the NSC (Oslo, Norway), and reads were quality trimmed, assembled and binned as described above. Open reading frames were annotated using PROKKA v1.14.0 and resulting ORFs were further annotated for CAZymes using the CAZy annotation pipeline and expert human curation. Completeness, contamination, and taxonomic classifications for each MAG were determined as described above. AAI comparison between the human R. UCG13 and the R. UCG13 found in the two mouse samples was determined using CompareM (github.com/dparks1134/CompareM).


Extracted DNA from a second enrichment experiment on XG using the original culture was prepared for long-reads sequencing using Oxford Nanopore Technologies (ONT) Ligation Sequencing Kit (SQK-LSK109) according to the manufacture protocol. The DNA library was sequenced with the ONT MinION Sequencer using a R9.4 flow cell. The sequencer was controlled by the MinKNOW software v3.6.5 running for 6 hours on a laptop (Lenovo ThinkPad P73 Xeon with data stored to 2Tb SSD), followed by base calling using Guppy v3.2.10 in ‘fast’ mode. This generated in total 3.59 Gb of data. The Nanopore reads were further processed using Filtlong v0.2.0 (github.com/rrwick/Filtlong), discarding the poorest 5% of the read bases, and reads shorter than 1000 bp.


The quality processed Nanopore long-reads were assembled using CANU v1.9 with the parameters corOutCoverage=10000 corMinCoverage=0 corMhapSensitivity=high genomeSize=5m redMemory=32 oeaMemory=32 batMemory=200. An initial polishing of the generated contigs were carried out using error-corrected reads from the assembly with minimap2 v2.17-x map-ont and Racon v1.4.14 with the argument —include-unpolished. The racon-polished contigs were further polished using Medaka v1.1.3 (github.com/nanoporetech/medaka), with the commands medaka_consensus--model r941_minfast_g303_model.hdf5. Finally, Minimap2-ax sr was used to map quality processed Illumina reads to the medaka-polished contigs, followed by a final round of error correction using Racon with the argument —include-unpolished. Circular contigs were identified by linking the contig identifiers in the polished assembly back to suggestCircular=yes in the initial contig header provided by CANU. These contigs were quality checked using CheckM v1.1.3 and BUSCO v4.1.4. Circular contigs likely to represent chromosomes (>1 Mbp) were further gene-called and functionally annotated using PROKKA v1.13 and taxonomically classified using GTDB-tk v1.4.0 with the classify_wf command. Barrnap v0.9 (github.com/tseemann/barmap) was used to predict ribosomal RNA genes. Average nucleotide Identity (ANI) was measured between the short-reads and long-reads MAGs using FastANI v1.1 with default parameters. Short-reads MAGs were used as query while long-reads MAGs were set as reference genomes. Short-reads MAG1 showed an Average Nucleotide Identity (ANI) of 99.98% with the long-reads ONTCirc01, while short-reads MAG2 showed an ANI of 99.99% with the long-reads ONT_Circ02. Phylogenetic analysis revealed that ONT_Circ02 encoded four complete 16S rRNA operons, three of which were identical to the aforementioned R. UCG13 OTU.


Temporal metatranscriptomic analysis of the original XG-degrading community. Cell pellets from 6 mL samples collected at T1-T4 during growth of two biological replicates of the original XG-degrading culture were supplemented with RNAprotect Bacteria Reagent (Qiagen, USA) following the manufacturer's instructions and kept at −80° C. until RNA extraction. mRNA extraction and purification were conducted as described in Kunath et al. (ISME J. 13, 603-617 (2019). Samples were processed with the TruSeq stranded RNA sample preparation, which included the production of a cDNA library, and sequenced on one lane of the Illumina HiSeq 3000 system (NSC, Oslo, Norway) to generate 2×150 paired-end reads. Prior to assembly, RNA reads were quality filtered with Trimmomatic v0.36, whereby the minimum read length was required to be 100 bases and an average Phred threshold of 20 over a 10 nt window, and rRNA and tRNA were removed using SortMeRNA v.2.1b. Reads were pseudo-aligned against the metagenomic dataset using kallisto pseudo-pseudobam. Of the 58089 ORFs (that encode proteins with >60 aa) identified from the metagenome of the original XG-degrading community, 7549 (13%) were not found to be expressed, whereas 50540 (87%) were expressed, resulting in a reliable quantification of the expression due to unique hits (reads mapping unambiguously against one unique ORF).


Plasmid Design and Protein Purification Plasmid constructs to produce recombinant proteins were made with a combination of synthesized DNA fragments (GenScript Biotech, Netherlands) and PCR amplicons using extracted culture gDNA as a template. In general, sequences were designed to remove N-terminal signaling peptides and to add a histidine tag for immobilized metal affinity chromatography (IMAC) (in many cases using the Lucigen MA101-Expresso-T7-Cloning-&-Expression-System). Plasmid assembly and protein sequences are described in source and supplemental data.


Constructs were transformed into HI-Control BL21(DE3) cells and single colonies were inoculated in 5 mL overnight LB cultures at 37° C. 5 mL cultures were used to inoculate 1 L of Terrific Broth (TB) with selective antibiotic, grown to OD ˜0.8-1.1 at 37° C., and induced with 250 μM IPTG. B. intestinalis enzymes were expressed at RT, while R. UCG13 enzymes were expressed at 18° C. overnight. Cells were harvested by centrifugation and pellets were stored at −80° C. until further processing. Proteins were purified using standard IMAC purification procedures employing sonication to lyse cells. R. UCG13 proteins were purified using 50 mM sodium phosphate and 300 mM sodium chloride at pH 7.5; B. intestinalis proteins were purified using 50 mM Tris and 300 mM sodium chloride at pH 8.0. All proteins were eluted from cobalt resin using buffer with the addition of 100 mM imidazole, then buffer exchanged to remove imidazole using Zeba 2 mL 7 kDa MWCO desalting columns. Protein concentrations were determined by measuring A280 and converting to molarity using calculated extinction coefficients.


qPCR/and RNA-Seq on B. intestinalis and Original Community


For qPCR, B. intestinalis was grown as before but cells were harvested by centrifugation at mid-exponential phase, mixed with RNA Protect (QIAGEN), and stored at −80° C. until further processing. At collection, average OD600 values were ˜0.8 and ˜0.6 for glucose- and oligosaccharide-grown cultures, respectively. RNeasy mini kit buffers (QIAGEN) were used to extract total RNA, purified with RNA-binding spin columns (Epoch), treated with DNase I (NEB), and additionally purified using the RNeasy mini kit. SuperScript III reverse transcriptase and random primers (Invitrogen) were used to perform reverse transcription. Target transcript abundance in the resulting cDNA was quantified using a homemade qPCR mix. Each 20 uL reaction contained 1× Thermopol Reaction Buffer (NEB), 125 uM dNTPs, 2.5 mM MgSO4, 1X SYBR Green I (Lonza), 500 nM gene specific or SI 7/8)65 nM 16S rRNA primer and 0.5 units Hot Start Taq Polymerase (NEB), and 10 ng of template cDNA. Results were processed using the ddCT method in which raw values were normalized to 16S rRNA values, then xanthan oligosaccharide values were compared to those from glucose to calculate fold-change in expression.


For RNA-seq, total RNA was used from the B. intestinalis growths used for qPCR. For the community grown on XG or PGA, 5 mL cultures of DM-XG or DM-PGA were inoculated with a 1:100 dilution of a fully liquified DM-XG culture. PGA cultures were harvested at mid-log phase at OD600˜0.85 whereas XG cultures were harvested at late-log phase at OD600˜1.2 to allow liquification of XG, which was necessary to extract RNA from these cultures. As before, cultures were harvested by centrifugation, mixed with RNA Protect (Qiagen) and stored at −80° C. until further processing. RNA was purified as before except that multiple replicates of DM-XG RNA were pooled together and concentrated with Zymo RNA Clean and Concentrator™-25 to reach acceptable concentrations for RNA depletion input. rRNA was depleted twice from the purified total RNA using the MICROBExpress™ Kit, each followed by a concentration step using the Zymo RNA Clean and Concentrator™-25. About 90% rRNA depletion was achieved for all samples. B. intestinalis RNA was sequenced using NovaSeq and community RNA was sequenced using MiSeq. The resulting sequence data was analyzed for differentially expressed genes following a previously published protocol76. Briefly, reads were filtered for quality using Trimmomatic v0.3968. Reads were aligned to each genome using BowTie2 v2.3.5.177. For the Bacteroides intestinalis transcriptome reads were aligned to its genome, while for the community data reads were aligned to either the B. intestinalis genome or the closed Ruminococcaceae UCG-13 metagenome assembled genome (MAG). Reads mapping to gene features were counted using htseq-count (release_0.11.1)78. Differential expression analysis was performed using the edgeR v3.34.0 package in R v.4.0.2 (with the aid of Rstudio v1.3.1093). The TMM method was used for library normalization79. Coverage data was visualized using Integrated Genome Viewer (IGV)80.


Example 1
Xanthan Gum Degradation

Xanthan gum (XG) has the same β-1,4-linked backbone as cellulose, but contains trisaccharide branches on alternating glucose residues consisting of an α-1,3-mannose, β-1,2-glucuronic acid, and terminal β-1,4-mannose. The terminal β-D-mannose and the inner α-D-mannose are variably pyruvylated at the 4,6-position or acetylated at the 6-position, respectively, with amounts determined by specific strain and culture conditions (FIG. 1A).


A group of 80 healthy 18-20 year-old adults were surveyed using a bacterial culture strategy originally designed to enrich for members of the Gram-negative Bacteroidetes, a phylum that generally harbors numerous polysaccharide-degrading enzymes. Based on increased bacterial culture turbidity and decreased viscosity of medium containing XG as the main carbon source, the initial survey revealed that just 1 out of 80 people sampled were positive for these characteristics. Growth analysis of a culture from the single positive subject revealed that bacterial growth was dependent on the amount of XG provided in the medium, demonstrating specificity for this nutrient (FIGS. 1B and 10). Attempts to enrich for the causal XG-consuming organism(s) by sequential passaging for 20 days yielded a stable mixed microbial culture with at least 12 distinct operational taxonomic units (OTUs; FIG. 1C). While these cultures had commonalities at the genus level, there was surprisingly only one OTU that was ≥0.5% and common across all 21 enrichment cultures examined. This common OTU was identified as a member of Ruminococcaceae uncultured genus 13 (R. UCG13). Plating and passaging the culture on BHI-blood plates resulted in loss of two previously abundant Gram-positive OTUs (loss defined as <0.01% relative abundance), including one identified as a member of Ruminococcaceae uncultured genus 13 (R. UCG13) in the Silva database. A corresponding loss of the XG-degrading phenotype was also found when plate-passaged bacteria were re-inoculated into XG.


Despite the two most abundant bacteria, including R. UCG13 and a Bacteroides OTU, being present as >20% relative abundance, pure cultures that could degrade XG were unable to be isolated using different solid media effective for Gram-positive and-negative bacteria. Correspondingly, replicate experiments in which the active multi-species community was diluted to extinction in microtiter plates containing medium with either XG, or an equal amount of its component monosaccharides, loss of growth on XG was observed at higher dilutions than simple sugars (growth dilution factor 50 (GDF50): dilution factor at which 50% of wells would grow (FIG. 6). The difference between XG and monosaccharides was an average of 1.8 across n=5 independent experiments (std=0.4; SEM=0.2). Remarkably, when a culture was recovered from the most diluted sample in which XG-degradation was observed and this dilution scheme was repeated again, the twice-diluted culture still contained the 12 original OTUs.


A second survey was completed with a new group of 60 healthy adults. This time, feces were directly sampled within 24 hr after sample collection in anaerobic preservation buffer and using no pre-enrichment or antibiotics. In contrast to the previous results, this experiment revealed that the ability to degrade XG was substantially more frequent, as a greater percentage of people sampled harbored bacterial populations that grew to appreciable levels on XG and decreased its characteristic viscosity. Twenty of these samples were independently passaged 10 times each (one 1:200 dilution per day) and the resulting community structure was analyzed. While all of the passaged cultures contained multiple OTUs (between 12-22 OTUs with relative abundance ≥0.5%) as well as commonalities at the genus level, the only OTU common across all cultures at this threshold was the OTU corresponding to R. UCG13 (FIG. 1D). Collectively, these results suggested that a member of an uncultured Ruminococcaceae genus facilitates XG degradation.


Example 2
Xanthan Gum Utilization in R. UCG13 and Bacteroides intestinalis

To identify XG-degrading genes within the bacterial consortium, a temporal multi-omic analysis was applied to samples taken from the original XG-degrading culture. Two replicates of the original culture were grown in liquid medium with XG and timepoints were harvested for metagenomic, metatranscriptomic and monosaccharide analysis of residual polysaccharide (FIGS. 7A-7C). From samples harvested at early, intermediate, and late points in growth, metagenome assembled genomes (MAGs) were reconstructed. Taxonomic analysis revealed one specific MAG that was distantly related to the recently cultured bacterium Monoglobus pectinolyticus, which is also the closest relative of the R. UCG13 OTU based on 16S rDNA analysis. Annotation of carbohydrate active enzymes (CAZymes) in this MAG revealed a single locus encoding several highly expressed enzymes that are candidates for XG degradation (FIG. 2, FIGS. 7A-7C). These included a polysaccharide lyase family 8 (PL8) with homology to known xanthan lyases from Paenibacillus nanensis and Bacillus sp. GL1 (FIG. 2).


Xanthan lyases typically remove the terminal pyruvylated mannose prior to depolymerization, leaving a 4,5 unsaturated residue at the glucuronic acid position, although some tolerate non-pyruvylated mannose. This same locus also contained two GH5 endoglucanases with the potential to cleave the xanthan gum backbone, a GH88 to remove the unsaturated glucuronic acid residue produced by the PL8, and two GH38s which could potentially cleave the alpha-D-mannose. Two carbohydrate esterases (CEs) could remove the acetylation from the mannose and possibly the terminal pyruvate, although the latter activity has not been described. SignalP 5.0 predicted SPI motifs for the two GH5s and one of the CEs (1026424, plasmid 13-8D that is an acetylase), while the other enzymes lacked membrane localization and secretion signals. In addition to putative enzymes to cleave the glycosidic bonds contained within xanthan gum, this locus also contained proteins predicted to be involved in sensing, binding, and transporting the released sugars or oligosaccharides.


Colocalization and expression of genes that saccharify a common polysaccharide as discrete polysaccharide utilization loci (PULs) is common in the Gram-negative Bacteroidetes. Although not present in all xanthan gum-degrading cultures, a MAG was obtained for a strain of B. intestinalis, which was the most abundant OTU in the original xanthan culture (up to 51.0% of the original culture, 26.0% and 32.7% in samples 32 and 11 respectively, 8 other samples ranging from 0.3-4.4%). This MAG contained a putative xanthan PUL that was highly expressed during growth on XG (FIG. 2, FIGS. 7A-7C) and encodes hallmark SusC-/SusD-like proteins, a sensor/regulator and predicted GH88, GH92 and GH3 enzymes, which could potentially cleave the unsaturated glucuronyl, α-linked mannose and cellobiose linkages in XG, respectively. Like the candidate gene cluster in R. UCG13, this PUL also contains a GH5 enzyme that could cleave the XG backbone, although such an activity has yet to be described for this family. Finally, a family 2 polysaccharide lyase (PL2) is also present and, while these typically function on galacturonic acid substrates, it may be responsible for removing the terminal mannose. In addition to the lyase domain, this multi-modular protein contains a carbohydrate esterase domain (CE) that could remove the acetyl groups positioned on the mannose. Extensive work has been conducted to characterize the substrate-specificity of PULs, which is demonstrated by hundreds of genomes with characterized and predicted PULs in the PUL database (PUL-DB). However, this database only harbored a single genome with a partially related homolog of the B. intestinalis PUL (B. salyersiae WAL 10018 PUL genes HMPREF1532_01924-HMPREF1532_01938).


Although less dramatic, several microbes showed increased expression of CAZymes over the culture time course, suggesting that other microbes may cross-feed on either XG oligosaccharides released by the primary degraders, or on additional substrates produced by XG consumers (FIGS. 7A-7C). Interestingly, neutral monosaccharide analysis showed a relatively stable 1:1 ratio of glucose:mannose in residual polysaccharide in the culture, suggesting that lyase-digested xanthan gum was not accumulating as growth progressed (FIGS. 7A-7C).


Example 3
R. UCG13 Encodes Enzymes with Xanthanase Activity

To investigate the cellular location of the enzymes responsible for xanthan degradation, the original culture was grown in XG medium and separated into filtered cell-free supernatant, cells that were washed to remove supernatant and resuspended or lysed, or lysed cells with supernatant. Incubation of these fractions with XG and subsequent analysis by thin layer chromatography (TLC) revealed that the cell-free supernatant was capable of depolymerizing XG into large oligosaccharides, while the intracellular fraction was required to further saccharify these products into smaller components. Liquid chromatography-mass spectrometry (LC-MS) analysis of the cell-free supernatant incubated with XG revealed the presence of pentameric oligosaccharides matching the structure of xanthan gum.


Three independent cultures were grown in liquid medium containing XG and cell-free supernatants were subjected to ammonium sulfate precipitation. Each of the resuspended protein preparations was able to hydrolyze XG as demonstrated by a complete loss of viscosity overnight. Each sample was fractionated with a variety of purification methods, collecting and pooling xanthan-degrading fractions for subsequent purification steps and taking three different purification paths (FIG. 8A). The purest sample obtained ran primarily as a large smear when loaded onto an SDS-PAGE gel, but separated into distinct bands after boiling, indicating possible formation of a multimeric protein complex, which is reminiscent of cellulosomes. Proteomic analysis of the samples from the three different activity-guided fractionation experiments yielded 33 proteins present across all three experiments, including 22 from R. UCG13, 11 of which were annotated as CAZymes (FIG. 8B). While most of the proteins were either detected in low amounts or lacked functional predictions consistent with polysaccharide degradation, one of the most abundant proteins across all three samples was the GH5 previously identified in the R. UCG13 xanthan locus.


The R. UCG13 GH5 consists of an N-terminal signal peptide sequence, its main catalytic domain which does not classify into any of the GH5 subfamilies, and 3 tandem carbohydrate binding modules (CBMs), which are often associated with CAZymes and assist in polysaccharide degradation (FIG. 3A). The protein also contains a significant portion of undefined sequence and Listeria-Bacteroides repeat domains (PF09479), a β-grasp domain originally characterized from the invasion protein InlB used by Listeria monocytogenes for host cell entry. These small repeat domains are generally thought to be involved in protein-protein interactions and are almost exclusively found in extracellular bacterial multidomain proteins. Recombinant forms of the entire protein, the GH5 domain only, and the GH5 domain with either one (CBM-A), two (CBM-A and CBM-B), or all three of the CBMs (A-C) were expressed. All but the full-length construct yielded reasonably pure proteins, but only the construct with the GH5 and all three CBMs showed activity on xanthan gum (FIG. 15). An alternate GH5 (R. UCG13 GH5b) was also expressed in a variety of forms but did not display any activity on XG (FIG. 15).


Analysis of the reaction products showed that R. UCG13 GH5 (R. UCG13 GH5a) releases pentasaccharide repeating units of XG, with various acetylation and pyruvylation (including di-acetylation as previously described), and larger decasaccharide structures (FIGS. 3B and 11). While isolation of homogenous pentameric oligosaccharides proved difficult, coincubation of XG with R. UCG13 GH5 and a Bacillus sp. PL8 facilitated isolation of pure tetrasaccharide, followed by in-depth 1D and 2D NMR structural characterization, which was useful in determining the GH5 cut site in the XG backbone. Surprisingly, GH5 cleaved XG at the reducing end of the non-branching backbone glucosyl residue (FIG. 3C). This contrasts with material produced by other known xanthanases (such as the GH9 from Paenibacillus nanensis or the β-D-glucanase in Bacillus sp. strain GL1), that hydrolyze xanthan at the reducing end of the branching glucose. While R. UCG13 GH5 displayed little activity on other polysaccharides (FIG. 15), it was able to hydrolyze both native and lyase-treated XG with comparable specificity, once more in contrast to most previously known xanthanases, which show ≥600 fold preference for the lyase-treated substrate (FIG. 3D). One exception is the xanthanase from Microbacterium sp XT11, which also cleaves native and lyase-treated xanthan gum with similar kinetic specificity; however, this enzyme only produces intermediate XG oligosaccharides, whereas R. UCG13 can cleave XG down to its repeating pentasaccharide moiety.


Example 4

B. intestinalis Cross-Feeds on XG Oligos with its Xanthan Utilization PUL

Although R. UCG13 was recalcitrant to culturing efforts, several bacteria were isolated from the original consortium, including the Bacteroides intestinalis strain that was the most abundant (FIG. 1C) and also had a highly expressed candidate PUL for XG degradation (FIG. 2). While this strain was unable to grow on native XG as a substrate, it may be equipped to utilize smaller XG fragments, such as those released by R. UCG13 during growth via its GH5 enzyme. Using the recombinant R. UCG13 GH5, sufficient quantities of mixed XG oligosaccharides (XGOs) (primarily pentameric, but also some decameric oligosaccharides) were generated to test growth of Bacteroides intestinalis. While isolates of P. distasonis and B. clarus from the same culture showed little or no growth (FIG. 17), the B. intestinalis strain achieved comparable density on the XG oligosaccharides as cultures grown on a stoichiometric mixture of the monosaccharides that compose XG, suggesting that it uses most or all of the sugars contained in the oligosaccharides (FIG. 4A) All of the genes in this locus were activated >100-fold (and some >1000-fold) during growth on XG oligosaccharides compared to glucose reference (FIG. 4B). Whole genome RNA-seq analysis of the B. intestinalis strain grown on XGOs revealed that the identified PUL was the most highly upregulated in the genome, validating its role in metabolism of XGOs (FIG. 17). Interestingly, R. GH5 XGOs treated with PL8 continued to support B. intestinalis growth, but tetramer generated from the P. nanensis GH9 and PL8 failed to support any growth (FIG. 17). Growth was rescued in the presence of glucose but not in the presence of Ru GH5a XGOs to upregulate the PUL (FIG. 17), suggesting that either the B. intestinalis transporters or enzymes are incapable of processing this alternate substrate.


To further test the role of the identified B. intestinalis PUL in XG degradation, the recombinant forms of the enzymes it contains were tested for XG degradation. The carbohydrate esterase domain C-terminal to the PL2 bimodular protein was able to remove acetyl groups from acetylated xanthan pentasaccharides (FIG. 16). Xanthan lyase activity was unable to be detected for the PL2 enzyme on full length XG or oligosaccharides, thus it is likely that this enzyme or another lyase acts to remove the terminal mannose residue since the GH88 was able to remove the corresponding 3,4 unsaturated glucuronic acid residue from the corresponding tetrasaccharide that would be generated by its action (FIG. 16). The GH88 reaction proceeded irrespective of the acetylation state of the mannosyl residue. The GH92 was active on the trisaccharide produced by the GH88 as observed by loss of the trisaccharide and formation of cellobiose in these reactions (FIG. 16). Finally, the GH3 was active on cellobiose, but did not show activity on either tri- or tetra-saccharide, suggesting that this enzyme may be the final step in B. intestinalis saccharification of xanthan oligos (FIG. 16). SignalP 5.0 predicted SPII signals for the GH5, GH3, GH88, and SusD proteins while the GH92, PL2, HTCS, and SusC all had SPI motifs. While signal peptides do not definitively determine cellular location, these predictions and accumulated knowledge of Sus-type systems in Bacteroidetes suggest a model in which saccharification occurs primarily in the periplasm (FIG. 13).


Additional metagenomic sequencing was performed on 20 additional XG-degrading communities and it was found that the R. UCG13 XG utilization locus is extremely well conserved across these cultures with high amino acid identity and only one variation in gene content, insertion of a GH125 coding gene (FIG. 9) (FIG. 18). The additional GH125 gene was observed in most of the loci (14/17), suggesting that this gene provides a complementary, but non-essential function, possibly as an accessory α-mannosidase. In contrast, only a subset of the samples (4/17) contained the B. intestinalis PUL, which showed essentially complete conservation in xanthan cultures that contained this PUL (FIG. 9). Across all these cultures, R. UCG13 accounted for an average of only 23.1%±1.2 (SEM) of the total culture (FIG. 1D), suggesting that additional microbes beyond B. intestinalis have the ability to cross-feed on products released by R. UCG13, either from degradation products of XG or by using other growth substrates generated by R. UCG13. For example, the bacterial communities in samples 1, 22, and 59 contained other microbes belonging to the Bacteroidaceae family that harbor a PUL with a GH88, GH92, and GH3, suggesting that these bacteria can metabolize XG-derived tetramers (FIG. 18).


Example 5
Engineering Xanthan Gum Utilization Loci into Other Microbes for Rationally Designed Probiotics


Bacteroides intestinalis Xanthan Gum Utilization Locus. Primers are designed and used to amplify the entire B. intestinalis xanthan gum utilization locus, with overlapping ends to facilitate assembly. PCR fragments of the locus are assembled and circularized into the linearized Bacteroides genomic insertion vector, pNBU2, using Gibson assembly and the NEBuilder HiFi DNA Assembly kit. The pNBU2 vector can be used to insert DNA into one of two tRNA-Serine sites in numerous Bacteroides genomes (Martens, E. C., et al., Cell Host Microbe 4, 447-457 (2008), incorporated herein by reference). After assembly and transformation into Lucigen TransforMax EC100D pir+ electrocompetent E. coli, the plasmid is transformed into S17-1 1 pir E. coli for conjugation into Bacteroides thetaiotaomicron and additional Bacteroides spp by conjugation. B. theta strains with the inserted xanthan utilization locus are tested for the ability to grow on xanthan gum oligosaccharides, indicative of gain of function. Strains that successfully grow on xanthan oligosaccharides with the transferred/engineered locus are tested for their abilities to colonize animal digestive tracts and the pre-existing gut microbiome, the dose (cfu/ml by oral gavage or lyophilized bacteria in capsule) of invading, recombinant B. theta and the dosage of xanthan pentasaccharides administered to the animals can be systematically varied.


The Ruminococcaceae UCG13 GH5-30 enzyme can be transferred into Bacteroides spp. This is accomplished by genetically engineering an insertion of this gene into the B. intestinalis PUL that confers xanthan oligosaccharide metabolism thereby making expression of the GH5-30 gene regulated the same as other xanthan-degrading functions. To adapt this enzyme to be expressed on the surface of the Gam-negative Bacteroides cell, its native secretion signals are removed and recombined with an N-terminal domain of the B. theta surface protein SusF, for which the signal sequence required for secretion and trafficking to the cell surface has been determined. This process results in an active extracellular GH5-30 capable of depolymerizing xanthan gum and engineered Bacteroides that are not only capable of utilizing xanthan oligosaccharides but are fully capable of depolymerizing and growing on native xanthan gum.



Ruminococcaceae UCG13 Xanthan Gum Utilization Locus Gram-positive microbes are potentially superior organisms for production of secreted peptides and proteins. The minimal xanthan gum utilization locus from R. UCG13 may be transferred to Gram positive microbes that are genetically tractable, including but not limited to Lactobacillus reuteri and Clostridium scindens to engineer gram-positive probiotics that can successfully colonize the gastrointestinal tract with co-feeding of xanthan gum.


Example 6
R. UCG13 Encodes Enzymes Required for XG Saccharification

In contrast to characterized PL8 xanthan lyases, the R. UCG13 PL8 showed no activity on the complete XG polymer but removed the terminal mannose from xanthan pentasaccharides produced by R. UCG13 GH5 (FIG. 16). This further supports the model in which the GH5 first depolymerizes XG, followed by further saccharification of the XG repeating unit, likely inside the cell. Both R. UCG13 carbohydrate esterases were able to remove acetyl groups from acetylated xanthan pentasaccharides (FIG. 16). The tetrasaccharide produced by the PL8 was processed by the GH88 and both GH38s, which were able to saccharify the resulting trisaccharide (FIG. 16). The GH94 catalyzed the phosphorolysis of cellobiose in phosphate buffer, completing the full saccharification of XG (FIG. 16). Apparent redundancy of several enzymes (CEs and GH38s) could be partially explained by different cell location (e.g., CE-A has an SPI signal while CE-B does not), unique specificities for oligosaccharide variants in size or modification (e.g., acetylation or pyruvylation), additional polysaccharides that the locus targets, or evolutionary hypotheses where this locus is in the process of streamlining or expanding. Additional support for the involvement of this locus in XG degradation was provided by RNA-seq based whole genome transcriptome analysis, which showed the induction of genes in this cluster when the community was grown on XG compared to another polysaccharide (polygalacturonic acid, PGA) that also supports R. UCG13 abundance (FIG. 17).


Example 7
Xanthan Utilization Loci are Widespread in Modern Microbiomes

Using each locus as a query, several publicly available fecal metagenome datasets collected from worldwide populations were searched. All modern populations sampled displayed some presence of the R. UCG13 XG locus, with the Chinese and Japanese cohorts being the highest (up to 51% in one cohort) (FIGS. 5 and 12). The B. intestinalis locus was less prevalent, with two industrialized population datasets (Japan and Denmark/Spain) lacking any incidence. Where the locus was present, its prevalence ranged from 1-11%. The three hunter-gatherer or non-industrialized populations sampled, the Yanomami, Hadza, and Burkina Faso had no detected presence of either the R. UCG13 or B. intestinalis locus.


Although the size of the hunter-gatherer datasets is relatively small, excluding the possibility of a false negative suggests several equally intriguing hypotheses. Most obviously, inclusion of XG in the modern diet may have driven either the colonization or expansion of R. UCG13 (and to a lesser extent B. intestinalis) into the gut communities of numerous human populations. This is in concordance with previous observations that found that a set of volunteers fed xanthan gum for an extended period produced stool with increased probability and degree of xanthan degradation. Alternatively, the modern microbiome is drastically different than that of hunter-gatherers and these differences simply correlate with the abundance of R. UCG13, rather than any causal effect of XG in the diet. Another possible hypothesis is that the microbiomes of hunter-gatherer populations can degrade XG but use completely different microbes and pathways.


To further probe the presence of the identified XG utilization genes in other environments, an expanded LAST search of both loci was conducted in 72,491 sequenced bacterial isolates and 102,860 genome bins extracted from 13,415 public metagenomes, as well as 21,762 public metagenomes that are part of the Integrated Microbial Genomes & Microbiomes (IMG/M) database using fairly stringent thresholds of 70% alignment over the query and 90% nucleotide identity. This search yielded 35 hits of the R. UCG13 locus in human microbiome datasets, including senior adults, children, and an infant (12-months of age, Ga0169237_00111). 12 hits of the B. intestinalis XGOs locus were also found, all in human microbiome samples except for a single environmental sample from a fracking water sample from deep shales in Oklahoma, USA (81% coverage, 99% identity) (FIG. 18). XG and other polysaccharides such as guar gum are used in oil industry processes, and genes for guar gum catabolism have previously been found in oil well associated microbial communities. Since most samples searched were non-gut-derived, this demonstrates that XG-degrading R. UCG13 and XGOs-degrading B. intestinalis are largely confined to gut samples and can be present across the human lifetime.


Example 8
Mammalian Microbiomes Harbor Xanthan Utilization Loci

To investigate the prevalence of XG-degrading populations beyond the human gut microbiome, a mouse experiment using feed with 5% XG showed increased levels of short chain fatty acids propionate and butyrate, suggesting the ability of members of the mouse microbiome to catabolize and ferment XG43. After culturing mouse feces from this experiment on XG media and confirming its ability to depolymerize XG, the community structure in two samples (M1741 and M737) was metagenomically characterized, revealing a microbial species related to R. UCG13 (AAI values between the human R. UCG13 and the mouse R. UCG13 were 75.7% and 75.2% for M1741 and M737, respectively) as well as a XG locus with strikingly similar genetic architecture to the human XG locus (FIG. 18). Although several genes are well conserved across both the human and mouse isolates, significant divergence was observed in the sequences of the respective R. UCG13 GH5 proteins that, based on data with the human locus, initiate XG depolymerization. Specifically, this divergence was more pronounced in the non-catalytic and non-CBM portions of the protein suggesting that while the XG-hydrolyzing functions have been maintained, other domains may be more susceptible to genetic drift. As with the human R. UCG13 GH5, recombinant versions of the mouse R. UCG13 GH5 were able to hydrolyze XG (FIG. 18H) but did not show significant activity on a panel of other polysaccharides. The GH5-only constructs did not degrade XG but constructs D and E (with regions homologous to the human RuGH5a CBMs) were able to hydrolyze XG. Of note, the engineered, truncated protein, construct E showed similar XG hydrolytic activity as that of the full-length protein, construct D.


An additional targeted search of the R. UCG13 locus in several animal- and plant-associated microbiomes was performed and homologous loci were found in both cow (5 positive samples) and goat (one positive sample) microbiomes. Together, these data show that the R. UCG13 XG locus is more broadly present in mammalian gastrointestinal microbiomes.


Example 9

B. salyersiae Cross-Feeds on XG Oligos with its Xanthan Utilization PUL

Another strain that had a candidate PUL for XG degradation was B. salyersiae (FIG. 20). Using the recombinant R. UCG13 GH5, as described above for B. intestinalis, sufficient quantities of mixed XG oligosaccharides (XGOs) (primarily pentameric, but also some decameric oligosaccharides) were generated to test growth of B. salyersiae. B. salyersiae utilizes, albeit partially, xanthan gum oligosaccharides treated with xanthan lyase (FIG. 19).


To further test the role of the identified B. salyersiae PUL in XG degradation, the gene expression of the enzymes was tested when grown on XGOs. As shown in FIG. 21, each of the putative enzymes from the PUL was overexpressed when grown on XGOs as compared to glucose, suggestive of a role for these enzymes in catabolizing xanthan gum oligosaccharides.


It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the disclosure, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and may be made without departing from the spirit and scope thereof.


Numerous references, including patents and various publications, are cited and discussed in the description of this invention. The citation and discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any reference is prior art to the invention described herein. All references cited and discussed in this specification are incorporated herein by reference in their entirety.










Sequences:



SEQ ID NO: 1. - Rucg13 GH5 domain


KIVKQGTDEMVVLRGVNVPSMDWGMAEHLFESMTMVYDSWGANLIRLPINPKYWKNGSV





WDEKNLTKEQYQKYIDDMVKAAQARGKYIILDCHRYVMPQQDDLDMWKELAVKYGNNS





AVLFGLLNEPHDIKPVGVEKPTTVEQWDVWYNGGQIIVGGEEVTAIGHQQLLNEIRKQGAN





NICIAGGLNWAFDISGFADGYNERPNGYRLIDTAEGHGVMYDSHAYPVKGAKTAWDTIIGP





VRRVAPVIIGEWGWDSSDKNISGGDCTSDIWMNQIMNWMDDTDNQYDGIPVNWTAWNLH





MSS





SEQ ID NO: 2 - Truncated xanthanase


MEEAAADAQNAEINYNRSVPLEVKGNKIVKQGTDEMVVLRGVNVPSMDWGMAEHLFESM





TMVYDSWGANLIRLPINPKYWKNGSVWDEKNLTKEQYQKYIDDMVKAAQARGKYIILDC





HRYVMPQQDDLDMWKELAVKYGNNSAVLFGLLNEPHDIKPVGVEKPTTVEQWDVWYNG





GQIIVGGEEVTAIGHQQLLNEIRKQGANNICIAGGLNWAFDISGFADGYNERPNGYRLIDTAE





GHGVMYDSHAYPVKGAKTAWDTIIGPVRRVAPVIIGEWGWDSSDKNISGGDCTSDIWMNQI





MNWMDDTDNQYDGIPVNWTAWNLHMSSSPKMLYSWDYKTTAYNGTHIKNRLLSYNTAP





EKLDGVYSTDFSTDDVFRSYTAPSGKASIKYSDESGNVAITPAAANWYATLNFPFDWDLNGI





QTITMDISAATAGSVNIGLYGSDMEVWTKAVDVNTEVQTVTIGINELVKQGNPQTDGKLD





AALSGIYFGAATADTGSITIDNVKIVKLATPVYTANTYPHKDMGEESYIDIDTTGFKKQTTA





WNSKFTGTTMQITDANVLNINGETTKTKCVTYTRDATDTEGCRAKFDLNTVPSMDAKYFTI





DIKGNGIAQKLTVSLSGLAYITVNMAEGDTDWHQYIYSLEGNVEYPEDITYVQISADTRTTA





EFYIDNIGFSNTKSERLIPYPEKTFVYDFATYNKNTTKYEAAISTESGSEGDTIVATKEEGGLG





FDSKALEVKYSRNGNTPSKAKVVYSPNDFFKGNVNDDERTANRATLKADMEYMTDFVFY





GKSTSGKNEKINVGVIDTASAMTTYTDTKEFTLTTEWKQFRVPFDEFKILDGGSNLDCARVR





GFIFSSAENSGEGSFMIDNITHTSIKGDIEWGLPHHHHHH





SEQ ID NO: 3 - Full-length Rucg 13 GH5-30 enzyme


MERVIFMKKFLSLVTAIVMTVSLCIMPVYAQTYEEAAADAQNAEINYNRSVPLEVKGNKIV





KQGTDEMVVLRGVNVPSMDWGMAEHLFESMTMVYDSWGANLIRLPINPKYWKNGSVWD





EKNLTKEQYQKYIDDMVKAAQARGKYIILDCHRYVMPQQDDLDMWKELAVKYGNNSAV





LFGLLNEPHDIKPVGVEKPTTVEQWDVWYNGGQIIVGGEEVTAIGHQQLLNEIRKQGANNIC





IAGGLNWAFDISGFADGYNERPNGYRLIDTAEGHGVMYDSHAYPVKGAKTAWDTIIGPVRR





VAPVIIGEWGWDSSDKNISGGDCTSDIWMNQIMNWMDDTDNQYDGIPVNWTAWNLHMSS





SPKMLYSWDYKTTAYNGTHIKNRLLSYNTAPEKLDGVYSTDFSTDDVFRSYTAPSGKASIK





YSDESGNVAITPAAANWYATLNFPFDWDLNGIQTITMDISAATAGSVNIGLYGSDMEVWT





KAVDVNTEVQTVTIGINELVKQGNPQTDGKLDAALSGIYFGAATADTGSITIDNVKIVKLAT





PVYTANTYPHKDMGEESYIDIDTTGFKKQTTAWNSKFTGTTMQITDANVLNINGETTKTKC





VTYTRDATDTEGCRAKFDLNTVPSMDAKYFTIDIKGNGIAQKLTVSLSGLAYITVNMAEGD





TDWHQYIYSLEGNVEYPEDITYVQISADTRTTAEFYIDNIGFSNTKPERLIPYPEKTFVYDFAT





YNKNTTKYEAAISTESGSEGDTIVATKEEGGLGFDSKALEVKYSRNGNTPSKAKVVYSPNDF





FKGNVNDDERTANRATLKADMEYMTDFVFYGKSTSGKNEKINVGVIDTASAMTTYTDTKE





FTLTTEWKQFRVPFDEFKILDGGSNLDCARVRGFIFSSAENSGEGSFMIDNITHTSIKGDIEWG





LPTPTPEPTPTPLPDPVTVTTAEQLAAITSTEGNIILGADIDLGTTGFTTKSVTHLDLNGHTLTS





SGPFVVDPRHEITIVDTGSTKGAIINTGTTQTSYGIRGTTEAATINIDGAEIDAGGQAILINVAG





RKCNIKDAVINGGSYAINVGTNGGEINIDNALINNKADYKGYALYLQGGIAIIDDGTFGYNG





TTNTLLVARSSELTINGGTFTNPNSGRGAIVTDKQFVGTVTINGGVFENTNAGGYSILDSNEG





YQSIDAETSEIIASPVININDGTFKSAIGKTKSTNSSATEISIKGGQFAADPTVLYPNCIDTDIYSI





TKVAEGKYVVTKKGVEPTPEPTPEPVAKIVSSIEEINTLTASDDYVKLGADIDLGTSSIKTKC





AMRLDLNGHTLSGGGSTVIEAMYNLTVVDTGTTKGTIKNVNTSTSYGIKFAVKDAVLTIDG





AKVEAMSQAIMLSGTGSILHLKDSVINGNSYAVNLSNGIINIENTVINDDSEYKGYALSVAN





GTAVINSGIFNYNGNMSSITFSGSSEITINGGTFKNSVSKRGAINTVKGFSGTLTINGGTFENT





AENNGYSILDGDEATTETVPVINITGGTFKSTIGATKPANTTTVITISGGTYSFDPTSYVTDTET





YRVIDNGDGTYKVAPNSQVYSVTLNACGGSEVMVEDFKEENIPDNGIELPIPTKAGYKFDG





WYTEENNGSQVNGITKDNLSDIFRNEATVTLYAHWTLLNYTITYEGLNDATNTNPSNYTVE





TEAITLAAPGTRKGYTFGGWYTDVEYQNKIEIIEQGTTGNKILYAKWDEIASGSITASFVSTG





TIPSDIVQGTINVTEKAYENDEVSFMVTLPKGYTLENVLCTADGENLNTITEENGSYTFIMPG





KNVTITVNVRPIQYTINLDLQEGTGTTTTIYGSVENLPVLPNDNPKKQGYNFKGWFDAPTKG





TVITMDNLNTASNMLALFGNNTELTIYAQYTEVGNFVVIYSAVGADEETIPTDNTQYNIAET





SIIKIPNQEPKKLGYTFEGWKTGTDDTVYKYGTQNDTYTVPNDINGAITFIAQWSINEYEITY





ELNGGINAENAPVSYTIETDTITLPVPTKDGYNFEGWYTDAAFENAVAAIAKGSVGDMVLY





AKWSEKDMAVYKINNYEKGNVSVRKRTDTDDSSSVVIVAFYKTLNNNSVLIKTSIAEIGAIE





KGDDISKTVEEPEDYSYAKVFMWNDLNGMMPRCNSPKMDK





SEQ ID NO: 4 - Rucg13 PL8 (polysaccharide lyase 8 family protein)


MILLIHIKMGGMIMTDFNILRKRYSDVLCGRGYNGKKTADCILQSDERTEQRLVQLGGRIEK





AITSNEPGVINATLKGILDISISFSQNNSQFYHNKNIKNEIFNALNTLEKVYNDTTVPKGNWW





YWEIGIPLSINSIFTLMYDYTDKSQLKRYMAAEKHENDRIKLTGANRIWESVIFAVRGILLSD





NDSIKNAISGIQDVMVITDSGDGFYKDGSFIQHDNIPYNCGYGRSLIQELAPMLYIFKDTEFEN





KNTDIINTWIEKSYLPFIYNGRAMDMVRGREISRYYEQSDLACTHILSAMLILSEMPEFNELK





GTIKTQITDNFFEYASVFTAELAEHLQEDNNIKPKEIKPYFMAFNSMDRVVKHGNGYTIGLA





MHSERTAAYESINDENQNAHHTSDGMMYIYKKNEPKSDFFWQTIDLQRLPGTTVLRGSTVK





PNINAAGDFTGGCGIGENGVCTMKLISNENSLKANKSWFFFDKEVVCLGSCINSEEESEVETI





IENRLVTDNSRFTVHGNEESEGYIIKGAYLDGSHDVGYCFPEEQEVNIFREIRSGDWNNMSIK





SDGKSYKGRYLTMWIKHGRKVKDVSYEYIVIPKCHEEEINDYYRKSGIRIIENSDSIQCVKKN





GTTGVVFLKDKTHSAGGISCDRRCIVMTTQTCGTLELSISDITQKQDKIYIELDYSAQEIISKSE





RINIIQLVPYVCMEIDTCAARGEEQHIKFGGVKNV





SEQ ID NO: 5 - Rucg13 GH94


MENLLVRRTNMKYGYFDDLNKEYVIETPRTPLPWINYLGTNGFFSLISNTSGGYCFYKDAK





HRRILRYRYNNIPADNGGRYFYINDNGDCWTPSYMPMKKELDFYECRHGMGYTKITGERN





GVRVEQTAFVPVDDNCEIHRIKVTNTSGEAKNINLFSFVEFCLWNAQDDMLNYQRNLNTGE





VEIDGSAIYHKTEYRERRNHYAFYSVNTEISGFDTDRDTFLGAFNGLDTPDRVINGKSGNSV





ASGWYPIASHQIDVSLDAGESREYIFVLGYIENEKDEKFESLNVINKTKAKEMIARYESSAQC





DAELDKLKLYWDNLLSVFTLESNDEKLNRMVNIWNPYQCMVTFNMSRSASYYESGIGRGM





GFRDSNQDLLGFVHQIPERARERIIDIASTQFEDGSAYHQYQPLTKQGNNEIGGGFNDDPLW





LILGTVAYIKETGDYGILDEQVPFDCDKNNTATLLEHLNRSFGHVTNNLGPHGLPLIGRADW





NDCLNLNCFSEIPDESFQTTGDDDGRVAESVLIAGMFVYIGREFARLYKTLNNDEMYKYISD





EVEKMTEAVLEYGYDGEWFIRAYDANGNKVGSDECDEGKIFIESNGFCVMAGIGKEDGRA





QKALDSVKKYLECEYGIVLNYPPYSGYRLELGEISSYPPGYKENAGEFCHNNPWVIIGETVM





GNGERAFELYKKIAPAYLEEISEIHKTEPYVYSQMIAGRDAVRAGEAKNSWLTGTAAWNYY





TVSQYLLGIRPDFDGLVIEPCISKDISEFKVTRKFRGKTYNILVKNTGEGTVKITADNGTVNG





TTVSSDAEICNVEVVM





SEQ ID NO: 6 - Rucg 13 GH38-8


MILIYNSDIMYNKYIKPKFIIWYKKEFQMSKNVHIISHSHWDREWYLPFEQHRMRLVELIDK





CMEVFEKDDSFKSFFLDGQTIVLDDYLEIRPENKEKLIKYTKEGKFIIGPWYILQDEFYTSGEA





NIRNLLVGMKEAEKYGAMCKMGYFPDAFGNAGQMPQLLKQAGMDTVTFGRGVRPVGFD





NEVQENGNYESPYSEMMWESPDGTKIFGILFANWYNNGNEVPTDKKIAKEYWDDRLKKVA





TFASTDEYLLMNGCDHQPVQADLGKAIEVASELYPDINFKHSNFPEYIKAIKEKVPNDLAVV





KGELTSQDTDGWSTLMNCASSHIYLKQMNRKCESALENGAEPVRVLSSVLGQNYPSDELEY





SWKKLMQNHPHDSICCCSVDEVQDEMATRFNKSKQVADYLVSEGKRYIADKINTKEYEKY





KNALPFVVFNTAGRERTSVVSVEIDVTRKSGWLKKCAYDLDEINVPNYKLIDSDGNSIPFKIE





DLGVKFGYDLPKDKFRQPYMARRVRVTFEAENISAVGYKTYALVEGDTEKVTDTLVSSEN





CMENDAIRVEINKNGSLNVTDKASGRTYKGVAYYEETGDLGNEYMYKMPEGSKAITTQDT





VAKIELAEDEPYRAMYKITNTITVPKSGDDNFEDEKSHMVFFKERVGGRSNDTVEMKIETFV





SLDKNGKGVKIKTRFDNEVKDHRVRIMVPTGINSDVHKADSVFEVVTRNNRHNAGWNNPS





ACEHEQGFVSIDDGEKGIAVANIGLYEYEMLPDLDNTIAVTILRAVGEMGDWGVFPTPKAQ





CLGISETEIEIVPFKGDLISSGAYEECYQFRTDIITADTDCHDGVMPLDYSMINWQGNGLILTG





IKQKGNGEDIIIRWVNVSDKTTTLTIQKSDVIDNLYISNIIEKKIKKIDSNNNYFNIEVKPYEIM





TVGIAK





SEQ ID NO: 7 - Rucg13 GH38-30


MERKNIKCHFISNTHWDREWKFSAQRTRHMLVTAIDMLLDIFEKEPDYKHFHLDSQTLPIQD





YLEINPEKKEILKKYISEGKLAVGPWFCLPDEFCVGGESLIRNLLLGHKIANEFGKVSKTGYS





PFGWGQISQMPQLYHGFGIDFASFYRGLNTYMAPKSEFYWEGADGTTIYASRLGQRPRYNM





WYIMQRPVFYGKRDGDNRRVSWGAGDGIFRFADPARCEYEYQYSHRKYEYHDEYIAEKTE





QALSEQDDEWTTPNRFWSNGHDSSIPDMRESRLIKDANAVYEGVDVFHSTVYDFEQSVIRD





FDKNSPVLKGEMRYPFTKGSVSALFGWVLSARIKVKQENFETERLLTSYAEPMAVFASVCG





AVYPQAFINKAYNYMLQNHGHDSIGACGRDVVYKDVEYRFRQSREIATCVLERALMDLSG





DIDFAGWDKNDMALVMFNPAPFKRSLTVPCELEIPLEWECDSFEIVDAEGNVCPHQNISSINP





MYQIVQDLADAVDVLPVSRHTIRIFVKDIPSMGYKTLKVVPKYHTRATTPVNMLCGINTME





NEYLKVKINSNGTLKVTEKETGREYDNIGYFKDTGENGSPWEHKTPELDEEYTTVNERAIVS





LVYSGELETKYRIVLNWAIPENIVDGGKKRSSRLAPYRIETLVTLRKGARWVEFETKINNNV





PNHYLQAAFPTDVDAEFVYAQGQFDVVKRPIAKPDYSKYDEIPMTEQPMNSFVDICNENEG





AAILNTGLKAYESDDDYNHTVYLSLLRCFELRIYVTPEEQNYSRIENGSQSFGEHTFRYAFM





PHKGDWEDAQVWKAAEDFNMEILIGQTAPTEHGKNPLEKSFIELENENLHISAVKRSEDGL





GCVVRLFNPSSETVKNRIRFNGGIAEISDKQSPIERQVHSFELPCTENRKWASVKKVTLEELS





ETELSVDTNGWCDVEVTPKQIYTLKYE





SEQ ID NO: 8 - Rucg13 GH88


VNIDKAITYAESIVRKSLNYFYDCFPTEQSENLVFKKFENVSWTTGFYEGILWLMYELTGDK





AFYNSAKHHSEMFHKRLVDRVELEHHDMGFLFTLSSVADYRITGDEQAKQDGIEAAEWLL





KRYQPKGKFIQAWDAMDDSQSYRFIVDCMLNIPLLFWASEVTGYKKYYDAAYNHMQTSIA





NIIRPDASSYHTFFFDPVTNKPLRGETHQGFSDDSSWARGQSWAVYGLALCYHYTKEKSILP





LFERVTHYFIDHLPEDSVPYWDLIFSDGSDEPRDTSAAVVAVCGILEMEKYYHNQEFLDAAE





KMMTSLSEKYTTVDYPQSNGIIKDGMYSRKHGHEPECTSWGDYFYLEALMRMKKSDWKIY





W





SEQ ID NO: 9 - Rucg13 CE (carbohydrate esterase)


MKKIISLMLAVTMICASIGLTAFAATTTTVEAEADGVSAYTLPSSDKSNSKILKNTVSSKESV





TYYIQANNTPRATMFKLAQVNTGDKINVDINFTYLDTATMELEYCLFVSDSEITLTSHSQDL





VKEELEKHTDESNIKNWSTNKSNMKYSLPNGITASKDGFVYLYIGCGDLSEDKTQVTKKIQ





WSIDSFDVNIDSDGGGETEPDTTPTPTTTINPDVTPTPTPTASPTPTPTLEPELTLNAVYSSNM





VLQRKEPITITGTGKSGNTVSVNFNGADEQTTIEHGLWEITLPAMEAVKSATMTVSSGDNMI





TLDNVAVGDVIFCTGQSNMFNRLETFPTLMNEELSEAYEDVRYMNSFDEISEWKVATMENS





KQFSALGFLIGKRMIKKDSDVPIGLISSSLGGSSIMQWIPTYSVNWDSQAKRMMAGASSKGG





LYTQRLLPLKNLKASAVVWYQGEANTTFESGTVYEQALTSLINNWRKTFNDEDLPFVVIQL





PTANFAKIYSTIRIGTGVRAGQWNVSQRMDNVKTVVSNDTGTTNNVHPNDKGPIADRAVA





YIEDFINNTQSNVESPSFDYMERSGDKLILHFKNTYGSLSTDDGGVPLGFELKDDDGIYKDVT





PTINGDTIEIDVTDITNPQVKYAWSDTPGIAKDLVEAQTDTPAVINTFNAAGRPIAPFMTDLT





EKYASKAVNKELSTTEFYNYAPYISKVEQSGDDIVISAYDTDGVVSKVEVYIDEGEIKAGDA





KQRDDGKWVFTPDVTSGVHSVYAIATDNDNINSLTCVDYTTYNIIRPTRYDYVKGYTESPSS





VEYNNGDDMLAKATNDVNGTTTTVTSAIPTGETTKSLKLSATGNKATANATIPISKADNPQ





KTLTIEYDTMFESADDAIGASRGMYAKTKEGNELWLTYFTASSLRTAITNTGGNWCYEQA





MSIKNNQWHHIKLELHPNTGIFSIWLDGTMLQDNVSFVKEGSSFDTCKGAFDTLKEGITDLR





FYHTASNNIENATYIDNVKVTEVSYSEEEIIPPAKIQEATPQISIDYINETLTGFESQEPYTIKVG





EGNAKDITLGEGVTTISLDDEKIGYAGKLLSIEIVKKARNTETYTDSDVQQLTVKARPKAPTT





VQGVNATEIGGKGKLTGMNGMQYKLKRTDEWSSTQLVDTVEVDAGEYNVRKAATDTDFA





SEKTTITVETFIAEKEMTPEIAIDYTTEELINFVEDGTYTINGLDVTLTDNKLSLANYITNEQIT





LSIVKKGNNVTTVASEAQTLIVKARPAAPTKSEIIVTQPSVIGGKGTIAGIADTMEYSTNNGIN





WTTGDGDDIGDIEPGTTYKIRYKAVSADEEAERQFKSAEYSVTIIAYDAMPETQPTISINYVN





EKLTGFTEGCDYIIKIDDGVATDKDNVTEDIDIDNTYFGHTLKIVKKDDGIKTSNSEAFELSIP





KRSSAPNVAAVEEQTYQGNDGKITGVDTTMEYKSLSEPTFTWMQCVGTEITNLAPGSYIVR





VAAVADESFASEVMSVTINAAAKDEPTEPTVNITYDDKNGNVNAIFTNITEEGMVYVAEYN





ENGTLLSIKSDEISDSVIIPFTCVNKSKVKVFIWKNDMKPLFNKVFTLN





SEQ ID NO: 10 - Rucg 13 altCE (carbohydrate esterase)


MFNKKFNLLKEATEYGFMPYMETYILDGKKRPIVVIFPGGGYGMVSEREAERIAMAYNAAG





FHAAVVYYCVEPHTHPLPIQNAANAVAMLRENAEKWNIDTDKVIVCGFSAGGHLAASLSA





LWNDSEIFSEREIELAMHKPNAQILSYPVITSGEFAHKDSFKNLTGTDDESNHLWSSLSLERRI





TDIIPPTFLWHTYEDICVPVENTLMYAAGLRRVGVPFELHIFEKGEHGLSRVSDELIWSKRKF





EREYPWLSLSVDWLNQLF





SEQ ID NO: 11 - B. intestinalis SusD


MKKRHIIGSFLLGLLLTVNTGCEDFLDQKDTSGINENSLFLKPEDGYSLVTGVYSTFHFSVDY





MLKGIWFTANFPTQDFHNDGSDTFWNTYEVPTDFDALNTFWVGNYIGISRANAAIPILQRM





KDNGVLSEKEANTLIGECYFLRGVFYYYLAVDFGGVPLELETVKDEGLHPRNSQDEVFASV





VSDMNIAAGLLPWKAEQGSADRGRATREAALAYQGDALMWLKQYKEAVEVFNQLDSKC





QLEENFLNIHEIANRNGKESIFEVQFTEYGSMNWGAFGVNNHWISSFGMPVAISGFAYAYAD





KKMYDSFENGDLRRHATVIGPGDEHPSPLIDLQDYPKLKDFATKGNGNIPASFYQDEEGNV





LNTCGTVENPWLDGTRSGYYGVKYWRNPEVCGTRGAGWFMSPDNIMMMRYAQVLLSKA





ECLYRLNDSNGAMAIVQKVRDRAFGKLQNSAVEVPAPANTDVLKVIMDEYRHELTGETSL





WELLRRTGEHANYIKEKYGITIPTGKDLMPIPQTQIGLNQNLKQNPGY





SEQ ID NO: 12 - B. intestinalis SusC


MKTKFIATFFLLICGSVMFAQTRTVKGKVVDKANEPLIGVAVNIKNTSQGSITDFEGNYSIQV





NTENAVLVFSYIGYDKQEIKVGARNVIDVVMHEASIALDQVVVVGYGTSKRGDVTGSISSID





AAEIKKVPVVNVGQALQGRMSGVQVTNNDGTPGAGVQVLIRGVGSFGDNSPLYVVDGYPG





ASISNLNPSDIQSIDVLKDASAAAIYGNRAANGVVIITTKRGNADKMQLSVDATVSVQFKPS





TFDVLNAQDFASLATEISKKENAPVLDAWANPSGLRTIDWQDLMYRAGLKQNYNLSLRGG





SEKVQTSISLGLTNQEGVVRFSDYKRYNIALTQDYKPLKWLKSSTSLRYAYTDNKTVFGSG





QGGVGRLAKLIPTMTGNPLTDEVENANGVFGFYDKNANAVRDNENVYARSKSNDQKNISH





NLIANTSLEINPFKGLVFKTNFGISYGASSGYDFNPYDDRVPTTRLATYRQYASNSFEYLWE





NTLNYSNTFGKHSIDVLGGVSIQENTARNMSVYGEGLSSDGLRNLGSLQTMRDISGNQQTW





SLASQFARLTYKFAERYILTGTVRRDGSSRFMRGNRWGVFPSVSAAWRIKEESFLKDVDFIS





NLKLRASYGEAGNQNIGLFQYQSSYTTGKRSSNYGYVFGQDKTYIDGMVQAFLPNPNLKW





ETSKQTDIGIDLGFFNNKLMLTADYYIKKSSDFLLEIQMPAQTGFTKATRNVGSVKNNGFEF





SVDYRDNSHDFKYGVNVNLTTVKNKIERLSPGKDAVANLQSLGFPTTGNTSWAVFSMSKV





GGSIGEFYGFQTDGIIQNQAEIDALNANAHRLNQDDNVWYIASGTAPGDRKFIDQNGDGVIT





DADRVSLGSPLPKFYGGINLSGEYKGFDFNLFFNYSVGNKILNFVKRNLISMGGEGSIGLQN





VGKEFYDNRWTETNPTNKYPRAVWSDVSGNSRVSDAFVEDGSYLRLKNIEVGYTLPANILK





KASISKLRIFASVQNLFTITGYSGMDPEIGQSMSSSTGVAGGVTASGVDVGIYPYSRFFTMGF





NLEF





SEQ ID NO: 13 - B. intestinalis GH3


MKTFILSFLIYAGCSLPLTAQQIKPAIPSDPEIEAKINKLLQKLTLEEKIGQMCEITIDVITDFSD





KENGFRLSESMLDTVIGKYKVGSILNTPFSIAQEKEVWADLITRIQKKSMEEIGIPCIYGVDQI





HGTTYTRGGTFFPQSINMAAAFNRQLTRRGAEISAYETKACCIPWNYAPVMDLGRDPRWPR





MWESYGEDCYVNAEMGVQAVKGLQGENPNHIGENNVAACIKHFMGYGVPVSGKDRTPSSI





SRTDLREKHFAPFLASIQAGALSLMVNSGVDNGVPFHANKELLTGWLKEELNWDGMIVTD





WADINNLCLRDHIAETKKEAIQIAINAGIDMSMVPYEVSFCTYLKELVEEGKVSMARIDDAV





SRVLRLKYRLGLFDNPYWDIRKYDQFASPEFASVALQAAEESEVLLKNEDDILPLAKGKKIL





LTGPNANSMRCLNGGWSYSWQGDKADECAQAYNTIYEAFCNEYGKESVIYEPGVTYKTSA





DALWWEENTPRIAQAVSAAEKADVIIACIGENSYCETPGNLTDLNLSTNQKDLVKALAATG





KPIILVLNEGRPRIIHDIVPLAKAVVHIMLLGNYGADALVNLVSGKANFSGKLPFTYPHLINSL





ATYDYKPCENMGQMGGNYNYDAVMDVQWPFGFGLSYTTYSYSNLKVNRTSFDADNELVF





TVDVTNTGKMAGKESVLLYSRDLVASITPDNIRLRNFEKVDLQPGETKTVTMKLKGSDLAF





VGADGKWRLEKGAFRMTCGTQKLEVHCTTTKIWQTPNISKSGI





SEQ ID NO: 14 - B. intestinalis PL2


MKNTVLPLILFLCMLCLGSHLYAGHSMHPLNQISYVKKKIKEQQEPYFTAYRQLMHYADSI





QEVSQNALVDFAVPGFYDKPEEHRANSLALQRDAFAAYCSALAYQLSGEERYGQKACYFL





NAWSSTNKKYSEHDGVLVMSYSGSALLMAAELMMDTPIWNPQDKDAFKTWVSQVYQKA





VNEIRVHKNNWADWGRFGSLLAASLLDDKEEVARNVQLIKSDLFVKIAEDGHMPEEVVRG





NNGIWYTYFSLAPMTAACWLVYNLTGENLFVWEHNDASLKKALDYMFYFHQHPSEWKW





DTRPNLGAHETWPDNLLEAMAGIYNDASYLQYVESSRPHIYPLHHFAWSFPTLMPVSLKGY





DLTDNNTWANYNRYEVANKTVKKPVAIFMGNSITEGWNRSHPDFFTQNGYVGRGISGQVT





AQMLARFRADVLDLKPQVVCILAGTNDIAQNCMYMSVENIAGNIFSMAELAKANGIKVVIC





SVLPATRYSWRPTVQNPAGQIIQLNKLLQKYAQKNKIPYVDFHSMMKDEQNGLPQKYSKD





GVHPTKEGFSMMEPIIKEAIDKLLK





SEQ ID NO: 15 - B. intestinalis GH5


MKNIYYILILCCLCLFSCDSHPDTKSSLPFGVNLAGAEFFHKKMDGVGQFGIDYHYPTTREF





DYWKSKGLTLIRLPFKWERIQRELYGELNREEIDYIKYLLDEAGARDMKILIDMHNYGRRK





DNGKDRIIGDSVSIDHFASVWKQIAGELKEHSALYGYGLINEPHDMLDSVPWFKIAQAAIEE





SRKVDLKTAIVVGGNHWSSAARWQEISDDLKHLHDPSDNLIFEGHCYFDEDGSGIYRRSYD





EEKAYPTIGIDRTRPFVEWLKTNNLRGFIGEYGVPGDDERWLVCLDNFLDYLSKENINGTY





WAAGAQWNKYILSIHPDDNYQTDKIQLGVLTKYLETKN





SEQ ID NO: 16 - B. intestinalis GH88


MRKQLSLLLVSISLGWVGCAPDKQADTIHLDRQLEYCDAQIRRTLSEADQDSCLMPRSMEA





NQTNWNMSNIYDWTSGFWPGILWYDYEATGDEEIKAQAIRYTECLLPLVTPAHGADHDIGF





QIFCSFGNAYRITGNEEYKTVILKGAQKLAKLYNPKVGTILSWPGMVKRMGWPHNTIMDN





MMNLEILFWAARNGGGQELYDIAVKHAQTTMKYSFREDGGNYHVAVYDTIDGHFIKGVTN





QGYGDSSLWARGQAWAIYGYMMVYRETQDKTFLRFAEKVTELYLENLPEDYIPYWDFDAP





DMIKQPKDASAAAITASALIELSELEDTPSLASRYLNAATRMLGELSSERYQCRDIKPAFLMH





STGNQPGGYEIDASINYADYYYLQALLKYKKAMGL





SEQ ID NO: 17 - B. intestinalis GH92


MKTRTLGICLFLLMNVSFIKGQSLADKVDMWMGTYGAGHCVVGPQLPHGSVNPSPQTAYG





GHAGYVPDQPIRGFGQLHVSGIGWGRYGQIFLSPQVGFNPGETDHDSPKQGEEATPYYYKV





MLSRYDIQVEISPTHHCVAYRFTFPETDOGNILLDIAHNIPQHIVPEVKGLFHGGEINYNPEQQ





TLTGWGEYSGGFGSTDAYKVYFAMKTDTPLKEVKITDQGDKALYACLALNKNPGVVHLN





VGISLKSIENASLFLSEEIADNSFNTVKENAKAIWDNTLSSIKIKSENEAEERLFYTTLYHSFV





MPRDRTGDNPHWDSESAHMDDHYCVWDTWRTKYPLMVLLRESYVAQTINSFIDRFAHNG





VCNPTFTSSLDWTSKQGGDDVDNIIADAIVKNVKGFDYEKAYALMKWNAYHARSKDYLRL





GWEPETGGIMSCSAGIEYAYNDFCTSEIAGIMHDENTQKELYERSGNWSQLFNPLQESHTYK





GFIVPRKANGEWVAIDPAKAYGSWVEYFYEGNSWTYTLFVPHQFDRLIEYCGGKANMIKRL





SYGFENNLISLNNEPGFLSPFIFTHCGRPDLTARYVSQIRKDNFSLLKGYSDNEDSGAMGSW





YIFTSIGLFPNAGQDFYYLLPPAFTDVELTMENGKKISIKVLKDTPDACYIKSVSINGKVLDK





GWIYHREIAEGATLVYELTNKENAWHINE





SEQ ID NO: 18 - Rucg13 GlK Glucokinase A


MKYYIGIDLGGTNIAAGIVDKTGKIIAKDSVPTLNTRPIEAIMLDMTKLCKTLLDKSQMDINK





IEAVGIGCPGTVDNKNGIISYSNNIPMKNVPMRKFMEKQLNISVNLENDANAAALGEYTAN





GHNASSYILITLGTGIGGGAVINSKIYRGFNGVGIEPGHMTLINGGERCTCGKHGCWETYGS





VTALINQTKLKMTDNPDSLMHKISGKFGEVNGRVAFEAAKAGDKAGLEVVEKYTEYVADG





ITSVINIFEPEILVIGGGISKEGEYLLNPIRKFVEINEFNKYRPKTKIEIASLNNDAGIIGAALSAN





R





SEQ ID NO: 19 - Rucg13 CBM11


MKKLVSLIIAMSIFFSINCAIFATNVSYMADFESADAKFGNSTTYSGTKNTAGDYSDFVKPE





WVADGGKENSTGLRITYKAATWYAGEVFFPIPVAWQNGADAEYLNFDYNGKGIVNISLST





GSAATDTLTKGTKYSYKLNADTNGEWQSISIPLSEFKNNGNPVTIANIGCVTFQAGENGGLS





NSASETKAMTAAELEAKARNGSIIFDNMELSNVGENVLNPNATPEPTEKPDNTTRTIDFDTY





TLSHKQTWAGFNNNDKTYSDSIKSEITENGKEGCALELTYKAATWYAGEIFMSIPKEWAINK





NSECLEFDAKGQGKIKISLETGEVVNGIRYGHTVTINTNDEWQKISVPLSEFVNNGNEVPLTD





VVGMAFSAAESGNLDNNAEETKMMSADELEEKAVTGCVVIDNITLAEQDTTSPTAAPEATT





QPTEISYVADFETADTKFASGKTWGGFKNKSNDYQDYIKAKWLQDGGVDGSTAFCVYYQS





ATYYAGEIFVPAPAVWTNNGAKGAEYLNFDYKGKGAVKISFSTGNTVDGTLTSGTRYTRRF





ELDSHGDWAKISVPLSEFVNGENIVNMTEIGTVTFQAAENANLDNNSDDTKAMSADELKEI





ARTGEIIFDNMTLSETEGKTTLFSSVKVTAEIDGKEITNLTNGDIKIKAIASDIEKDTNMVMIV





AVYKENGVIDTVRMAGQKIIGDGELMLDLNVTDAEHQTMKVFIFDDFTNLHPIINVTNFL





SEQ ID NO: 20 - Rucg13 Glk glucokinase B


BMPTIRFVYTYSLLWWAERLCGKMYYIGIDLGGTNIAAGIVTEEGKIVVKDSVPTLSERPTD





EIVTDMANLSKKLVQSIGIEMNEIKGIGIGCPGTIDFETGEIVYSNNIKINHYPLADKFKEHIPL





PVKVDNDANCAALGEYKINRHCASVFALVTLGTGVGGGVIINGKVFRGFNGAAGELGHMTI





VSGGKMCTCGKEGCLESYASATALISQTKDALETHKDTIMHGIVKKEGKISGRTAFEAAKQ





GDEVAKKVVSNYERYLADGIVSIENIFQPEIIAIGGGISKEGDYLIEPIREYVYNTGFNKHMTK





TKIVAAQLFNDAGIIGAAMLAI





SEQ ID NO: 21 - Rucg13 HK histidine kinase


MSEKFNNMSFRTKLLLSYIAVIILCIIIFGLTVFSSISRRFENEITDNNAQITGLAVNNMTNTMN





NIEQILYSVQANSTIEKMLTASNPPSPYEEIAAIEQELSKIDPLKATVSRLSLYIENRTSYPSPFD





SNVTASVYSKNEVWYKNTKELNGSTYWCVMDSSDANGLLCVARAFIDTRTHKILGIIRADV





NLSQFTNDIAHISMNNTGKLFLVYENHIINTWNDSYINNFVNENEFFKAISADSDKPQLVQIN





KEKHIINHSRLKDSSLILVRASKLDDFNSDIHIIEKSMITTGIIALLVALIFIFIFTRWLTAPITKLI





KHMERFENNYERIPIEITSHDEMGKLGESYNSMLNTIDSLITDVEDLYKKQKIFELKALQAQI





NPHFLYNTLDSIHWMARAHHAPDISKMVSALGTFFRHSLNKGNEYTTIENELNQISSYVSIQ





KIRFEDKFDVVYDIDENLLHCTIVKLTIQPLVENSIIHGFDEIEEGGMITIRIYPEDDYIFIDVIDN





GSGADTNELNKAITHELDYNEPIEKYGLTNVNLRIQLYFDKTCGLSFKTNETGGVTATIKIKR





KEPEYKTIDL





SEQ ID NO: 22 - Rucg13 Pgm phosphoglucomutase


MQCRGGNVMNFNIPDLGIIDGSSGFRNLPSTTDGRFTSGEDGVKHIVCTGDGKVEFVAFENQ





TLAYVNSALGYGAYYPLHPVNRNGKIKAVLMDLDGTSVRSEEFWIWIIEKTTASMLDDESF





KLEESDIPFVSGHSVSEHLQYCIDKYCPGESLDKARNFYFDHVNREMKEIMEGRGRKNAFVP





QEGLKEFLLALKAKGIKIGLVTSGLYEKAMPEILSAFRALDMGEPTDFYDAIISAGYPLRKGS





VGTLGELSPKPHPWLYAETCAVGLGVGFDERGSVIAIEDSGAGVCSARIAGYTTIGLAGGNI





KESGTMPMCSRYCNNLAEILDYIEEEA





SEQ ID NO: 23 - Rucg13 ManA M6P Isomerase


MFFSVLHMAIINIKGVKIVSELYPVRLIPVFKDYLWGGTKLKTVFNKKSELNILAESWELSAN





KDGQSIIANGKYQGYGLKEYIDIVGKEIVGTKGLALDDFPILIKFIDAKKNLSVQVHPDDEYA





TCHDGANAKTEMWYILDCNVGAYLYYGFKKDITKQEYQDAIRSNTITDVLNKVPVHKGDV





FFIPAGTVHAIGAGILICEIQQNSNTTYRVYDYDRRDKDGNKRELHIREALESSNLKKSTYSN





SVLDGDDIILTQCDYFTVRRLKVQNRVQLRIDKTSFHSLIITDGSGELYMGGEILKLNKGDSIF





IPAQNNEYTVSGPCEIILSFL





SEQ ID NO: 24 - Rucg13 RR response regulator


MNVKLLICDDEKIIREGLASLDWNTRGIEVVGTAKNGEVAFELFQKMLPDIVISDIKMPTKD





GIWLSEQIHKISPNTKIIFLTGYNDFEYAQSAINNGVCQYLLKPIDEFELYEIVDKLTKEIHLEQ





QKAEKEIELRKTLRNSRYFLLNYLFNRAQYGILDFELFEISKKAAAMTTFVIRLDTDSTNYG





MNFMIFEALIEHLPKTINFIPFFSNSDLVFICCFNEPEGESEQKLFSCCENLGDFIDTEFNVNYNI





GIGIFTSEISELEASYTSALQALDYSDRLGQGNIIYINDIEPKSQLSAYQSKLIETYIKALKNND





EKQSKKSVKELFDVMERSDMNLYNQQRRCMSLILSISDALYDIDCDPTILFKNTDAWSLIRK





TQSPAELKTFVENITDVVISYIESVQKQKAANIITQVKALVEKNYARDASLETVASQVFISPC





YLSVIFKKETNITFKNYLIQTRIEKAKELLEKTDLKIYDIAEKVGYNNTRYFSELFQRICGKTP





SQYRASHNPSMPQDI





SEQ ID NO: 25 - Rucg13 TR transcriptional regulator


MSDKKPLYKQIMDKLKERIKSGDFEYDAPFVTEDRITKEYGVSRITAIRALEELEHDGLINRK





RGSGSFVSKNAMSILGKDKEDNAAVTIHKKNRDISLVALVMPFDIKLGNMFKCFDGINSVLN





KENCFVSIYNANRSVENEEKILRSLLEQGIDGVICYPVRGGRNFEVYNQFLVKKIPLVLIDNYI





ENMPMSYIVSDNSGGGKALCEYALEHGHKKIGFFCRGRVNETISIRDRYMGYAAALEEKGL





GVNLDYVYANIDDKYEMLTEEERQQYGNVENYLKTIVNRMHEQGISCVLCQNDWVAIQVY





NCCKALDISVPNEMCIMGFDNISELDEMDGGNKIITVEQNFFELGVKAGETVLREINGEMPGI





KYIVPVKIAVRN





SEQ ID NO: 26 - Rucg13 XoPP transporter A


MLVVLGASFTSESAISEFGFHAIPKEWSLDAYRYIITSKETILRAYGVTIFVTIVGTLMSTLVV





ALYAYPLSRKDFKYRKLFTFIAFFTMLFSGGTVAGYMVTTGILNLKNSIWVLIFPYVMNAW





HVIVMRSFYSMSIPTAIIEAAKIDGANEYQIYFKIVLHISLPGLATIALFATLTYWNDWWLPLL





YITEPQKYNLQYLLQSMISNIQNLTENSAQMGSANLLANVPKEGARMALCIIATLPILFVYPF





FQKYFIQGLTVGSVKE





SEQ ID NO: 27 - Rucg13 XoPP transporter B


MLSMCIPGLIFFILFNYLPMFGIIIAFKQYRYDLGIWASPWNGLKNFEFMFSSPDAWVITRNTI





AYNLLFIFGGLVFNVAMAIGLSELRNKAVSKLCQTVVIMPHFLSYVIVSFLVLAFLHVENGLI





NRSLIPALGLEGVDWYSNPKYWPWILVIVNFWKTTGYGSVVYLAGIAGIDTSLYEAAKVDG





ASRWQQIRYITLPALVPLMVVLTILNVGKIFNSDFGLFYQVPLNTGALYPATNVISTYVYNM





LMSAGTGSVGMASAAAFYQSIVGFILVMTTNFIVKKISPENALF





SEQ ID NO: 28 - Rucg13 XoPP transporter C


MIMGKDETSEPLSKKKGDKIMRKKIAALLAMLMLGGVLTGCGGGNKVATGGEDPNVVPED





TYEINWYMQGMPQEDVASVEAAVNDYLKDKINATLKMHRLESNQYSKQLNTMIAAGEYF





DIAWTTPGVLTYTANARNGAWLALDDYIDTYIPKTIEQLGEIADNARVDGKLYAIPTYKEM





ADSRGWTYRKDIAEKYNINMDNIKTFDELLPVLKMIKENEPNMQYPIDWGSDRTPEALMKY





EEIAGTAVIFYDTDKYDGKVVNLVETPEYLEACKWDNKLYNEGLVKKDIMTATDFEQRLK





DGKTFCYVDFLKPGKAKETSAKFDFELDQSTVSDIWQDNGAGTGSMLAVSRTSKNPERVLR





FLELLNTDATLSNLINYGIEGKHYTKIDDNTITIPDDTSYTLQGYQWMQGNVFLNYLTEGESP





DKVEALKAFNAEAKKPIDYGFKFDNTAVEAEIAACQTVKSEYRKQVIMGSMDPEPIMKEYA





AKLKAAGIDKIIEEAQKQYDEFLANKNKQ





SEQ ID NO: 29 - Rucg13 XoPP transporter D


MKKLLILFLLASVMLSMCSGCTVEKTVESAQAVTVLKVIKPNYISDFTQNIAEFNEANPDIQV





KFIDAPTSTEKRHQLYVSALSGKDSSIDIYWINDEWTKEFVEQKYIKALDGEILLDNSRYIIDA





QERFSVNDSFYAMPVGMDTDVIFYRSDKIHNVPETWDGIINLCRNSDFGLPIKLGLTTSDIQD





MMYNIIEIKEAIGISYAETLNLYKEFIEEYKDIENYTDTIAAFKIGSAAMLMGNSSLWKKLNG





DTSAVKGNIMVASLPNKNQFVRSYALAINSNSKNQEAAIRFLDFMNGKEQQRRLSRDTSLIP





IIRELYDDEMILDANPHVKGIKQSVQNSSSFATVSINGENLKKLEEALIKFFNNEETSMNTGKI





FEDLMQ





SEQ ID NO: 30 - B intestinalis HTCS


MKQLITTLFIFIFLQPSWASLYRNYQVEDGLSHNSVWAVMQDKQGFLWFGTVDGLNRFDG





NSFKIYKKLQGDSLSIGNNFIHCLKEDSHGHFLVGTKQGFYLFNRESETFSHVRLDNRSRGG





DDTSINYIMEDPDGNIWLGCYGQGIYVLGPDLQVRKHYINKGNPGDIASNHIWCMVQDYNG





VIWIGTDGGGLIRLDPKDERFTSIMHEKDLNLTDPTIYSLYCDMDNTIWVGTSISGLYRCNFR





TGKVTNIVYPHRKILNIKAITAYSNNELVMGSDAGLIKVDCIQETISFINEGPAFDNITDKSIFSI





AHDMEGGLWIGTYFGGVNYYSPYANKFAYYPGSSEEVSKSIISYFTEESSDKIWVGTKNEGL





LLFNPAKISFETTHLQIDYHDIQALMMDNDKLWISVYGKGVSMVDVHSNTLLKRYSNDVGG





PDLLTSNIVNVIFKSSKGQIFFGTPEGVDCLDAETKKINRLERTKGIPVKAIMEDYNGSIWFAA





HMHGLLHLSADGTWESFTHMPEDSTSLMSNNVNCIHQDARYRIWVGSEGEGMGLFNPKTK





KFEYILTENLGLPSNIIYAIQEDADGNIWVSTGGGLARIEPETRSICTFRYIEDLIKIRYNLNCAL





RGRDNHLYFGGTNGFIAFNPKDIQNNEYKPPICLTGFQISGNEVVPGIEGSPLKKSISMTQKIE





LESNQAAFSFDFVCLSYLSPAQNKYAYKLEGFDTDWHYVANGNNKAIYMNIPSGKYTFYV





KGTNNDGVWCDTPIKVTVIVKRHFWLSNMMLLVYAILAISAFTLLIRRYNKRLDSINQDKM





YKYKVEKEKEIYETKINFFTNMAHEIRTPLSLIVAPLENIISSGDGSQQTKSNLEIMKRNANRL





LELVNQLLDFRKIEEDMFRLCFSKQNISEIVRNIHKRYVQYAKLKDIDIRLVEPEKDIACVVD





KEAMEKVIGNLLSNAVKYANSLITINISTDNNLLTISVKDDGPGIKSEFIDKIFESFFQIENNAQ





RTGSGLGLALSKSLVTKHKGNIAASSDYGHGCTLTFTIPMDLPISISQLTEEYPEKEDISVQQT





ALSPVEGKLRIVLAEDNQELRSFLSNYLSDYLDVYEAQNGLEALQLVENENIDIIVSDILMPE





MDGLELCKALKSNPAYSHLPFILLSARTDTATKIEGLNTGADVYMEKPFSSEQLRAQINSIIN





NRNSIRENFIKSPLDYYKQKSAEPNGNTEFIEKLNIIILDNLTNEKFSIDNLSEMFLMSRSNLHK





KIKNIVGMTPNDYIKLIRLNQSAQLLATGKYKINEVCYLVGFNTPSYFSKCFYEHFGKLPKDF





IVIE





SEQ ID NO: 31 - Rucg13_XG


CATTTATCTATATTTTATGTACAAATATTAATATTTGCTTCTATACTATATATTATTTATCTATTCG





CACTTAAGGCAGCACCTATAATTCCTGCATCATTATTCAAAGATGCAATTTCAATTTTTGTCTTTG





GTCTATATTTATTGAATTCATTTATTTCAACAAATTTTCTGATTGGATTCAAAAGATATTCCCCTT





CTTTGCTTATTCCGCCACCAATAACCAAAATCTCAGGTTCAAAAATATTTATGACACTTGTTATA





CCGTCAGCAACATATTCTGTATATTTCTCAACCACTTCCAACCCTGCCTTATCACCTGCTTTTGCC





GCCTCAAAAGCCACTCTGCCATTTACTTCACCGAATTTCCCCGAAATTTTATGCATTAAGCTGTCC





GGATTGTCAGTCATTTTTAATTTAGTCTGATTTATGAGAGCAGTTACAGAACCATATGTTTCCCA





GCAGCCGTGTTTCCCACAAGTACACCTTTCACCACCGTTTATAAGTGTCATATGTCCCGGTTCTAT





TCCTACACCGTTAAATCCTCTATAAATTTTACTGTTAATAACTGCACCACCGCCTATACCTGTACC





AAGTGTTATTAGAATATAGCTTGAAGCATTATGTCCATTTGCCGTATATTCGCCCAAGGCAGCTG





CATTTGCGTCATTTTCAAGATTCACTGAAATATTAAGTTGTTTCTCCATAAATTTACGCATTGGCA





CATTCTTCATCGGGATATTATTTGAATACGATATTATACCATTTTTATTGTCCACCGTTCCCGGAC





ACCCAATGCCAACTGCTTCAATCTTATTAATGTCCATCTGCGACTTATCTAAAAGTGTTTTACACA





ATTTAGTCATATCAAGCATTATCGCTTCTATCGGACGTGTATTCAAAGTAGGAACACTATCCTTT





GCAATAATTTTTCCTGTTTTATCAACAATTCCTGCAGCGATGTTAGTTCCACCTAAATCTATTCCT





ATATAATACTTCATCTATAAATCACTCCATTCCTTAAGTTTGTTTAAAATTTTATAAAAATGATAA





TATAATTTCACAAGGTCCGCTAACAGTATATTCATTATTTTGAGCGGGGATAAATATACTATCTC





CCTTATTCAGTTTAAGAATCTCTCCACCCATATACAATTCCCCGCTTCCGTCTGTAATTATAAGTG





AATGAAAGCTTGTTTTATCAATTCTAAGCTGCACTCTATTTTGTACTTTCAGTCGACGAACGGTG





AAATAATCACATTGAGTCAAAATAATATCATCACCATCAAGCACAGAATTTGAATAAGTAGATT





TTTTCAAATTTGAAGATTCAAGAGCTTCTCTAATATGTAATTCTCTTTTATTCCCGTCCTTATCGC





GTCTATCATAATCATATACACGATAAGTCGTATTGGAATTCTGTTGTATTTCACATATAAGAATT





CCCGCTCCTATCGCATGTACAGTTCCCGCAGGTATGAAAAATACATCTCCTTTGTGAACAGGCAC





CTTATTAAGTACATCTGTTATTGTATTGCTTCTGATTGCATCTTGATATTCCTGCTTTGTAATATCT





TTTTTAAATCCGTAATACAGATATGCACCAACATTGCAATCGAGTATGTACCACATTTCTGTCTT





AGCATTTGCACCGTCATGGCAAGTGGCATACTCGTCATCGGGATGAACCTGCACAGACAAATTC





TTTTTTGCATCTATAAACTTTATAAGTATTGGAAAATCGTCAAGGGCAAGACCTTTTGTACCTAC





AATTTCCTTTCCAACTATATCTATGTACTCTTTCAAGCCATATCCTTGATATTTACCATTGGCTATT





ATACTTTGACCGTCCTTATTAGCCGATAGTTCCCAACTTTCTGCCAGTATATTCAGTTCTGATTTT





TTATTAAACACAGTTTTTAATTTTGTTCCACCCCAGAGATAATCCTTAAAAACAGGAATAAGGCG





AACAGGATAAAGTTCTGACACTATTTTCACTCCTTTGATATTTATAATAGCCATGTGCAAAACAC





TGAAAAACATAGAGTTTATACACTTTTACGGATATGGCTAATCCGTTTTGTCACTATAAATTATA





TTGGGTATATAGAAAAACCACTCTGATTTGGTATAATATTTGCACGTTTTTAATTTATTTTATAAT





AAATAACAAACAGAACATACAAACGACACAAAATTCCATTTAGTTTGACATGGGTAACGTTTTT





TAAGATAAGAATTTACAGTCGGTTATATGTTCTGTTTATAAATTAATATTTAGATGTTTTGTTATA





TTATTTATCCATCTTCGGCGAATTACAACGTGGCATCATTCCATTTAAGTCATTCCACATAAATAC





TTTTGCATAAGAATAGTCCTCCGGTTCTTCCACTGTCTTTGATATATCATCACCTTTTTCAATAGC





TCCTATTTCGGCTATTGACGTCTTAATCAAGACAGAATTATTGTTTAATGTTTTATAAAATGCAAC





TATTACAACGCTTGAGCTATCATCTGTGTCTGTACGCTTTCTTACGCTTACATTTCCTTTTTCATAG





TTGTTTATCTTATATACAGCCATATCTTTTTCCGACCATTTTGCATATAAAACCATATCACCAACG





GAACCCTTGGCAATAGCTGCAACTGCATTTTCAAATGCAGCATCTGTATACCATCCCTCGAAGTT





ATAGCCATCCTTTGTCGGAACTGGCAATGTTATCGTATCTGTTTCAATAGTATACGATACAGGAG





CATTTTCGGCATTTATTCCGCCATTGAGCTCATATGTAATCTCATATTCATTTATTGACCATTGTG





CAATAAATGTAATAGCACCGTTTATATCATTTGGGACTGTATATGTGTCATTCTGTGTACCATATT





TATAAACCGTGTCATCAGTGCCTGTCTTCCAGCCTTCAAATGTATATCCTAATTTTTTTGGTTCTT





GATTAGGAATTTTAATTATCGATGTTTCCGCAATATTATATTGGGTGTTATCAGTAGGAATTGTTT





CCTCATCCGCTCCTACCGCAGAGTATATAACTACAAAATTACCCACTTCTGTATACTGAGCATAA





ATTGTAAGCTCTGTATTATTTCCGAACAGTGCAAGCATATTTGAAGCGGTATTAAGATTATCCAT





CGTAATTACAGTTCCTTTTGTCGGTGCATCAAACCAGCCCTTGAAGTTATATCCTTGTTTTTTCGG





ATTGTCATTCGGTAAAACGGGTAAATTTTCAACACTGCCGTATATAGTCGTTGTTGTACCTGTAC





CCTCTTGCAAATCCAGATTAATTGTATACTGTATCGGACGTACATTCACTGTTATCGTAACATTTT





TACCTGGCATTATGAATGTATAGCTGCCATTTTCTTCTGTAATAGTGTTTAAATTTTCTCCGTCAG





CAGTACACAAAACATTTTCCAACGTATATCCCTTAGGAAGCGTAACCATAAATGAAACTTCATCA





TTTTCATATGCCTTTTCTGTCACATTTATCGTACCTTGTACTATATCTGACGGAATTGTTCCCGTTG





ATACAAAGCTTGCGGTAATACTTCCTGACGCTATTTCATCCCATTTTGCATATAATATTTTATTTC





CCGTCGTGCCTTGTTCGATTATTTCTATCTTGTTTTGGTATTCAACATCAGTGTACCAACCGCCAA





ATGTATATCCCTTTCTTGTACCGGGAGCGGCAAGAGTTATTGCCTCAGTTTCAACCGTATAGTTT





GACGGATTGGTGTTTGTTGCATCATTAAGTCCCTCGTAAGTTATCGTATAATTTAACAGAGTCCA





GTGTGCATATAATGTGACTGTTGCTTCGTTTCTAAAGATGTCAGACAGATTGTCTTTTGTTATCCC





ATTAACCTGACTGCCATTGTTTTCTTCAGTGTACCAGCCGTCAAATTTGTATCCGGCTTTTGTTGG





TATAGGAAGTTCAATACCATTATCAGGGATATTTTCTTCCTTAAAATCCTCAACCATTACTTCACT





TCCGCCGCACGCATTAAGTGTGACAGAATACACCTGTGAATTCGGAGCTACTTTGTATGTACCAT





CGCCGTTATCAATAACTCTGTATGTTTCCGTGTCGGTAACATAGCTTGTCGGGTCAAATGAATAT





GTTCCGCCGGAAATAGTGATGACCGTTGTTGTGTTAGCGGGCTTTGTCGCACCAATAGTAGATTT





AAACGTTCCGCCCGTGATATTTATTACCGGCACTGTTTCTGTAGTGGCTTCATCACCATCAAGAA





TACTGTAACCGTTATTCTCTGCGGTATTTTCAAAAGTGCCTCCGTTTATTGTAAGAGTTCCGGAAA





AGCCCTTTACAGTGTTAATCGCACCTCTTTTACTAACAGAATTCTTAAAAGTTCCGCCGTTTATTG





TAATTTCGCTTGAACCCGAGAAGGTAATACTGCTCATATTCCCGTTATAATTGAATATTCCACTA





TTTATCACCGCGGTACCATTGGCAACTGACAGAGCATAGCCCTTATATTCAGAATCATCATTTAT





AACGGTATTTTCAATATTTATAATACCGTTTGAAAGGTTTACCGCATAGCTATTTCCGTTAATTAC





AGAATCTTTTAAATGAAGTATTGAACCCGTACCGCTTAACATTATCGCTTGACTCATTGCCTCAA





CTTTTGCTCCGTCAATGGTAAGAACTGCATCTTTTACTGCAAATTTTATACCATAAGAAGTTGAT





GTATTAACATTCTTGATTGTGCCTTTTGTTGTACCTGTATCAACAACTGTAAGGTTATACATTGCT





TCTATGACCGTTGAGCCGCCTCCACTCAATGTATGTCCATTAAGGTCAAGACGCATTGCACACTT





TGTCTTTATACTTGATGTTCCCAAATCAATATCTGCACCCAACTTTACATAATCATCAGACGCTGT





AAGAGTGTTAATTTCCTCAATACTCGATACAATTTTTGCTACCGGCTCCGGTGTCGGTTCCGGTGT





TGGTTCCACCCCTTTTTTCGTCACAACATACTTGCCTTCGGCAACCTTTGTTATACTATATATATC





TGTATCTATACAATTTGGATACAGCACAGTCGGGTCTGCGGCAAACTGCCCACCTTTTATAGATA





TTTCAGTTGCTGATGAGTTTGTTGACTTTGTTTTTCCTATTGCCGATTTGAATGTTCCATCATTAAT





ATTTATTACCGGTGACGCTATAATCTCACTTGTTTCTGCGTCTATAGACTGATAGCCCTCATTGCT





ATCGAGGATACTGTACCCTCCGGCATTTGTATTCTCAAAAACACCTCCATTAATCGTAACAGTAC





CTACAAATTGTTTATCTGTAACTATAGCACCTCTTCCACTGTTTGGATTTGTGAATGTGCCGCCAT





TAATTGTCAACTCACTTGAACGTGCTACAAGAAGAGTGTTTGTGGTTCCGTTATAGCCAAATGTT





CCGTCATCTATAATGGCAATACCGCCCTGCAAATAAAGTGCGTAGCCTTTATAATCCGCTTTATT





ATTTATAAGAGCATTATCAATATTAATCTCACCGCCGTTCGTTCCTACGTTTATGGCATAGCTGCC





CCCGTTAATTACTGCGTCCTTTATATTGCACTTTCGTCCTGCAACATTAATCAATATCGCTTGACC





TCCCGCATCAATTTCTGCACCGTCAATATTTATTGTCGCTGCTTCTGTTGTACCTCTTATTCCATA





AGAGGTTTGCGTTGTACCTGTATTTATAATGGCACCTTTGGTGCTTCCTGTGTCAACAATCGTTAT





TTCGTGTCTTGGGTCCACTACGAACGGTCCCGAAGATGTCAATGTATGACCGTTAAGGTCAAGAT





GTGTCACACTTTTTGTCGTAAAGCCTGTTGTGCCAAGGTCTATATCTGCTCCAAGAATTATATTTC





CCTCAGTGCTTGTAATCGCTGCAAGCTGCTCTGCCGTTGTAACAGTTACAGGGTCCGGTAGCGGA





GTAGGCGTCGGTTCAGGAGTAGGAGTTGGTAAGCCCCATTCTATATCACCTTTTATGCTTGTATG





AGTTATATTATCAATCATGAATGAACCTTCCCCACTGTTTTCAGCAGAAGAAAATATAAAACCTC





TTACGCGTGCACAATCAAGATTGCTTCCTCCATCAAGTATCTTAAACTCATCAAACGGAACTCGA





AATTGTTTCCACTCCGTCGTCAAAGTGAATTCCTTAGTGTCTGTATAAGTAGTCATCGCACTTGCT





GTGTCAATCACCCCAACATTTATCTTTTCATTCTTGCCGCTTGTAGATTTTCCATAAAACACAAAG





TCTGTCATATATTCCATATCAGCTTTTAAAGTAGCACGGTTAGCAGTACGCTCATCGTCATTTACA





TTTCCTTTAAAGAAATCATTCGGTGAATAAACCACCTTTGCCTTTGACGGTGTGTTTCCGTTTCTT





GAATATTTCACCTCAAGTGCTTTTGAATCAAATCCAAGCCCGCCTTCTTCTTTAGTCGCAACGATT





GTATCTCCCTCACTTCCGGATTCTGTGGATATTGCTGCCTCATATTTTGTGGTGTTCTTATTATAA





GTAGCAAAATCATAAACAAATGTCTTTTCCGGATACGGAATCAGACGTTCCGGCTTTGTGTTTGA





GAAGCCAATATTATCAATGTAAAATTCGGCAGTTGTTCGCGTGTCTGCTGAAATCTGAACATATG





TTATATCTTCAGGGTATTCAACATTACCTTCTAAACTGTATATATATTGATGCCAATCGGTATCGC





CCTCTGCCATATTTACAGTAATATATGCCAGTCCGCTTAAACTTACTGTCAGCTTCTGTGCAATAC





CATTACCTTTGATATCGATAGTAAAATACTTGGCATCCATAGACGGAACAGTATTAAGGTCAAAT





TTTGCTCTGCAACCCTCAGTATCAGTTGCATCTCTTGTATATGTCACACATTTTGTTTTTGTTGTCT





CACCATTTATGTTTAAGACATTCGCATCCGTAATTTGCATTGTTGTTCCCGTAAATTTGGAATTCC





ACGCCGTAGTCTGTTTTTTAAAGCCAGTCGTATCTATATCAATATAGCTTTCCTCTCCCATATCCT





TATGAGGATATGTATTGGCAGTATAAACAGGTGTAGCGAGTTTTACAATTTTTACATTATCAATA





GTTATAGATCCCGTATCTGCCGTAGCGGCTCCAAAATATATGCCGGAAAGAGCGGCGTCAAGCT





TACCGTCAGTCTGCGGATTACCCTGTTTCACAAGTTCATTTATGCCTATTGTTACTGTTTGAACTT





CAGTGTTTACATCTACAGCTTTAGTCCATACTTCCATATCAGAACCATAAAGACCTATATTTACA





CTTCCAGCAGTTGCTGCGGAAATATCCATTGTTATTGTCTGAATTCCATTTAAATCCCAATCAAA





CGGGAAATTCAGTGTTGCATACCAATTCGCCGCCGCAGGTGTTATCGCTACATTTCCGCTTTCAT





CAGAATATTTAATCGAAGCCTTACCCGATGGAGCAGTATAGCTTCTGAATACATCGTCTGTGCTG





AAATCTGTTGAATATACACCGTCAAGCTTTTCCGGTGCAGTGTTGTATGAAAGTAAGCGATTCTT





TATATGAGTACCGTTATATGCCGTAGTCTTATAATCCCATGAATAGAGCATTTTCGGCGATGAAC





TCATATGCAGATTCCATGCTGTCCAGTTTACAGGAATTCCGTCATACTGATTGTCAGTATCGTCC





ATCCAGTTCATAATCTGATTCATCCATATATCGCTTGTGCAGTCTCCGCCCGATATGTTCTTGTCG





GATGAGTCCCATCCCCATTCACCTATAATCACCGGTGCAACACGTCTTACCGGACCTATTATCGT





ATCCCATGCGGTTTTTGCACCCTTAACCGGATATGCGTGAGAGTCATACATAACGCCATGGCCTT





CCGCCGTATCTATTAGTCTATATCCATTTGGGCGTTCATTATAGCCATCAGCAAAACCGCTTATAT





CAAATGCCCAGTTCAGACCGCCGGCTATACAGATATTATTTGCACCTTGTTTGCGAATTTCGTTT





AGAAGTTGTTGATGACCTATAGCAGTTACTTCTTCACCGCCAACTATAATTTGTCCGCCATTATA





CCACACGTCCCATTGTTCCACTGTAGTTGGTTTTTCAACTCCTACCGGTTTTATATCATGTGGTTC





ATTCAAAAGACCGAAAAGTACCGCACTGTTATTGCCGTACTTAACAGCAAGTTCTTTCCACATAT





CAAGATCGTCTTGTTGTGGCATAACATATCTGTGACAATCAAGAATTATATACTTACCTCTCGCC





TGTGCAGCTTTAACCATATCATCAATATATTTCTGATATTGTTCCTTTGTTAAGTTTTTTTCGTCCC





ATACGCTGCCGTTTTTCCAATATTTAGGATTTATTGGCAAACGTATCAGATTAGCTCCCCAGCTAT





CATAGACCATTGTCATAGACTCAAATAGATGTTCTGCCATACCCCAGTCCATACTCGGAACATTT





ACACCACGAAGAACTACCATTTCATCTGTTCCCTGCTTAACTATTTTATTTCCCTTGACCTCAAGA





GGCACAGAACGATTATAGTTAATTTCCGCATTTTGAGCGTCTGCTGCAGCTTCCTCATATGTCTGT





GCATAAACAGGCATAATGCAAAGCGACACTGTCATTACAATAGCCGTTACAAGACTTAAGAATT





TTTTCATGAATATCACCCTTTCGATTTAATTATATAAAAAGGACTGTTTTTTTGTAGGGAGAAAG





AGAGAGAGAATATTGGAAGGTATCCATTGTCCAATAAATAAAACCTATTCTAAACAGTCCTTTA





CTATATTAACATTATAAAAGAAAAGTTCACCTCAAAAAACGAGGTAAACTTTTTCTCACTACCGA





TTAATTATGTTTTCGGCACATTATTCATATTTTAATGTATAAATTTGTTTTGGAGTAACTTCAACA





TCGCACCAGCCATTTGTATCCACTGAAAGCTCTGTCTCTGAAAGTTCCTCAAGCGTGACTTTTTTA





ACACTTGCCCACTTCCTATTTTCCGTACACGGAAGTTCAAACGAGTGTACCTGTCTTTCTATTGGC





GATTGTTTATCTGATATCTCCGCTATGCCACCATTAAATCTAATTCTATTTTTAACTGTTTCACTTG





ACGGATTAAATAATCTCACCACACACCCTAAGCCGTCCTCACTGCGTTTTACGGCACTTATGTGT





AGATTTTCATTTTCAAGTTCAATAAACGACTTTTCAAGAGGGTTCTTGCCATGTTCTGTTGGTGCT





GTCTGTCCAATTAGTATTTCCATATTAAAATCTTCAGCAGCTTTCCATACTTGAGCATCTTCCCAA





TCACCCTTATGAGGCATAAAAGCATATCGGAAAGTATGTTCACCAAAAGACTGTGAACCGTTCT





CTATTCTCGAATAGTTCTGCTCCTCGGGAGTTACATATATGCGAAGCTCAAAGCAGCGCAATAAT





GACAAATACACAGTATGGTTATAATCATCATCCGATTCATACGCTTTAAGTCCCGTATTCAAAAT





CGCCGCACCTTCATTTTCATTGCATATATCAACAAACGAGTTCATCGGCTGCTCTGTCATCGGAA





TTTCGTCATACTTCGAATAATCCGGTTTCGCAATCGGACGCTTTACCACATCAAACTGTCCCTGA





GCGTATACAAACTCTGCATCCACGTCTGTGGGGAAAGCAGCCTGAAGATAGTGATTAGGAACAT





TGTTATTAATTTTCGTTTCAAATTCAACCCATCTTGCGCCTTTTCTGAGTGTTACAAGCGTTTCTAT





TCTGTAAGGCGCGAGGCGGGAACTTCTTTTCTTGCCGCCGTCAACTATATTTTCGGGAATTGCCC





AATTAAGAACTATTCTGTACTTAGTTTCAAGCTCACCGCTGTATACAAGGCTTACAATCGCCCGT





TCATTAACAGTTGTATATTCCTCATCAAGCTCCGGTGTCTTGTGTTCCCACGGGCTGCCATTTTCA





CCGGTGTCCTTAAAATATCCGATATTATCGTATTCCCTGCCGGTTTCCTTTTCAGTAACCTTAAGC





GTACCGTTTGAATTTATCTTAACCTTCAGATATTCATTCTCCATAGTATTTATGCCGCAAAGCATA





TTAACCGGCGTTGTAGCCCGTGTATGATACTTAGGTACAACCTTGAGTGTTTTATAGCCCATCGA





CGGAATATCCTTAACAAATATTCTTATTGTATGTCTTGACACAGGAAGAACATCGACCGCGTCTG





CCAAATCCTGAACAATTTGATACATAGGATTAATTGACGATATGTTCTGGTGCGGGCATACATTA





CCTTCAGCATCGACAATCTCAAAGCTGTCACACTCCCACTCAAGAGGAATTTCAAGCTCACACGG





AACCGTCAGACTTCTTTTAAACGGAGCCGGATTAAACATTACAAGCGCCATATCATTCTTATCCC





AGCCCGCAAAGTCAATGTCGCCAGACAAATCCATAAGAGCTCTTTCAAGCACGCAGGTTGCAAT





CTCTCTTGACTGCCTGAACCGATATTCTACGTCCTTATATACAACATCTCTGCCGCACGCGCCAAT





CGAATCATGCCCGTGGTTTTGAAGCATATAGTTATAGGCTTTATTAATAAACGCCTGCGGATATA





CAGCTCCGCATACAGACGCAAAAACCGCCATCGGCTCAGCATATGATGTGAGCAATCGTTCTGT





TTCAAAGTTCTCCTGCTTAACCTTAATTCTTGCAGAAAGAACCCAGCCAAACAGCGCACTTACGC





TGCCTTTTGTAAACGGATAGCGCATTTCGCCCTTTAAAACAGGTGAATTTTTATCAAAATCTCTG





ATCACGCTCTGCTCAAAGTCATAAACTGTACTGTGAAAAACATCAACACCTTCATAAACAGCATT





AGCATCCTTGATAAGCCTTGATTCTCTCATATCCGGTATTGATGAATCATGACCGTTCGACCAGA





AGCGGTTAGGCGTTGTCCACTCATCGTCCTGTTCAGAGAGTGCCTGCTCCGTCTTTTCAGCTATAT





ATTCGTCATGATACTCATATTTTCTATGCGAATACTGATATTCATATTCACATCTTGCCGGATCCG





CAAAACGGAATATTCCATCTCCAGCTCCCCATGAAACACGACGATTGTCACCGTCACGCTTGCCA





TAAAACACAGGGCGCTGCATTATATACCACATATTATATCTCGGTCTCTGCCCCAGTCTTGAAGC





ATAAATTGTTGTACCGTCGGCGCCCTCCCAGTAGAACTCCGATTTCGGTGCCATATATGTATTAA





GCCCTCTGTAAAAGGACGCAAAATCTATTCCGAAGCCATGATATAGCTGTGGCATTTGTGATATT





TGTCCCCAGCCAAAGGGCGAATAGCCTGTCTTTGAAACTTTGCCAAATTCATTTGCAATTTTATG





TCCCAGGAGAAGATTTCTTATAAGAGACTCTCCACCCACGCAAAACTCATCCGGCAAACAAAAC





CACGGACCCACAGCAAGCTTTCCCTCACTGATATACTTTTTCAGAATTTCCTTCTTTTCAGGGTTT





ATTTCGAGATAATCCTGAATGGGAAGTGTCTGCGAGTCAAGATGAAAATGTTTGTAATCCGGCTC





TTTCTCAAAAATATCGAGCAGCATATCAATCGCAGTCACAAGCATATGTCTTGTTCTTTGAGCGC





TGAATTTCCACTCCCTGTCCCAGTGGGTATTGGATATAAAATGACATTTTATATTTTTTCGCTCCA





TTTACGCTTCCTCCTCTATGTAATCAAGTATTTCCGCAAGATTATTGCAGTAGCGGCTACACATA





GGCATCGTTCCGCTTTCTTTTATATTGCCTCCCGCAAGTCCTATTGTTGTATATCCGGCAATCCTT





GCCGAGCATACTCCTGCGCCGCTGTCCTCAATAGCGATTACGCTACCGCGCTCATCAAAACCAAC





TCCGAGTCCAACCGCGCAGGTTTCAGCATAAAGCCACGGATGAGGTTTCGGCGATAGCTCACCG





AGCGTTCCAACGCTACCCTTGCGGAGCGGGTATCCTGCTGAAATTATTGCGTCGTAAAAATCCGT





AGGCTCGCCCATATCAAGAGCTCTGAACGCCGAAAGTATTTCCGGCATCGCCTTTTCATATAATC





CCGATGTTACAAGTCCTATCTTAATCCCTTTGGCTTTTAGTGCGAGCAAAAATTCTTTTAATCCCT





CCTGCGGAACAAAAGCATTTTTTCTGCCTCTGCCCTCCATAATTTCTTTCATTTCACGATTAACGT





GGTCAAAATAGAAATTCCGCGCTTTGTCAAGCGATTCACCTGGACAGTATTTATCTATACAATAC





TGTAAATGCTCCGATACGCTATGACCTGATACAAACGGTATATCGCTCTCTTCAAGCTTGAAGCT





TTCATCATCAAGCATACTGGCGGTTGTTTTTTCGATTATCCAAATCCAGAACTCCTCGCTTCTTAC





CGATGTTCCATCCAAATCCATAAGCACAGCCTTGATTTTACCGTTTCTGTTCACAGGATGAAGCG





GATAGTACGCACCATAGCCAAGAGCTGAATTAACATAGGCAAGAGTCTGATTTTCAAAAGCCAC





AAATTCAACCTTTCCGTCTCCTGTGCATACTATATGTTTTACTCCGTCCTCACCGGAGGTAAATCT





TCCGTCTGTAGTGGAGGGAAGGTTGCGAAATCCTGAGCTGCCGTCTATAATTCCCAAATCGGGTA





TATTGAAATTCATTACATTACCACCTCTACATTGCATATTTCCGCATCCGATGAAACGGTTGTACC





GTTTACCGTTCCGTTGTCGGCTGTTATTTTAACAGTTCCCTCTCCTGTGTTCTTTACTAAAATATTA





TATGTTTTTCCTCTGAATTTTCTTGTTACCTTAAATTCAGATATATCTTTTGAAATACACGGCTCTA





TTACAAGTCCGTCAAAATCAGGACGTATACCCAAAAGATATTGTGACACCGTATAATAATTCCA





CGCCGCCGTGCCTGTAAGCCATGAATTCTTCGCTTCTCCCGCTCTTACCGCATCACGTCCAGCAA





TCATCTGTGAATATACATACGGCTCGGTTTTGTGAATTTCACTTATCTCCTCTAAATATGCCGGCG





CAATCTTTTTATATAGTTCAAACGCTCTTTCGCCGTTACCCATTACCGTTTCACCGATTATTACCC





ATGGGTTATTATGGCAGAACTCTCCCGCATTTTCCTTATACCCCGGCGGATACGACGAGATTTCG





CCAAGCTCAAGTCGGTATCCCGAATACGGCGGATAATTGAGTACAATGCCATATTCACATTCAA





GATATTTTTTAACGCTGTCAAGCGCTTTTTGCGCCCTGCCGTCCTCCTTGCCTATCCCAGCCATTA





CACAGAAGCCGTTCGATTCAATAAAGATTTTACCCTCGTCACATTCGTCAGAGCCAACCTTATTG





CCGTTAGCGTCGTAAGCTCTTATGAACCACTCACCGTCATAGCCATACTCTAAAACTGCTTCGGT





CATTTTTTCAACCTCATCCGAAATATATTTATACATTTCATCATTGTTGAGCGTCTTATAAAGCCT





TGCAAATTCTCTGCCAATATACACGAACATTCCTGCAATAAGCACAGACTCTGCTACTCTGCCGT





CATCGTCTCCCGTAGTCTGGAAAGATTCGTCAGGAATTTCGGAAAAGCAGTTCAAATTCAAGCA





ATCGTTCCAGTCCGCACGTCCGATAAGCGGAAGCCCGTGAGGGCCAAGGTTGTTTGTAACGTGT





CCGAATGAGCGATTAAGATGTTCTAAAAGCGTTGCCGTATTGTTTTTGTCACAGTCAAACGGCAC





CTGCTCGTCTAAAATACCGTAGTCGCCTGTTTCCTTGATGTACGCAACCGTGCCTAAAATCAGCC





ACAGCGGATCATCATTAAATCCGCCTCCGATTTCATTATTGCCCTGCTTTGTAAGCGGCTGATAC





TGATGATACGCGCTTCCGTCCTCAAACTGCGTTGAGGCAATGTCAATAATCCTCTCTCTCGCCCTT





TCGGGTATTTGATGTACAAAGCCAAGCAAATCCTGATTTGAATCGCGAAATCCCATTCCCCGGCC





GATACCGCTTTCGTAATATGATGCACTTCTTGACATATTAAAGGTCACCATACACTGATACGGAT





TCCATATGTTTACCATGCGGTTAAGCTTTTCATCGTTTGACTCAAGAGTAAACACCGAAAGGAGA





TTATCCCAGTACAATTTAAGTTTATCAAGCTCCGCGTCGCATTGTGCTGATGATTCATATCTTGCA





ATCATTTCCTTTGCCTTTGTCTTATTGATTACATTAAGGCTTTCAAATTTCTCGTCCTTTTCATTCT





CAATATATCCAAGAACAAATATGTATTCGCGGCTTTCTCCCGCGTCAAGTGACACGTCAATCTGA





TGAGATGCGATAGGATACCAGCCCGAAGCTACTGAATTGCCGCTCTTGCCATTTATTACTCTGTC





AGGAGTGTCAAGACCGTTAAAGGCTCCAAGGAAAGTGTCTCTGTCTGTGTCAAAACCACTTATTT





CGGTATTTACTGAATAGAAAGCGTAATGGTTTCTTCTCTCACGGTATTCTGTTTTATGGTATATAG





CGCTGCCGTCAATTTCCACCTCGCCCGTATTGAGGTTACGCTGATAGTTAAGCATATCGTCCTGA





GCGTTCCAAAGACAGAATTCAACGAATGAAAACAGATTTATGTTTTTAGCCTCACCGCTTGTATT





TGTCACCTTAATTCTATGTATTTCGCAGTTATCGTCCACAGGAACAAAAGCTGTCTGCTCAACGC





GGACGCCGTTTCGCTCGCCGGTGATTTTTGTGTAACCCATACCGTGACGACACTCATAAAAATCA





AGCTCTTTTTTCATCGGCATATACGAGGGTGTCCAGCAATCGCCATTATCGTTTATGTAAAAATA





GCGTCCACCGTTATCCGCAGGGATATTGTTGTATCGGTATCTCAGAATTCTTCTGTGCTTTGCGTC





CTTGTAGAAGCAATAGCCGCCGGAGGTGTTTGAAATTAATGAGAAAAATCCGTTTGTTCCAAGA





TAATTTATCCATGGAAGCGGCGTTCTCGGAGTCTCTATTACATATTCCTTATTCAAATCGTCAAA





ATATCCATATTTCATATTTGTTCTCCTTACCAATAAATTTTCCAATCGCTTTTTTTCATGCGCATTA





ATGCTTCAAGATAGAAGTAGTCTCCCCAACTTGTACATTCCGGCTCATGACCGTGTTTTCTGCTGT





ACATACCGTCTTTTATAATTCCGTTGCTTTGAGGATAATCTACTGTCGTGTACTTTTCCGAAAGAC





TTGTCATCATCTTTTCCGCCGCATCAAGGAATTCCTGATTGTGATAATATTTTTCCATTTCAAGAA





TTCCGCACACCGCAACCACTGCTGCGGAGGTATCCCGTGGTTCATCGCTACCATCGGAGAAAATC





AAATCCCAATACGGAACAGAATCCTCCGGAAGATGGTCAATAAAATAATGCGTAACCCGTTCAA





ACAACGGCAAAATCGACTTCTCTTTAGTATAGTGGTAACATAGAGCAAGACCATATACTGCCCA





TGATTGTCCTCTCGCCCAACTGCTGTCATCGGAAAATCCCTGATGAGTTTCTCCCCGAAGCGGCT





TATTGGTTACAGGATCAAAGAAAAAGGTGTGATATGAAGACGCATCAGGACGGATAATATTTGC





GATTGATGTCTGCATATGATTATAGGCGGCGTCATAATACTTTTTGTAGCCTGTCACTTCGCTCGC





CCAGAATAGAAGCGGAATATTTAACATACAGTCAACAATAAATCTATAACTTTGCGAATCATCC





ATAGCATCCCACGCCTGAATAAATTTACCTTTTGGCTGATAACGCTTCAAAAGCCATTCTGCCGC





CTCAATTCCATCCTGCTTCGCCTGTTCATCTCCTGTTATTCGATAATCGGCGACGCTTGAAAGTGT





AAACAAAAAGCCCATATCATGATGCTCCAGTTCAACTCGATCAACCAACCTCTTATGAAACATTT





CACTGTGATGCTTTGCCGAATTATAAAAAGCTTTATCACCTGTAAGCTCATACATAAGCCATAAT





ATCCCCTCATAAAATCCGGTAGTCCATGAAACGTTCTCAAATTTTTTGAACACAAGATTTTCACT





TTGTTCTGTAGGAAAACAATCATAGAAATAATTTAAGCTTTTTCTTACGATGCTCTCCGCATATGT





AATCGCTTTATCAATATTCACTTTTTATCACTCCTCCTACTATAATAAATTTATGCGTAAATCACA





CGACAGTCATTCGTGTATATATCCATCTTGTTGCTTAAACTGATATAATGAAAGTGCAATTTCTG





ACGTATCACGCCTCAGATTTTCTGTCTGTAGATAAGTCAGTCTCTCATTTGTTGTGTTCGATTTAT





GCAGTAGATAAAAGGAGCTTTTATCCAGCCCTTTTTATTATAATTAGTTGACGCTGTTTACCGCCT





TCGGTATGAAGGATTACCTTTGATGCTGCCTCTCCTGCACTCTGCTCTGCGAGCAAATCATCCTCT





GTGGGAACATATATTCTATTTGTAGTCTCATCAATAAACAACACATTATATCCCGAGAAATCAGC





TATTTCAATTTTGTCTGTCTGTCCCAGAGCAGTATCAACCTTTGTTTTCAGAACAAGATTTGTTCC





GTTTCTGTAAAGCAACGTACCATATACCAATCTATACATTGCACCGTAATTATAGCTACCAATGG





CATTGTATATATGTGATGTATTATGGCCATTTTCAGCATACTTTCCGTCTGACACAGCAATCATTG





TTTTATTTAGTGTTGACGTCTCAACAGTTTTTCCTTCTTCATTCCCTGTTTTTACATAATCAGGATT





GTCTTCATCCTTCAAAGAGAATACCTTAACATAATCCACAAGCTCGCCTTTACTGTTTGTAACAT





AACGAATTATATCACCATGCTTTACTTCCGACATAATTTTTGAACCGTTAGGTCCATTATAGTAA





CGTTTCAGATAGACATCTTCTGCAAGGTCAACCTGCATTTGAGCATTACACTGCCAGCCGATTAT





TCGAGTTACACTCTCATCATTATCATTAACTGCCTTTACTACTTCGTCCACTACTGTAAGGGGTAC





TTTTTTATCTATCTCAGGTATTACGTCACTTGTATAATATACTATTACACCTGCTGTCCGAGATTC





ATCCACGTTATATGCTTCAATGCGATTTTCGGTTGTGTATTGTGTCCCGGTCTGCGGATAATATAC





CCAATCATCGAAATAGGTTAAATTTGTCTTAATATACTGTGATGCATCTCCGATATCCCCTCTATC





GTTTGAAACGGGAACTACAAAAACCTTTGTCTTTGAATTTATCGCCACATTATTTCCGTTATCACT





ATTAAATGCAAGTGTATTTCTAAGATACATGCCTCCCGGTTTTATGGAAGATGTCCTTTTAGAAA





AATCGTTATACATTGTCATAGAATTGTCATGGAATACATCATTCCACTCCGGATTTTCATTGTCGC





TATGATATGGAGTATCGATATATTTAATCTCTCCCTCATCGTTGAGCTTATACATAATTGGGACTC





TTACATACACATAACTGTCATCACTATAATCAGCCATTATCTTATATGACGAATCCAGTGTTGCA





AGCGTAGACCTCTGATAATCCGCTGCTATTTTTAATGCAGTTATTATTTTTTCTGCATCTTTGCAG





GTTAAACCATCAATTTTTGTACTTCTTGCAAGTTTGAATTCATTCATATCACCAGTATAAGGAAGT





AGTTTGGCTATAACATCGCTCCTGTTATCCTCAATCCAAGCCTGTATTAAGAATCCATATTGTATA





TCGTCAGTTTTAAGCAAATCATAACCGGCTATCCTACCTCGGTAATCAAGATACACCGTATATTT





ATTTCCATTTTTAATTGCTTTTGCGTCTTTATAGTATTCAGCATTTGTTGAATACTTATATGTCCTG





TCCTCAAATTTAATTTTAGTGCCATTAGTGCTCTTTACTACACCGGTATACATCAAATTGCTTACT





ATAATCTTTGTCTTGTTTGTTTCAATATCTTTAGCAACTGATAGAATTGAATCCTCTGTTATATAA





TAAGCATCAACAGGATTGCCCATACGGTCAGTCATGTCGCAGTCAGCAAAATTTACCTTTAATGA





CCCGTTTGGGTCATCATTGTACAGACCATAAATCATTCCCTGCGACTCTACAATACGTTTTACAA





CCATTATGTCATATTTGTATACAAAAACAACATCGTACTTACCATTGTTATCGTTATCCACTAATC





TGATATAATCGCAGTTATAAAAATCTTCCTCGTCTAACAATTTTGGCGAAAATCCGTTAAGTATC





TCTTTCGCTGATGAATTAAGAGATACTTTTTTTGTTTTATTGTCGCTATAGTATCGTATCATGTTAT





TTTCAACACTTTTAATATCTTCGCCGTCTATCGTTATTATGCTGTTATTTTTGTGATAAGAGATAT





ATAAAAGAGTATTTCCTCCGGAATCTTCCTTTCGATAATATGCCTCCACCTTACACGCAAGGTAA





TCATATAAATCACTGCGGTCACTGGCAAGAAGATAATCTCCTATTCTAATACCTTTATATATTGT





ATCACCACTCGTTATTGCATGCTCTGAAACAGATTCTACAACTCCGGTGATTTTATAAGCATCCTT





GAAATACTCTAAAGTATTAATGCTTTTATGACCGTTATTTCCATATGAAATGTATACATCGGCCTT





TATAGAATCATTAAGAAGAGATGCCGCATCAGTTCTTCTGATAGAAGCACTTCGGTTATCCAGAA





AGTTCTTTGTTATATCATAATTTGCGGCAATTTGTATATACGCATTATCATTGCCTCCATACATAT





AAGCAATCTGCTTATACCCCAAAGCATTTACAAGTGTTCTGAGTGCATTATCAAAACTTATTTCA





TCCGTACAATCTATATTGAAATCTACATATCCCATACTTTTAAGCATATCATGGGCTTTTTCCCAC





ATGTCTTCTTTGTTTGCATCTTCGTCATAAAATGAGTCACAGTTTATGTAGCGGCACACTGACAG





AAAAAATTCACCTGCCTTGATTGGCTGAAGATATGAACCATCATCAATAGGAACCCACATTTCA





AAAGCTGTAAGCTTTTTTACTGTTTCATCATATTCATTCTTACCCATAATGTACGTATCATATTCA





ATATCCTCTATGTATGCGTCATCGGGGTTATCCAGTTCATGCTTAGGGTGCGAGTCTTGAATGAG





AACATTTTGTTCCTCATCGCTTAGTCCCGCATTATTATCTCTGCTGCCGTCATCATCAAAGTTTTC





AGCTGAAAACACTGATATTGCCGCTGTAAATATTACACTCAGAGAAAGCATCAACGCAATTATT





TTTCTTAATTTATTCATGTTACTTCCCCCTTTATCGTATTACTATTGCCGCAATCGATGGCACATC





GTTATGTCTTGAAATAATCACTCTCGAAGCTTTTGCCTCTCCTGCAAGATTAGATGGAATTATATC





ATCAAGACTTCCCAAATGAACTCCTTCGCGACTGTCCTCCAAAATATATACACGATTATTTTTAA





GATTGAAGTATCTTTCGCATTTCAGACTGTTGCTTCCTGCTGTTCCCGGATATGTCTGTATAATCA





TTGATGAACCTGTTATTGATTTTACAATGCCAAATTCCGTTGAATATTGAACACCGGTGAACCAG





TATGGATTTTTGCCTTGCCATATACGTCCCGATACAACATCGGTATCAGGATTAGCAGCCATGTC





ATCAAATGCGATAAGTGTCTTTGCAGAACCGATATATGACTTTGTTTCTCCGTATTCATTGCCTCT





GATTACCACATCGGGATTATCATTGTTATCAAAATCAAATATTTTATGATAGTCAACAATTTCAT





TATTAGCATTCGTTGCAATCCTTATAAGGTCTCCCTCGTCAATGGTTGATGTAACAGGTCCTTCGC





TGCTATTATACTGTCTTTCAAGTTCTACTCCCTCAGCGGTCACAAATTCCTGTTCTGTACCATTGT





ATAAAAGAGTTAGTAAATAACGCTCGTCATCATCAACAGAAGTGAGCGAAACATTCTTAACCGC





CGCCATAACAGAACTGTAAGTGAGCTCATTTCCTCCTGCATTATCCGAACGTATTACGGCAATTC





CCGCTACCATGTCCTTAGACATATTATATAGTTCCACCGTACCAAAAGTTGCAGACTTCAAATCT





TTAAATTGCTTTATCTCATAATATTGGGAGTCGTCCATTAATGATTTGCTCGCCGGAACATACATT





ATTTTTGTCTTCTCCGAAAGTCTTGCATAACCCGGGAAACTCCTATAGTTTGCATTATAGTATGTG





TCAGAAAGGTCTGTGCTGCGGGTGAATACACTTGCCGTTGTATAAAGCTCGTCAGCATCTACATA





TTGTGCAGTTTTTACTGACTGAATTTCACCATTATTATTCAGCTTGTATCTTATAAGCTGATTAAC





TGAATCCGGGTCTGTATTTACATCCTTGAATAGCTTTTCAATGTCTGTATATTCATTTACTTTTTTG





TTATTTACCTTTGCATTCCGTGCGAACTCTAATGTTTCCATATTTCCGGATGTAGTATATACTTTT





AGGTATGGTCCATCGCTATGCTCTGCCGGAAAAGCTTGTGCAAGATATGCAAAGTTATTTACCTC





ATCATTGTCATCAAATTCGGCATATGCTATTCTGCCACGATGGTCAAGCAATACACTGACAGCAT





TTCCTACTGACAATAATGAATATGTTGTATTTTGTGCCGCAAGAATATCTGTCAAGTCATACTCC





GCATCATCAATACTAACTGTTAAATTCCCGTTGTTTCGAGCAGTCCTCTTAACAACTCCGTCAGCT





TCTTCCCTCGATATGTAAATTACAGCATTTTCTTTTTGTTTATCCTCGATAACTGAAAGAATATCA





TAAATCTTTAAATTTCCTATCGATGTAAACTTTTCGTCAGTGTCATATACAATTACAGTTTCCAAA





TCATTAAGTTTTATCGACGGCTGATTATAATAATCATATAATGTATTTTCATACGGTGTAAGCTG





ATTTATACAGTATATTGCTTCTCTGATTACATTTACTGTATCATACATTCCATCATTGTTACTGTCT





ATCAGAATAACCTCATCAGCGTTTTTAATGTCTTCTGTATCATATTCAGCAACATAATTGTAATTA





TACAAGCGATTTATTGTCTTCGGAAGTGTTTCTTTCTTCTCCGAGTTTGTTGTTTCATTTTTATAAT





ATTTCAATACAGAACCATCAAAGTCTGAAATCAAGTCCTGCTCTAATGAAAGGACATTATTTTTC





TGGTTCGGCTCAATAAATTTTAGAGTTTCATCATCTTCAACGTAAAAAGCGTTTACTCTGTAACC





AAGGTATCTGTATACATCTTTTATATCCGTACTGAAACTATAAGAACCTATTCTCACTTCATCTGC





ACTAAGACCTCCACTTCCGTCTAATGTGCGAGTTCCACATACATATACTATATCATCAAGAGTAA





GTATTCTATGATAATAATACAAAGGTGTTATATCAGAAATAGAGTATATTGACGATTTATCCAAA





TCATCCACAACCATATATGCCTTGGACGCCGAATCAAATATCTCCAATATATCCATAAAAGAAA





GCGTATCATCAATAGTCTTTCTCAAATTCGGAATAATATCGTTGCTTACCGCTACACTGTAGTAT





GAACTGATATTACCGCCGTTCTCGATAGCATAAACATCATATCCCAGTACACGGCACATGATAAT





AGCAACCTCACCCAGAGTTATCGGATTGTCAGCCCCAAATACTGAGTTGTTCTTATCAATATAAC





CGTTATCATAAAGAAATCGAATTTCATTGTAATATGTACTTCCGGGCACCACATCACTGAATATG





GTCTTGTCATCGCTTTTCTCATAATTTTTAGCATTCACAAAACCTGCCAGATATTTTGCAAACTGA





CCTTTCGTTACAATACCGTTTTCCTCGTTAGGAAAAGGAATTATATCCAGTGCCATAAACTTTCC





GGCAAGAAGCATATATCTGTCACTGCCTGTCAAATTCGTATACGATATGTTTCTTGATTTCATAA





ACAGAGATACAGAGTAAAGTATCTGAGCAGTCTGTGCTCTTGTTGCATTTGCCCTCGGCATAAAG





CTTCCATCACCCATACCGTTTATAAGTCCAAGATTTTTTAGTGCATACACGCTATCTTTAGCATAA





TCAGAAATATCACCATCATCTGTAAAGCTATCTATCGCAGCACCGTTCAATTCACAGTTTTCTTG





CTTAAGATATCGTACTATAAGAACTGACATATCTTGACGTGTAATTTTTTCTCCCACACCGAATA





TATCTTCCTCAATTCCACTTACGATACCCATATCGGCAGCAGTATTTACATATGGAGCATACCAC





TTATTCTCATCCACATCACTGAACTTATTATCAACATTTTCCGTTTCCTTTCCGAAAATTCCAAGA





AGCATCTTAACAAACTCCTCACGGGTTACGGAATTATCTGTGCCAAAGCTTCCGTCTCCGCGTCC





GCTGATAACTCCAAGATTTTTTAATGAATTTATCGCAGTATACGCCCAATGGTCCGTATTTACAT





CTGTAAATATTTTATTGTCTTTTTCAGATGACACAGTATCATTTCCGGTCACTTGCGAAACTATCA





TAGATGTACTGCCTTTTCCCGAACCGTTTCCTGATACTGAGCCTATCCCGTTCGTTTTATTTGGAT





TTTTACTGATAGAATTCATGTACTCATCAAGCAATGTCCCTAAAGATGACAACGACTCCACTCTT





TTTTCAGTTACATATTTATAATATCCTGTACGATTACTGGCACTAAGTCCCTCAAGGCTGCTATAA





CTGATATAAGGTGCAAGTATATTCTTATTTTCTGAAATAAGATTGCCAATCTCACCATAACCATT





TACGCATCCAAAAGCCACAAGCAGAGCATTTTCATTAAATGCACTTCTCAACGATTCTATAGAAT





CATAATCATTTTTTGCCGTAGCCGAAAGAACATTGCTGAGTAAACTATCAGATGTTATATACTTT





TTAAAATAATCGGTTCCTCCATCAAGTTCAGCCAAGTCATTATATGAGGAATATATCTCTTTTAA





AGTTTGAATTGAATTTGTTTTGTTTAAAAGCTTAACTACAAGTTCTTCACCGATGTTTTTTCGTAT





ATCGCTTACTGCTGATACGTTTCTGTCGGCAACCGACACGGCTTTTGCAATTTCAGACAATGTTA





ATTCCTGTGACAAATAATTGTCAAGATTTATTATTGCCTTATATTTTTCAAAATAATTTGCACAAT





CAGATTCGGTAGTGCCGAGAGTTTTATACTCGCTTATACATGAGTTTATTTCTGTCTGCGAGGCA





TTATAAAATTTTCTCGATACTGTATTTCCATACGATAAAACCGCATATATTTGTCCATATGCCATT





CCACCGGTATGAATAGCACTGTTTATTGTATTATTTTCAGAATTAATAGTATACGCACCTATATA





CTTATCATCTTTTTTAAACACAACAAATGCAGTTCCATCTCCTGTGACGGTTCCGTTTATGTTTAT





AGTTTCACCACCGTCAGAAGCTATTATATGACTTTCAAAAATCGTTCCGGAAGGTGCAGTGTATT





GCATTACTCCGCTTCCCACTTCTATAGGCGGGCATAAGAGTTTATAATCGGTTTCATTATTAAAA





ATGTATATCTCTACCGAACTATCACTTTCTTTTTTGATGTTAAAATTAAATGTTGTTGTATCACCC





GCACCAATACTGCGTTGCTCAGCAAAAGACGCACTTGTACATACTCCATCGTTGTTTTTTACAAC





TGCGAGAGCACATGCTTCAACGGAAACACTCGATGATTCATTTGTCACCGGTACACTTATATTAT





TTCCGTTTTCTTCAATATCGCTCACTTCCGGTTGTATACCGCTTCTGGCAGTGAAGTTTACATTAT





ATGTTTTCTTTACTTTTCTGCTGCCTGAAGTGATTGTAATCATTCCGTTTCCGGGAACAGACTCAG





GAGCGGTTATTTCATATGATGCACCCGTAAGTTCTTGGCGTGTATTGGTCTTTGGAATAGTAGGT





GTCTCAACATCTACGGTTACATTTTTCTTAATATCCTCCGCAGTATATGACGCCGGCACAGGAAT





ATTATTTGATGACGCGTTTTTGTCAAAGTCCTCGACTTTTACTCCCTTTACAAAAACTTCTGAAAT





ATTTGCATTTTCAAAATACGCTTCTTCTCCGGTTGACGGCGGGGTTATTGCCTTTACTTCATCTGT





AGAACGGTCAAAAAGTATTTCGTCAATCTTCAATGGTTCTTCCCACGGTGTTTCAAGTGTATCTG





AAGTCGGATTAGCACCAAAATAATCTTTATACGGGAAAATTATTGTCATTTGATTAAGTGCCGTA





TAAATATCGCTCTGTATTCCTTGGTCCATCGTTACTGACCCGGACTTAAACGCAGATGTCGGTAT





TGTTATGTATTCCCATTCGCCGTTGTTTGGAAGTTGGAACTTTTTTGAATACTTCTTGTTCCCCTCT





GTACTTGAATACTCCATGGCGATTTCAAGAACACGATGCTCTGCTGCACCATTCCCGTGGTCAAC





TGTCTGAGGTGTATGTACCCACATGGAAATATTTTTTGTATCTCTCATAAGGTCAAGCATTGAAA





TACTTTCATTAGCAAGTTCTATCGGCTCGCTCTTAAACTGCATTACAAAGCCATTGTATCTTTTTG





ACGGGTCGGAAATCTCATGTCCCGGATATGTTATCTGCATAGCATTTCCATACTTACCTGATACA





TAGCTTTTTTTAGTGCTTATAGTACCTCCGTTATAACTGTAGACCATACGAAAGTCAGAGTCACTT





TCCATTGAAAGCTTATAGTTATATTTGATTTGTGATTCTGTATCCTGTGCGGTTACAACAATGTTT





ACACCACCAAGAGCAATTACAGCGGCACATATAACCGAACAGATTTTTTTAATCATCCTCATTCT





CTGCCTCCATTCTATTTTACTATCAGTTTATAGGTCTGCGGCTCAATACCGTTATTCGATACATCC





GATACGGTTATTGTATATTCTCCCTTTTTATCCTTAGGAATGGTAAATTTAAAGTTACTATACGAA





TAATTTCTCCACGGCCAATGCGGATATGAAACCCATTTCGGATAAACCTTGTAAAGTGCATTATC





AACATTGTCAACAGGCAATCCCTCAACCTTTAGTTCACCATTTATCTCATGCTCCGTTTTATTCAT





AATATGAATTGAAATATGTTCTTCAATTCCTGCCTCAACCTCAAATGTCTTTGGAATTTGAATTGC





TTTGTTTGCAGGATATTTTGTAACCAGTTCACCTATCGGTTCCGATTTGACCGGCGTTGCATGTCT





TACTGATTGTCCTGTGAGTTTATCACCAATATTCGTAAAAGCAAAATCGTCAATCCAAAGTCGTC





CCGAAGAGTTTAGTGTCATATTAAAAAGACTGATATATCTTACCTTGTTAAGATGAAGCATATCG





CTCATACCGAGGTCGCTTATCCTAAATTTATACTGTTTCCATTCCGTGCTGTTGACATCGAATGCG





ATACAAAATCTTTCAAACTCACGTTTCTTGAAATTTGAACGCTGTTCATTTTGATTTGTACCTTTT





TCCTGTTCAAAACGCAGTATAAAGCGTTGCTTAGAACCATCGCCCTTTGCCCAAAATGTAAAATA





TTCAGCATCGCCTATATCCCAAGACTTAGGGATTGTTGCCCTCGCCTGCCCTCCATACGAACCTT





CAGGGCAATTATAGCTAAACATAACAGGATTCGAGCCTTGTCCCCTGCTTTCTTCAACTGCATTA





GTAACAGTAAACGAGTCTGTTTCTGTGTTTTCATCGTCTTCCCATGCCTTCCATGTCATACTTTCC





TTTTGGGTAACGCTCGATACCGTAAAAGGCTTTATTTCTTCGTATGGCAGTCCTCCCACTTTTATA





TTATCAATTATAAAACTGCCGGGACCGTCATCAAGAGATGTAAAGAGTACAGACTTAATTTGTGT





TGTATCAAGTATCCCTTGCTCATTCTTAAACAAGCTTAATGGAAAAAACCAGTCCTTCCAGTTAT





CATGTAAATCCATCTGCATATAAGTTGTAAATAATCTACCATCTTTCAACTCAAGTCCAATTCCG





ATTTTACGCATATCACCGTCGCCTTTTATTCTCACGGCAAGCCATTTTGCACCGCTCAAATCAGTA





TCTTTATCAAAATCAGCAATCGCAGCACTGTCCCAACTATCAACACAGCTTCTGTCAAAATCAAT





AAGCTGACCTCTGCCTTCATAACCACTATCTGTTCGTTCTGTCCTTACTTCTTTGCCATACACTTT





AAAGTCCACGGTATTATCGTCAAAATCAATAATATGTTCCCAAGTCGAAAGTGGTGATGGGTCG





ACATACTGTCTATCTTTTTCCTCCGGACGTGTTTCAGGCTCTTGAAGCATTTTATATTTCATATAT





ATACCCGAATAATTTGATGGTGTAAATGTGTCATAGTCCATAAACATATTTGGATTTGCACCCGT





GTGAAAAGACCATGCCGTATAGTTAAGTTCATTACGGTCAATAAAATCATGGATTTCGTTCATCC





ATACATGTGGATATTCACAAAGATAATTGTCATACCAATCAAAAAGTCTTTCTCCCCAGTGTCCA





TATTCACCCACAAGTATAGGAGCTTCATCTACAAGACACTCTACGGCTTTTTCAACCGGATTATA





TTCCGGCTTCATTGGATAAATGTGTGTGTCATAGATTACACCGTTACCCGTTTTATCCTCTAATTT





ATAGCCATGTTCCATGCCGTTATATCCATCGCACAGACCGTCAAAATAGTATGACCAATCAAGAC





CGCCCGCAATTACAATATTTTTTGCACCCTTGTTGCGTATCATATCCAGAATTTCTTGATGACCAT





ATACACGCTGTGTTTTCTTTCCATAGCTGTCGGTAGTTTCAAGCATACCGCCGTTACGCCACATTT





CCCAGTCAATATCATGAGGTTCATTGAGCAAACCGAATATAACTCCCGGATTATTTCCATAAACC





TCTACTGCATCATTCCAGAAATCCTTCTGCTGTTCTGTAATAGCATAAAATTCATGCAGATTAAG





TATTACATACTTTCCGCGTGATGTAATTTGATTAATTACATTATCAACCATTTTGCGGTAATCACC





ATAACTCTTACCCTGATACCATTCTTGTCCAAACCAAAATTTAGAATGAACGCACAAACGAACAC





AATTTGCATTCCAACTGTCACAAAGAAGTCCTACTCTCTTCATAAGGTCATTATCTCCGCCTGTG





GCCCACTGCAAATCCGGAATATTCGCTCCGGTAAGCCTAACCTTTTCGCCTTCAGCATTATATAT





GTATCTGCCTTCAACATGAAGCTCCGAGGGTAATATCTTTTGTACCGTTCCAATTTTAGCTTGTGC





TGATTCCTGTACAAGCAACAATGACATGCTAAAAACTGCAACAAGTAAGCAACTGATAACTCTT





TTTATTTTCATAGTAAACTCCTTATCCGAATAAATATAAAATTATTCTTTTACTGAACCTACCGTC





AATCCTTGAATAAAATATTTCTGGAAAAACGGATAAACAAACAATATAGGTAAAGTCGCTATTA





TACAAAGTGCCATTCTCGCACCTTCCTTAGGAACATTAGCGAGAAGATTTGCCGAACCCATCTGA





GCTGAATTTTCGGTCAAATTCTGAATATTTGAAATCATACTTTGTAGAAGATACTGGAGATTATA





TTTTTGAGGCTCTGTTATATAAAGAAGCGGAAGCCACCAGTCATTCCAGTAAGTAAGTGTTGCAA





ACAGTGCAATCGTTGCCAATCCAGGTAAAGATATGTGCAGAACAATCTTAAAATATATCTGATA





CTCATTTGCCCCGTCTATCTTCGCCGCCTCTATTATTGCAGTCGGTATTGACATTGAATAGAATGA





CCTCATTACAATTACGTGCCATGCATTCATAACATAAGGAAAAATAAGTACCCATATACTGTTCT





TCAGATTAAGAATGCCTGTTGTCACCATATATCCTGCCACTGTTCCACCACTGAAAAGCATTGTA





AAAAACGCTATAAATGTAAACAGTTTTCTGTATTTAAAATCCTTTCTGGAAAGCGGATATGCATA





TAGTGCAACCACCAATGTACTCATAAGAGTTCCTACAATCGTAACAAAAATAGTTACACCATAT





GCTCTTAAAATCGTTTCTTTAGATGTAATTATATATCTATAAGCATCAAGACTCCATTCTTTAGGA





ATAGCATGAAAACCAAACTCTGAAATTGCCGATTCACTTGTAAACGATGCTCCAAGAACCACGA





GCAAAGGATAAACACAAGCTACTACAATAAGAAAAAATATAAAATAAAGAATAATGTCCGAAA





CTTTGATTTTACGTCTTTTTTTCTTAGCCGGAGCTTTAACTTCCGGCTGTTTGATACTATCTATGAT





ATTAATTTCTTGTTTCTTCACTGTTATACCTCCTTTTAGAATAATGCGTTTTCGGGGCTTATTTTCT





TCACAATAAAATTAGTTGTCATAACAAGTATAAATCCAACAATTGATTGATAAAAAGCTGCCGC





TGAAGCCATTCCTACACTTCCCGTACCCGCTGACATCAACATATTATATACGTATGTACTGATAA





CATTTGTAGCCGGATAAAGGGCACCGGTATTTAACGGCACTTGATAGAATAAACCAAAATCGGA





ATTGAATATCTTTCCGACATTTAAAATTGTAAGAACTACCATAAGAGGAACAAGTGCCGGCAAT





GTTATGTATCGTATTTGCTGCCATCGAGATGCTCCGTCAACCTTAGCGGCTTCATAAAGCGAGGT





GTCAATTCCTGCTATACCTGCAAGATATACAACACTGCCATATCCCGTTGTTTTCCAAAAGTTTA





CTATAACAAGAATCCATGGCCAGTATTTCGGATTTGAGTACCAGTCTACACCTTCTAATCCAAGT





GCCGGAATAAGACTTCTATTTATCAGACCGTTCTCAACGTGAAGAAATGCCAGCACAAGAAAGC





TTACAATTACGTATGATAAGAAATGCGGCATAATTACTACTGTCTGGCACAGCTTTGAAACTGCT





TTATTCCTCAATTCAGAAAGTCCGATTGCCATTGCCACATTAAATACAAGACCGCCGAAAATAAA





CAACAAATTATATGCTATCGTATTTCTCGTAATAACCCATGCGTCCGGACTGCTAAACATGAACT





CAAAATTTTTGAGTCCATTCCACGGGCTTGCCCATATTCCAAGATCATAACGATACTGCTTAAAC





GCAATTATAATACCAAACATTGGCAAATAATTAAACAGTATAAAAAATATTAATCCTGGAATGC





ACATTGAGAGCAAGGAACCATTTTCTTTTAAATCTCTTATAAGGCTTTTCTTTTTTTTCACGTCTC





ATCCACTCCTTAAAAACTTAATAATTGCAAGGATTAAAGAGATATATAAATCTCTTTATCTTGCA





ATTATTATAACATGTACTATTTTTCATTAAAATGAGGTAAACTTTAAGCTAGGTGGTTTAATTTAT





AAAAAGTTTGTCACATTGATTATCGGGTGAAGATTTGTAAAATCATCAAATATAAACACTTTCAT





AGTTTGATGCTCAGCATCTGTAACATTCAAGTCAAGCATCAATTCACCGTCTCCGATTATTTTCTG





CCCAGCCATACGAACTGTATCAATCACACCGTTTTCTTTATACACAGCTACAATCATTACCATAT





TTGTATCTTTTTCAATATCAGATGCTATCGCTTTTATTTTTATATCTCCATTTGTAAGATTAGTGAT





TTCCTTTCCGTCAATTTCCGCTGTTACTTTAACAGATGAAAACAGAGTTGTTTTTCCTTCTGTTTCC





GACAGTGTCATATTATCAAAGATAATCTCACCAGTTCTCGCTATCTCTTTGAGTTCATCTGCACTC





ATTGCCTTTGTGTCGTCTGAATTATTATCAAGATTGGCATTCTCAGCCGCTTGAAATGTAACAGT





GCCTATCTCCGTCATATTAACAATATTTTCACCATTTACAAACTCCGAAAGCGGAACACTGATTT





TCGCCCAATCGCCATGAGAATCAAGTTCAAATCTCCTCGTATAACGTGTACCACTTGTAAGCGTT





CCATCGACAGTGTTGCCCGTTGAAAAACTTATTTTTACAGCTCCTTTACCCTTATAATCAAAGTTT





AGGTACTCAGCCCCCTTTGCACCATTATTTGTCCACACTGCAGGAGCCGGCACAAAAATTTCGCC





GGCATAATAAGTTGCCGATTGATAGTAAACACAGAAAGCCGTACTTCCATCAACTCCGCCGTCCT





GCAGCCATTTTGCTTTTATATAGTCTTGATAATCATTCGACTTATTTTTGAATCCTCCCCATGTCTT





ACCGCTTGCGAACTTAGTATCCGCTGTTTCAAAATCCGCAACATACGATATTTCTGTCGGTTGAG





TTGTCGCTTCCGGAGCAGCTGTCGGGGAAGTTGTATCCTGTTCCGCAAGCGTGATGTTATCTATT





ACTACACATCCTGTTACAGCTTTTTCTTCAAGTTCATCCGCACTCATCATCTTTGTTTCTTCAGCAT





TGTTATCGAGGTTTCCACTTTCTGCCGCAGAAAAAGCCATTCCTACCACATCTGTCAACGGCACT





TCATTACCGTTATTTACAAATTCAGAAAGTGGCACACTGATTTTTTGCCATTCATCATTTGTGTTT





ATAGTCACTGTATGACCATATCGTATTCCGTTTACAACCTCGCCCGTTTCAAGAGATATTTTTATT





TTTCCTTGTCCCTTAGCATCAAATTCAAGACACTCTGAATTTTTATTTATTGCCCATTCCTTTGGTA





TTGACATAAATATCTCTCCGGCATACCATGTGGCAGCTTTGTAAGTCAGTTCAAGAGCACAACCC





TCTTTACCGTTTTCAGTTATTTCTGACTTTATACTGTCACTGTAGGTCTTATCATTGTTATTAAATC





CTGCCCAGGTCTGCTTATGACTGAGAGTATAAGTATCAAAATCTATGGTTCTTGTTGTATTATCC





GGTTTCTCTGTAGGTTCCGGTGTTGCATTTGGATTAAGAACATTCTCTCCGACATTGGACAACTCC





ATATTGTCAAAGATTATACTTCCGTTTCTCGCTTTCGCTTCAAGCTCCGCTGCCGTCATTGCTTTC





GTTTCAGAGGCACTGTTACTCAAACCGCCGTTTTCGCCCGCTTGGAATGTCACGCAGCCTATATT





GGCTATTGTTACAGGATTTCCGTTATTTTTAAATTCCGAAAGTGGAATACTTATACTTTGCCATTC





ACCGTTTGTATCGGCATTAAGTTTATAACTGTACTTTGTACCTTTCGTAAGAGTGTCTGTTGCGGC





ACTTCCTGTTGACAGGCTGATATTTACAATACCTTTGCCATTGTAATCAAAATTAAGGTACTCAG





CATCCGCACCGTTTTGCCAAGCTACAGGAATTGGGAAGAAAACCTCGCCTGCATACCATGTCGC





AGCTTTGTAGGTTATGCGAAGTCCTGTTGAATTTTCCTTTCCACCATCGGCTACCCATTCTGGTTT





GACAAAATCACTATAATCGCCGGCTGTGTTTTTAGTTCCGCTATATGTTGTGCTATTACCAAATTT





CGCATCTGCAGACTCAAAATCAGCCATATATGACACGTTTGTCGCAAAGATAGCACAGTTTATTG





AAAAAAATATTGACATTGCGATAATTAATGAAACTAATTTCTTCATAACTAAATCTCCTAAATAT





CCCTCATATAAGTATAGCGGTCAAAGACCGCTATACTTATACCTAATTATTTGTTCTTGTTATTGC





TTGTTCTTGTTCGCAAGAAATTCATCATACTGTTTCTGTGCTTCTTCAATAATTTTGTCAATGCCG





GCAGCCTTAAGTTTAGCGGCATATTCTTTCATAATCGGCTCAGGGTCCATTGAACCCATAATTAC





CTGTTTACGATACTCGCTCTTAACTGTCTGACATGCCGCTATTTCCGCTTCTACCGCAGTATTATC





GAATTTAAAGCCATAATCGATAGGTTTCTTAGCCTCTGCGTTAAATGCTTTCAGAGCCTCAACCT





TATCAGGGCTTTCTCCTTCTGTAAGATAATTTAGGAATACATTTCCCTGCATCCACTGATAACCTT





GTAACGTATACGATGTATCATCCGGAATTGTTATAGTATTATCATCAATCTTGGTGTAATGTTTTC





CTTCAATACCATAGTTGATAAGGTTGCTGAGAGTTGCATCAGTGTTAAGTAGTTCAAGGAAACG





AAGAACTCTTTCCGGATTCTTTGATGTTCTTGAAACAGCAAGCATCGAACCTGTTCCGGCTCCAT





TATCCTGCCATATATCCGATACTGTTGATTGGTCAAGTTCAAAATCAAACTTAGCGGAAGTTTCC





TTGGCCTTACCTGGTTTTAAGAAGTCCACATAACAGAAAGTTTTTCCGTCCTTTAATCTCTGCTCA





AAATCCGTAGCAGTCATAATGTCTTTCTTTACAAGACCTTCGTTATAAAGCTTATTATCCCATTTG





CATGCTTCAAGATATTCCGGAGTTTCTACAAGATTTACAACCTTGCCGTCATATTTGTCTGTATCG





TAGAAAATAACGGCTGTTCCTGCGATTTCCTCGTACTTCATAAGAGCTTCAGGTGTTCTGTCACT





GCCCCAGTCAATCGGATATTGCATATTTGGTTCATTTTCCTTAATCATTTTAAGCACCGGTAACAG





TTCGTCAAATGTCTTAATATTATCCATATTGATATTGTATTTTTCGGCAATATCTTTGCGATATGT





CCAGCCTCTTGAATCTGCCATTTCCTTATATGTCGGTATCGCATAAAGCTTGCCGTCCACTCTTGC





ATTGTCGGCTATTTCTCCAAGCTGCTCAATTGTCTTTGGAATATATGTGTCAATGTAATCATCAAG





TGCAAGCCATGCACCGTTTCTCGCATTTGCCGTATAAGTAAGAACTCCGGGTGTTGTCCATGCAA





TATCAAAATATTCACCCGCCGCTATCATTGTGTTTAGCTGCTTGCTGTACTGATTTGATTCCAGTC





TGTGCATTTTCAGTGTAGCGTTAATTTTATCCTTAAGATAATCATTAACAGCAGCCTCTACGGAA





GCAACATCCTCCTGTGGCATACCTTGCATATACCAGTTGATTTCATATGTATCCTCCGGTACAAC





ATTAGGATCTTCACCGCCTGTTGCAACCTTGTTTCCTCCGCCACAGCCTGTAAGCACACCTCCAA





GCATTAGCATGGCCAATAATGCCGCAATTTTCTTTCTCATAATTTTATCTCCTTTCTTTTTTGATAA





CGGTTCAGACGTTTCGTCCTTTCCCATTATCAGAACATTTTATATTGGTCTTTCTTTATATTTAACA





TTATACACCATAGTATTTCAAATATAAATAGCGATAAACTTTAAAATGTGCATATTTTTTTAATA





AAATTTATATCATTTCCTACTTGAAATAATATAAAAATATGTTAAAATGTTATATAGTTTAATAT





AAAGATAAGATAGGATGGAGAATTATGAATGTAAAGTTGTTAATTTGTGACGATGAGAAGATAA





TACGTGAAGGACTTGCTTCACTGGATTGGAATACCAGAGGTATTGAGGTAGTAGGAACAGCAAA





AAATGGTGAGGTAGCATTTGAGCTTTTTCAGAAAATGCTTCCCGATATTGTTATATCAGATATAA





AAATGCCAACAAAAGACGGCATATGGCTTTCAGAACAAATTCATAAAATTTCACCTAATACAAA





AATTATATTTCTTACAGGATACAATGATTTTGAATATGCACAAAGTGCTATTAATAACGGCGTAT





GTCAATATCTTTTAAAACCGATAGATGAATTTGAACTTTATGAAATAGTTGACAAATTAACAAAA





GAAATACACCTTGAGCAACAAAAAGCAGAAAAAGAAATTGAATTACGCAAAACGCTTAGAAAT





AGCCGTTATTTTCTATTGAATTATTTATTTAATCGTGCACAGTACGGTATTCTTGATTTTGAACTA





TTTGAGATATCTAAAAAAGCTGCGGCAATGACGACATTTGTAATACGTCTTGATACAGACAGTA





CCAACTACGGAATGAATTTTATGATTTTTGAGGCACTAATCGAACATCTTCCTAAAACAATAAAC





TTTATTCCCTTTTTTAGTAATTCGGACCTCGTATTTATTTGCTGCTTTAACGAACCGGAAGGAGAA





TCCGAGCAAAAACTTTTCTCTTGTTGTGAGAATTTGGGAGACTTTATTGATACTGAATTTAACGTT





AATTATAATATAGGAATAGGTATCTTTACTTCGGAAATATCCGAACTTGAGGCAAGCTATACCTC





TGCATTGCAAGCACTCGATTACAGTGACAGACTTGGACAAGGAAACATTATTTATATTAATGATA





TTGAACCAAAATCACAGCTTTCGGCATATCAGTCAAAACTGATAGAAACCTACATAAAAGCACT





TAAAAACAACGACGAAAAGCAAAGCAAAAAAAGCGTCAAGGAACTTTTCGACGTTATGGAACG





TTCTGATATGAATCTTTATAATCAGCAGCGACGCTGTATGTCACTTATTCTTTCAATTTCAGATGC





ACTCTATGATATTGACTGCGATCCAACAATCCTCTTTAAAAATACGGATGCGTGGTCATTAATCA





GAAAAACTCAATCTCCTGCAGAACTTAAAACCTTTGTTGAAAATATTACAGATGTTGTAATATCA





TATATTGAAAGTGTTCAAAAACAAAAGGCTGCAAATATAATCACTCAAGTAAAGGCTCTGGTCG





AAAAAAATTATGCAAGGGATGCCTCGCTTGAAACGGTTGCTTCGCAAGTGTTTATTTCACCTTGC





TATTTAAGCGTTATATTTAAAAAAGAAACTAATATAACTTTCAAAAATTATCTCATACAGACAAG





AATTGAAAAGGCCAAAGAACTTCTTGAAAAAACTGATTTAAAAATATATGATATTGCCGAAAAA





GTAGGATACAACAACACCCGCTATTTCAGCGAGTTATTTCAGCGTATCTGTGGTAAAACTCCATC





GCAGTATAGAGCGAGTCACAATCCATCTATGCCTCAAGACATATAGGAAAAACACCAACTACGT





TCAATGTCATTAATTTAAGTCAAACAAAAAGAATTAAGTTTAGAAATATACTTGAATTTAAAATA





ATTAAAAAAGTGCTTGACTGAGGTGAACTCGAATCAATGGTGTGGTCGAACTATTTTATTATGAT





AATCTAAGACTGTAACCACAATCACTATTTAAGTATCCGTACAACTTTTAACTTAAATTCATAAC





TATATTTTGCAACAAAAAAACCGACCTCCAAAAGTTAGATTTGTGGTCTAACTTTTGGAAATCGG





TTCAATACCTACATGTTTCCAAACCATTTTCTCATTTTGTGCCAAGCAATATCATATTAACTAATG





ACATTGCGGCTATGGTGGTTTTCCTGTTAAATATCACATTAGTTTATTCTTATTGCATCAAATCCT





CAAATATTTTTCCTGTATTCATTGACGTTTCTTCATTATTAAAGAATTTAATAAGTGCTTCCTCCA





GCTTTTTTAGATTCTCTCCATTAATACTTACTGTTGCAAAAGAGCTTGAATTTTGTACACTTTGCT





TTATTCCCTTCACATGTGGATTTGCATCTAATATCATTTCATCGTCATAAAGTTCTCTTATTATCG





GGATAAGCGATGTATCTCTTGATAGTCTTCTCTGCTGCTCTTTTCCATTCATAAAATCAAGAAACC





TTATTGCTGCCTCTTGATTTTTTGAATTTGAGTTTATTGCAAGGGCATAACTTCTTACAAATTGAT





TTTTATTAGGCAGACTTGCTACCATTATATTTCCCTTAACTGCCGAAGTATCACCATTAAGCTTTT





TCCATAAAGAGCTGTTTCCCATCAACATCGCTGCACTGCCAATTTTAAAGGCGGCTATTGTATCA





GTGTAATTTTCAATATCTTTGTATTCTTCAATAAATTCCTTATATAGATTAAGCGTTTCTGCATAG





CTTATGCCTATCGCCTCTTTTATTTCTATAATATTATACATCATATCTTGAATATCTGAGGTAGTC





AGTCCCAGTTTAATAGGTAGTCCGAAATCAGAATTACGGCAAAGATTTATAATTCCATCCCATGT





TTCAGGAACGTTATGAATCTTATCGCTCCTATAAAATATAACATCAGTATCCATTCCCACAGGCA





TAGCATAAAAAGAATCATTAACAGAAAATCTTTCCTGTGCGTCAATTATATATCTGCTATTATCT





AATAAAATCTCTCCATCAAGAGCCTTTATGTATTTCTGCTCAACAAACTCCTTAGTCCACTCATCA





TTAATCCAGTATATATCGATCGAACTGTCTTTACCACTTAACGCCGAAACATATAGCTGATGCCT





CTTTTCTGTTGAAGTGGGTGCATCAATAAATTTTACTTGAATATCTGGGTTTGCTTCATTAAATTC





AGCTATATTTTGCGTGAAATCTGAGATATAGTTTGGTTTTATTACTTTTAAAACAGTAACAGCCT





GTGCGGATTCCACTGTTTTCTCCACTGTGCATCCTGAACACATTGATAACATCACAGAAGCAAGC





AAAAACAAAATAAGTAATTTTTTCATTAAAAACACTTCCTTTATAAGTCTTGCTAATAATATTAT





ACCCTAAATACTTTATTTAGTAAATAGCGGAAAACTTTAAATAGTGCATATTTTTTTGTATTACTC





TGCCAAATATTTTTATGACTTGAAATTTAATATGGTTATGGTATAATTATATCATAGAAGTGTTTT





TATATATACCAATTTAACTTTATAATGATAAAACGGATTAGCTATATCCATAAAAATTCATAAAC





TTTATATTTTCAGTATTTTGTAATGGCTATTATATTATAAAAAGGAGGTGTTTGTCATGTCTGAAA





AGTTCAATAATATGTCATTTCGTACAAAATTGTTGCTTTCATATATTGCGGTTATTATATTATGTA





TCATTATTTTTGGTTTAACCGTATTTTCGAGCATTTCAAGAAGATTTGAAAATGAAATAACTGAC





AATAACGCACAGATAACAGGCCTCGCTGTCAATAATATGACAAATACCATGAATAATATTGAGC





AAATTCTGTATAGTGTTCAAGCCAATTCGACAATTGAAAAAATGCTGACTGCGTCCAATCCTCCG





TCTCCTTATGAAGAAATTGCCGCCATAGAACAAGAACTTTCAAAAATAGACCCCTTAAAAGCAA





CAGTATCACGTCTTAGTCTATATATTGAAAACCGTACATCATACCCATCTCCGTTTGATTCGAAT





GTGACCGCTTCCGTTTATTCCAAAAATGAGGTATGGTATAAAAACACAAAGGAACTGAACGGAA





GCACATACTGGTGCGTTATGGATTCCTCTGATGCCAATGGCTTGTTGTGCGTTGCTCGTGCGTTTA





TAGATACGAGAACCCATAAAATACTCGGAATAATCCGTGCAGATGTTAATCTTTCGCAATTTACA





AATGATATTGCACATATAAGTATGAACAATACAGGTAAGCTTTTTTTGGTATATGAAAATCACAT





AATAAACACGTGGAATGATAGCTACATAAACAACTTTGTAAACGAAAATGAATTTTTTAAAGCA





ATAAGTGCTGATTCCGATAAGCCTCAGCTTGTTCAGATAAACAAAGAAAAACATATTATAAACC





ATAGCCGGCTCAAGGACAGCTCTCTTATCCTTGTACGTGCTTCAAAACTTGATGATTTTAACAGT





GATATACATATAATCGAAAAATCAATGATAACTACAGGAATTATAGCATTACTTGTCGCTCTAAT





ATTCATTTTTATTTTTACACGTTGGCTTACAGCTCCTATAACAAAGCTTATAAAGCATATGGAAC





GCTTTGAAAATAACTATGAGCGTATACCGATAGAAATAACCTCTCATGACGAGATGGGCAAACT





GGGTGAGTCCTACAACTCTATGCTCAACACCATAGATTCTCTCATAACCGATGTTGAAGATTTAT





ATAAAAAACAAAAGATATTTGAACTTAAGGCTTTGCAAGCTCAAATTAACCCTCACTTTTTATAC





AATACCCTTGACTCAATTCATTGGATGGCACGTGCTCATCATGCACCGGATATAAGTAAAATGGT





GTCCGCATTGGGAACTTTTTTCCGTCATTCTCTTAATAAAGGCAACGAATATACTACAATAGAAA





ACGAATTAAATCAAATATCAAGCTATGTATCTATACAAAAGATACGCTTTGAGGATAAATTTGA





CGTTGTATATGACATTGACGAAAATCTTCTGCACTGTACAATCGTAAAATTAACAATTCAGCCTC





TTGTTGAAAATTCTATCATCCATGGTTTTGATGAAATTGAAGAAGGCGGTATGATAACAATTCGT





ATCTATCCCGAAGATGATTATATATTTATTGATGTTATTGATAATGGTAGCGGCGCAGACACTAA





TGAGTTAAATAAAGCTATTACTCATGAATTGGACTACAACGAACCAATCGAAAAATATGGACTT





ACAAATGTAAATCTGAGAATTCAGTTATATTTTGATAAAACCTGCGGCTTATCATTTAAAACCAA





TGAAACCGGCGGTGTAACAGCCACAATAAAAATAAAGCGAAAAGAACCGGAATATAAAACTAT





TGATTTATAATTTTGTATATGAGGATTGACTGCAATTCAAATACCGAAAATAATATAACTCAATA





CTGCCGCAAACTTAATGCTTATTCAGCTTTGCACACTGTTATGAAGAATCTTTCATAACAGTGCT





ATCTTTGCCATGTTCCGGCAATACCGAGATTATATTCAACAGAATGTAACGAATGTCAAAAATAA





TTGACCGTTCATTATATTTATATAAAAGCACCTTGCTTTTTAAGTTCTTTTCTTAATTCTTCAATGT





CAATGTCTTGCACGTTTATATTATTTACAGCACATATTCCGGCGGCAACACCTCCGCCATGACCT





ATAGCTCCTGCAATAGGTGATACACGTATTGCCGCTTGTGCCTCGAAATTTGCACTGATGCAGCG





TCCGACTGTAATCAAATTTTTCACATTGTCAGAAATAAGCGAACGGTACGGAATATGATATATAT





CCCCATATTCTAACGAAAGTTTTGTTTTTTCATACATTTGGGTATCATTTCCCTCCGGAGCGTGAA





TATCTATTGGATAACCGCCGCAAGCAATGGTATCATCAAAATCTACACAGGATATAATATCCTCA





GCTGTAAGCACATAGCTACCTTTCAGCTGACGTGAACCTCGTATGCCTATAAATGGACCCGTAAA





CTCAAGCTCTGCATTTTCAAAGCCCTGTACCTCTGTTTTAAGCAATTCAAGCACTTCCCAAGCCTG





CTTTCTTCCGAGAATTTCAGCACGAGTTAAATCCTTCGGTTCGGTGGGGTCTGCATTAATTATGC





GTGTGGTATTTACAATAAACTCTCCTACCCTGTCTGTTTCAAAAAACAGAATATCCTCCCTCTGA





AATGAAATCTTGCCTGTCTTTTGTGCTTTTTTCAATGTATTTACATACCCGCCTATAGATAGCTTT





GGAGCACGGGTAACTTTGCTTAAATCACTCTTAAGCCGAGGAAATTCATCATTATTATTCATTAT





ATATTCCTTGACTCTATCCGTATCAACATTAATAACCTTAAAATTCATTGTCATAGGCTGGCATTT





CCCATCTGCCTCACGACCTTTGTTTGTTTCAAGCCCTGCAAGAAAAGCAAGGTCACAATCTCCGC





TTGCATCAACAAACATTCTAGACTCTATACATCGTTTACCGTTTTTCCCATATACCTCAACAGAGT





TTATTACGGCATTTTCGTATTCAACATCACAGACCACACTATGATAGAGAAGTTCAACACCGGCT





TCTGCCATCATATCCTCAAGTTCAAGTTTCATTCCTTCAGCCGAAAACGGAGTAACTGTATATGT





ATAGCCCGTAGTATCAAAAATATGCCCCGGAGAGAACCCTTTATTCATTAATCTTTCTATAAGTT





CATTCGTTACACCCCGAACAACTTGAACATCACCGGCATGAAACGTCATCATAGGTCCCGTACCA





CATGCTGTAAGTGTACCGCCTAAAAAGCCATATTTCTCAATCAATATAACACTTGCTCCACATCT





TGCAGCTGCTATTGCTGCCATACAACCGGATATTCCACCTCCGATTACCGCTACATCATACATTTT





TTACACCTCCAAATTTTATATGTTGTTCCTCGCCCCTTGCAGCACAAGTATCAATCTCCATACATA





CATACGGTACAAGTTGTATTATATTAATTCGTTCGCTCTTACTTATTATTTCTTGTGCACTGTAGT





CAAGCTCTATATAAATTTTATCTTGTTTCTGTGTAATATCAGATATAGAAAGTTCAAGCGTTCCAC





AAGTCTGCGTGGTCATCACAATACAACGCCTATCACAACTTATCCCCCCTGCACTGTGCGTCTTA





TCTTTCAAAAACACCACTCCGGTTGTTCCATTCTTTTTTACACACTGTATTGAATCAGAATTCTCA





ATTATCCTTATTCCACTTTTTCTGTAATAATCATTTATTTCTTCTTCATGGCATTTTGGAATAACTA





TATATTCGTAAGAAACGTCTTTTACCTTTCTTCCGTGTTTAATCCACATTGTAAGATACCTTCCCT





TGTAACTCTTACCATCTGATTTTATGCTCATATTATTCCAATCTCCGCTTCGTATCTCTCGAAAAA





TATTTACCTCCTGTTCCTCCGGGAAACAGTAGCCCACATCATGACTACCATCAAGATAAGCTCCT





TTTATAATATAACCTTCACTTTCTTCATTACCATGTACTGTAAATCTCGAATTATCTGTTACAAGT





CGATTTTCAATTATCGTTTCTACTTCACTTTCTTCTTCACTGTTTATACAACTTCCAAGACAAACC





ACTTCTTTATCGAAGAAAAACCACGATTTATTCGCTTTCAGACTATTTTCATTTGAAATCAACTTC





ATTGTGCATACACCGTTTTCCCCTATGCCGCATCCTCCTGTAAAATCACCTGCGGCATTAATATTA





GGTTTTACTGTCGAGCCTCGTAAAACAGTTGTCCCTGGTAGGCGTTGTAAATCTATTGTTTGCCA





AAAAAAGTCCGACTTTGGCTCATTTTTTTTATAAATGTACATCATACCGTCCGAGGTATGATGAG





CATTTTGATTTTCATCGTTAATTGATTCATATGCTGCAGTCCGTTCTGAATGCATGGCAAGACCTA





TCGTATAACCATTTCCGTGTTTAACAACTCTATCCATACTGTTAAATGCCATAAAATATGGCTTG





ATTTCTTTCGGTTTAATATTATTATCTTCTTGTAAATGTTCCGCAAGTTCTGCCGTAAATACTGAA





GCATATTCAAAAAAATTATCTGTAATCTGTGTCTTGATCGTACCCTTCAATTCATTAAACTCAGG





CATTTCACTTAATATAAGCATTGCCGAAAGTATGTGCGTACAAGCAAGGTCACTCTGCTCATAAT





AACGTGAAATTTCTCTGCCACGTACCATATCCATAGCTCTGCCATTATATATGAAAGGAAGATAG





GATTTTTCAATCCATGTATTAATTATATCTGTATTTTTATTTTCAAATTCTGTATCTTTAAAAATAT





ATAACATCGGTGCAAGTTCTTGTATAAGCGAGCGTCCGTAACCACAATTATATGGTATATTATCA





TGTTGAATAAATGAACCATCCTTATAAAAACCGTCACCGCTGTCTGTTATAACCATTACATCCTG





TATACCGGATATAGCATTCTTTATACTATCGTTGTCTGAAAGTAATATTCCACGAACAGCAAAAA





TAACTGACTCCCAAATTCTGTTAGCACCGGTAAGCTTTATCCTATCATTAAAATGTTTTTCCGCCG





CCATATATCGTTTGAGTTGTGATTTGTCAGTATAATCATACATCAAGGTAAAAATACTGTTGATA





CTAAGAGGGATACCTATTTCCCAGTACCACCAGTTACCTTTAGGCACAGTAGTGTCATTATATAC





TTTTTCTAAAGTATTTAGTGCATTAAATATTTCATTTTTTATATTTTTATTATGATAGAATTGTGAG





TTATTTTGAGAAAACGATATAGAAATGTCCAGTATTCCTTTCAGTGTTGCATTTATAACTCCCGG





CTCATTTGATGTAATTGCCTTTTCTATACGCCCACCAAGCTGTACAAGCCTTTGTTCTGTGCGTTC





ATCTGATTGTAGTATGCAATCAGCCGTTTTTTTGCCGTTGTATCCTCTACCGCATAAAACATCAGA





ATATCGCTTTCTTAGTATGTTAAAATCCGTCATAATCATTCCTCCCATTTTTATATGTATCAATAA





TATCATATATGTCTATGCATATTAAATGGGAGAATCTTTAATTAATGCGTTAAATTTTTTATATTT





CAATTTAAAAGGACGCTTTAAAATAGAGCGTCCCTTTAAATTTTATAACAGTTCCCATTCTTTTAT





TCATTCTCTTTTTATAGGCTCATCTCTTGCCTAATCAATATACACGTTTTAAAACAACTGATTTAG





CCAATCAACTGACAGACTCAACCACGGATACTCTCTTTCAAACTTTCGTTTGGACCATATTAACT





CATCACTCACCCTTGACAAACCATGCTCGCCTTTCTCAAATATATGTAATTCAAACGGTACTCCA





ACCCTCCTCAAGCCAGCTGCATACATCAGTGTATTTTCAACAGGAACACATATATCCTCATATGT





ATGCCATAAAAACGTTGGTGGAATTATATCCGTAATACGCCTCTCAAGCGACAGACTGCTCCATA





GATGATTTGACTCGTCATCTGTACCTGTAAGATTTTTAAATGAATCTTTATGAGCAAATTCACCC





GATGTTATTACCGGATAACTTAAAATTTGAGCATTTGGCTTATGCATTGCTAACTCAATCTCGCG





CTCGCTGAATATTTCAGAATCATTCCACAAGGCACTTAGTGATGCTGCAAGATGTCCACCGGCAG





AAAATCCGCATACAATTACCTTATCCGTATCTATATTCCATTTTTCTGCATTTTCTCTAAGCATGG





CAACTGCATTAGCTGCATTTTGTATAGGAAGCGGATGTGTGTGCGGTTCAACACAATAATACACT





ACTGCCGCATGGAATCCTGCTGCGTTATATGCCATAGCAATACGCTCTGCCTCACGCTCAGATAC





CATTCCATATCCACCTCCGGGAAATATCACAACTATTGGACGTTTCTTACCGTCCAGAATATACG





TTTCCATATACGGCATAAATCCATATTCTGTCGCTTCTTTCAACAAGTTAAATTTCTTATTAAACA





TAACATTCACTCCGTCTTAATTTTTGTCAGTTAAACGGGCATATCCTATCACAGAATATGCCCGA





TATGCTCATCTTAATTCAATGTAAATACTTTATTAAATAATGGTTTCATATCATTTTTCCATATAA





AGACCTTCACCTTACTCTTATTTACGCAAGTAAATGGAATAATTACACTGTCTGAAATTTCATCT





GATTTTATCGAAAGCAATGTACCATTCTCATTATATTCTGCAACATAAACCATGCCTTCTTCTGTT





ATATTGGTAAATATAGCATTAACATTTCCATTTTTATCATCATACGTTATATTCACTGTCGGTTCT





GTAGGCTCATCCTTTGCTGCCGCATTAATTGTCACACTCATAACTTCACTGGCAAAGGATTCATC





TGCAACTGCCGCCACACGAACAATGTAAGACCCCGGTGCAAGATTTGTGATTTCCGTGCCTACAC





ACTGCATCCATGTGAATGTAGGTTCTGACAATGATTTATATTCCATTGTAGTGTCAACACCTGTG





ATTTTGCCGTCATTGCCTTGATAAGTCTGTTCTTCAACCGCTGCTACATTTGGTGCGGATGAACGT





TTAGGAATAGAAAGTTCAAACGCTTCACTGTTGCTTGTTTTTATGCCATCATCTTTTTTTACGATT





TTTAGGGTATGACCGAAATATGTGTTGTCAATGTCGATATCCTCTGTTACATTATCTTTATCCGTC





GCTACGCCATCATCTATTTTTATTATATAGTCACAGCCTTCCGTAAAGCCTGTTAGCTTTTCGTTT





ACATAGTTAATCGAGATTGTAGGCTGCGTTTCCGGCATTGCATCATACGCAATAATTGTAACCGA





ATATTCTGCACTCTTAAACTGCCTTTCGGCTTCCTCGTCTGCACTTACAGCTTTATAACGGATTTT





ATATGTGGTTCCAGGCTCAATATCACCTATATCATCTCCATCGCCCGTAGTCCAATTAATACCATT





ATTCGTACTATATTCCATAGTGTCTGCGATACCTGCAATAGTACCTTTGCCGCCAATCACACTCG





GTTGTGTTACTATGATTTCCGATTTTGTCGGTGCTGCAGGACGTGCCTTAACTATTAGAGTCTGTG





CTTCACTCGCAACCGTTGTCACATTATTACCCTTCTTTACTATCGAAAGCGTTATCTGTTCATTTG





TTATATAATTAGCTAATGATAACTTGTTATCTGTTAATGTAACATCTAAACCATTAATTGTATATG





TTCCATCCTCAACAAAGTTTATAAGTTCCTCTGTTGTATAATCAATTGCAATTTCAGGCGTCATTT





CCTTTTCAGCTATAAACGTTTCAACTGTAATTGTTGTCTTCTCACTTGCAAAGTCTGTATCTGTTG





CAGCTTTGCGGACATTGTATTCGCCTGCATCAACCTCAACTGTATCAACCAACTGCGTACTACTC





CATTCATCTGTTCTCTTGAGTTTGTACTGCATGCCATTCATACCTGTGAGTTTACCTTTGCCGCCT





ATTTCCGTAGCATTTACACCTTGAACGGTTGTAGGTGCCTTAGGACGTGCTTTAACTGTCAACTG





TTGCACGTCACTGTCGGTATATGTTTCGGTATTGCGTGCTTTTTTTACAATTTCAATAGACAATAA





TTTGCCGGCATAACCAATTTTTTCATCATCAAGCGATATTGTCGTCACGCCCTCGCCAAGCGTTAT





ATCTTTAGCATTACCTTCACCCACCTTTATCGTATACGGTTCCTGTGACTCAAAGCCGGTAAGTGT





TTCATTTATATAATCAATGCTTATCTGTGGAGTTGCTTCCTGTATTTTTGCCGGTGGTATAATTTC





CTCCTCCGAATATGATACTTCTGTTACTTTAACGTTATCTATATACGTCGCATTTTCAATATTATTT





GAAGCTGTATGATAGAATCGCAAGTCTGTTATTCCTTCCTTTAAAGTGTCAAAGGCTCCTTTACA





TGTATCAAATGAACTTCCTTCTTTTACAAAACTCACATTATCTTGAAGCATTGTTCCATCTAGCCA





TATTGAAAATATTCCTGTGTTTGGATGAAGTTCAAGTTTTATATGGTGCCATTGGTTATTCTTTAT





AGACATTGCTTGTTCATAGCACCAGTTTCCTCCCGTATTAGTAATAGCTGTTCTGAGTGACGATG





CGGTGAAATATGTAAGCCATAGTTCATTTCCTTCCTTTGTTTTAGCATACATACCTCTTGATGCAC





CAATCGCATCATCAGCACTTTCAAACATCGTGTCGTATTCTATTGTTAATGTTTTCTGCGGATTAT





CTGCCTTACTTATAGGAATAGTTGCATTAGCCGTTGCCTTATTGCCGGTGGCAGACAACTTCAAC





GACTTTGTTGTTTCTCCTGTAGGTATTGCCGACGTTACCGTCGTTGTTGTCCCATTAACGTCATTC





GTTGCCTTTGCCAGCATATCATCGCCGTTGTTATACTCAACAGATGATGGACTTTCTGTATATCCC





TTCACATAATCATATCTTGTAGGTCTTATAATATTATAAGTTGTATAGTCAACACAGGTAAGACT





GTTAATGTTATCATTGTCTGTTGCAATTGCATAAACACTGTGCACACCCGATGTAACATCAGGTG





TAAATACCCATTTACCGTCGTCACGTTGTTTAGCATCACCCGCCTTGATTTCTCCCTCGTCAATAT





ATACCTCAACTTTACTGACAACACCATCTGTGTCATAAGCACTTATTACAATGTCGTCGCCTGAC





TGCTCTACTTTTGATATATACGGTGCATAATTATAGAACTCTGTCGTTGACAACTCTTTATTTACA





GCTTTAGAAGCATATTTCTCTGTCAAATCAGTCATAAACGGTGCTATAGGTCTGCCTGCAGCATT





AAATGTATTAATCACGGCTGGGGTGTCAGTTTGTGCTTCAACTAAATCCTTTGCAATACCCGGAG





TATCTGACCATGCATACTTAACCTGTGGATTTGTTATATCTGTTACATCTATTTCTATAGTATCGC





CGTTAATTGTCGGTGTAACATCTTTGTATATTCCGTCATCATCTTTAAGTTCAAAGCCCAACGGCA





CACCTCCATCATCGGTTGAAAGAGAGCCGTATGTATTCTTGAAATGAAGAATAAGTTTATCGCCA





CTGCGTTCCATATAATCAAAAGATGGGCTTTCAACATTTGATTGTGTATTGTTAATAAAATCTTCT





ATATAAGCAACTGCTCTGTCAGCAATAGGTCCTTTATCATTTGGGTGAACATTATTTGTAGTTCCT





GTATCATTGCTCACAACTGTTTTTACGTTATCCATTCTTTGTGATACATTCCATTGTCCCGCTCTTA





CTCCGGTGCCAATGCGTATTGTCGAATAAATTTTTGCAAAATTCGCAGTAGGAAGTTGAATGACT





ACAAATGGTAAGTCCTCATCATTAAATGTTTTTCTCCAGTTGTTAATAAGCGAAGTCAATGCTTG





CTCATACACTGTGCCGCTTTCAAAGGTAGTATTTGCCTCTCCTTGATACCATACAACAGCAGATG





CTTTCAAATTCTTTAGCGGCAGAAGTCTTTGTGTATATAGTCCGCCTTTTGAGCTTGCTCCCGCCA





TCATTCTCTTTGCTTGTGAATCCCAATTTACTGAATATGTCGGAATCCACTGCATTATTGACGACC





CACCCAAACTTGAACTTATAAGACCTATAGGAACATCAGAATCTTTTTTTATCATCCTCTTACCTA





TCAAGAATCCAAGTGCAGAAAATTGCTTTGAATTTTCCATAGTAGCAACCTTCCACTCTGAAATC





TCGTCAAATGAATTCATATATCTCACGTCTTCGTAAGCTTCACTTAATTCTTCGTTCATCAACGTT





GGAAAAGTCTCAAGGCGATTAAACATATTTGATTGTCCCGTACAGAATATAACATCACCGACAG





CCACATTATCGAGAGTAATCATGTTATCACCGCTTGATACTGTCATAGTTGCTGATTTTACAGCTT





CCATAGCAGGAAGGGTTATCTCCCATAAACCATGTTCTATTGTTGTTTGCTCATCAGCCCCATTA





AAATTTACTGAAACCGTATTCCCCGATTTTCCTGTACCTGTAATAGTAATAGGTTCTTTTCTCTGG





AGTACCATGTTTGAGGAGTACACCGCATTCAAAGTTAACTCCGGTTCAAGAGTAGGCGTTGGGG





TTGGACTTGCCGTTGGGGTTGGCGTTGGTGTCACATCCGGATTGATTGTTGTGGTTGGCGTTGGT





GTTGTATCCGGCTCTGTTTCGCCACCTCCATCACTGTCTATATTCACATCAAATGAGTCAATAGAC





CACTGTATTTTCTTAGTGACTTGAGTTTTATCCTCACTTAAATCTCCACAGCCTATATATAAATAT





ACGAATCCATCCTTTGATGCCGTAATTCCGTTAGGCAGGGAATACTTCATATTTGATTTGTTTGTT





GACCAGTTTTTTATATTACTTTCATCTGTATGCTTTTCAAGTTCCTCTTTTACCAAATCCTGCGAGT





GTGATGTAAGTGTTATTTCGCTATCAGAAACAAAAAGACAATATTCCAATTCCATTGTTGCAGTA





TCAAGATATGTAAAATTAATATCGACATTAATCTTGTCGCCGGTATTTACTTGTGCCAACTTAAA





CATTGTCGCTCTTGGTGTATTGTTTGCTTGTATATAATAAGTGACACTTTCTTTACTGCTTACAGT





ATTTTTTAATATTTTACTATTACTTTTGTCTGAACTTGGCAGTGTATACGCTGATACTCCGTCCGC





TTCCGCTTCTACTGTAGTTGTAGTAGCCGCAAATGCCGTCAAACCGATAGATGCACATATCATCG





TCACAGCTAACATCAATGAAATAATTTTTTTCATTTTTTTCCCCTCTTTCCGTTTTTATATACTTTT





ACTCATAATAACTATATCTTGTTATTAATCTTACCACGGGAATTTTTTTATTAAAATGCGGTAAAC





TTTAAGCTGTGCGGTTAAATTTATTAAAACCAACCATGTTTTTCGGTACAAAAGTCATATAAATC





GTAAAATATGCTGTTAAAAGCTTGACTTGCCATAACATTATCCATAACCCTATTGACGCAAAAAA





ACAGTGCCATTAGAGTTGATTTTCAAACCAACCTAACGACACTGTTTTATTATAAAGTATAAATA





ATTTCTTCTAAAATTTAATCGCTATATCATTCCAAAATGTTTGAGTGCGTATTCTATGCCATTATC





GAGCAAATCTTTTGTCACAAAAGATGCCGACTTTTTAAGTTCTTCACTGCCATTACCCATAACGA





TACTGTTAGGCACTGCCGTAAGCATAGGCAAATCATTCATACTGTCGCCTATTGCATACGCATTA





TCAATCGGAATATTATGGTATTCAAGAACTTTTTTTATTCCTGTACCCTTTGAAAATCCTTTTACC





GTCATCTCACAAAAGCCGTCACCACGCACAATAAAATCAAAATCTTTTTCGATTTCTCTTTTAAA





TCGTTCTATATTGCTTTTTTCATCATACCAAGCCAAGAATTTGTCAAAAGCAAAACCATCGTCGC





TGACATCAGGTGACAAATCTTTACCTTGCATTTCAAAACGTCTTTTCAGTTTTACAAAACCGTCTA





AATTTCTACTGCGTTTATCACAATAAAATGACTTAGAATGTTCATACATTGGTGTCATATTACATT





CAAACACAAGTTTAGCAACATTTTTGCAAAGCTCCGATGACAATGTATGCTGATATATCACTTTG





CCATCACATTCTATATACATTCCGCAACCACATATATATCCGTCAAAGCCTATATCTCTTATTCTC





TGTTCAACGTTCATAACGGTTCTGCCCGTATCAACATACATCAAATGTCCGTTTTTCTGTGCCTTA





TGTATTGCATTTACCGCACTGTCGGGTATTATATATGCCTCGTCATCAGATATAAGTGTACCGTCC





AAATCAAAAAATACTATCATAAAAATCACTCCAATAAGTATATTATATATGGTGCAAAAAGATT





TTTCAAGTCGGACATATTTAATTTATATCGCAAGCATTGCCGCACCTATAATTCCCGCATCATTG





AAAAGCTGAGCCGCAACAATCTTTGTTTTTGTCATATGCTTATTAAAGCCCGTATTATACACATA





TTCACGAATCGGCTCAATAAGATAATCGCCCTCTTTGCTTATTCCTCCGCCGATTGCAATAATTTC





GGGTTGAAAAATATTTTCTATACTGACAATTCCGTCTGCCAAATATCTCTCATAATTGCTTACAA





CTTTTTTTGCGACCTCGTCACCTTGCTTAGCCGCCTCGAATGCCGTTCTGCCCGAAATTTTGCCCT





CTTTTTTCACTATACCATGCATAATAGTATCTTTATGAGTTTCAAGTGCATCTTTAGTCTGCGATA





TAAGAGCAGTCGCAGACGCATATGATTCCAAGCACCCCTCTTTACCGCAGGTACACATTTTACCT





CCGCTGACAATAGTCATATGACCGAGTTCACCGGCAGCACCGTTAAAACCTCTGAAAACTTTACC





GTTGATTATTACACCGCCACCCACTCCGGTACCTAAAGTAACCAAAGCAAACACACTTGCACAG





TGTCTGTTTATCTTATATTCACCCAATGCCGCACAATTTGCGTCATTATCCACTTTAACAGGCAAA





GGTATATGTTCTTTGAACTTATCGGCAAGAGGATAATGATTTATTTTTATATTATTTGAATACACT





ATCTCTCCTGTTTCAAAATCAATTGTACCGGGACAGCCTATGCCAATACCCTTAATCTCGTTCATT





TCAATACCAATACTTTGGACAAGTTTTTTTGACAAATTCGCCATATCGGTAACTATTTCATCTGTC





GGACGTTCTGACAAAGTAGGTACAGAATCTTTTACAACAATCTTTCCCTCCTCTGTCACAATACC





TGCCGCAATATTTGTTCCGCCAAGGTCTATTCCTATATAATACATTTTTCCACATAGCCTTTCTGC





CCACCAAAGCAATGAATATGTATATACAAATCTTATCGTGGGCAGATAAGGTTATAATACATTAT





TTTGCAATTCCTACGGTCATTATCTCATACGGTTTTACCTCAATATTGAAATAATTGTTATTACTG





TCAATTTTCTTAATCTTCTTTTCTATGATATTACTGATGTAAAGATTATCGATAACATCACTCTTTT





GAATTGTCAACGTTGTAGTTTTATCGCTTACATTTACCCAACGAATAATTATATCTTCGCCGTTGC





CTTTTTGCTTGATACCCGTAAGAATCAAGCCGTTGCCTTGCCAATTAATCATAGAATAATCAAGC





GGCATAACTCCGTCATGACAATCTGTATCGGCTGTTATAATATCTGTTCTGAACTGATAGCACTC





CTCATAAGCTCCACTTGAAATCAAATCACCCTTAAACGGTACAATTTCAATTTCCGTTTCGCTTAT





ACCCAAGCATTGAGCCTTAGGAGTCGGGAACACGCCCCAATCGCCCATTTCACCGACTGCACGA





AGAATTGTAACTGCGATTGTATTATCTAAATCCGGTAACATTTCATATTCGTACAAGCCTATATTT





GCGACCGCTATACCCTTTTCACCGTCATCAATACTCACAAATCCCTGCTCGTGTTCACACGCACT





CGGATTATTCCAACCTGCATTATGACGATTATTTCTTGTAACAACCTCAAACACGGAATCAGCCT





TATGTACATCGGAATTTATACCTGTCGGCACCATAATTCTAACTCTATGGTCTTTTACTTCATTAT





CAAATCTCGTTTTGATTTTTACACCCTTACCGTTTTTGTCAAGTGAAACAAATGTTTCTATTTTCA





TTTCAACGGTATCGTTACTTCTTCCGCCGACTCTTTCTTTAAAGAATACCATATGACTCTTTTCGT





CCTCGAAATTATCATCGCCCGACTTCGGAACTGTAATTGTGTTTGTGATTTTATACATTGCTCTGT





ACGGCTCATCTTCCGCAAGTTCAATCTTCGCAACTGTATCTTGCGTTGTTATCGCCTTACTTCCCT





CAGGCATTTTATACATATATTCATTGCCCAAGTCACCTGTTTCTTCGTAATAAGCGACGCCTTTAT





ATGTTCTGCCGCTTGCTTTGTCTGTTACATTAAGCGAGCCGTTCTTGTTTATTTCTACACGAATTG





CATCGTTTTCCATACAATTCTCACTGCTGACAAGTGTATCTGTTACTTTTTCCGTGTCACCCTCAA





CAAGGGCATATGTTTTATATCCGACAGCGGATATATTTTCAGCCTCAAATGTTACACGAACACGT





CTTGCCATGTACGGTTGTCTGAACTTATCCTTAGGCAAATCGTAGCCGAATTTAACTCCCAAATC





TTCGATTTTAAACGGTATTGAATTTCCGTCTGAATCTATAAGCTTATAGTTCGGCACATTTATTTC





GTCTAAATCATATGCACATTTTTTAAGCCAGCCCGATTTACGAGTTACGTCAATTTCCACCGATA





CGACCGATGTGCGCTCTCTGCCTGCCGTGTTAAACACAACAAACGGAAGTGCATTTTTGTACTTT





TCGTATTCCTTTGTATTAATCTTATCCGCAATATATCTTTTTCCCTCTGATACAAGATAGTCGGCA





ACTTGCTTACTCTTATTAAAACGTGTTGCCATTTCGTCTTGTACCTCATCAACACTGCAACAGCAG





ATACTGTCGTGAGGGTGATTTTGCATAAGTTTCTTCCATGAATATTCAAGTTCGTCCGACGGATA





ATTTTGTCCCAAAACAGATGATAAAACTCTGACAGGCTCTGCACCGTTTTCAAGTGCCGATTCAC





ATTTTCTGTTCATCTGCTTTAAGTAAATATGCGATGACGCACAATTCATAAGCGTTGACCAACCG





TCTGTATCCTGGCTTGTAAGTTCGCCTTTTACAACTGCCAAATCATTTGGTACTTTCTCTTTAATT





GCCTTAATATATTCCGGGAAATTTGAATGTTTAAAATTAATGTCGGGATAAAGTTCCGACGCAAC





TTCTATTGCCTTGCCTAAATCAGCCTGTACAGGCTGATGGTCACAACCGTTCATCAACAAATATT





CATCAGTTGACGCAAAAGTCGCAACTTTTTTCAATCTGTCGTCCCAATATTCTTTTGCAATTTTCT





TGTCTGTCGGAACTTCGTTGCCGTTATTATACCAATTCGCAAACAGAATACCGAAAATCTTCGTA





CCGTCCGGAGATTCCCACATCATTTCTGAATACGGAGATTCATAGTTTCCATTTTCTTGAACTTCG





TTATCAAACCCGACAGGACGTACACCTCGTCCGAAAGTCACTGTATCCATTCCCGCTTGTTTTAA





AAGTTGGGGCATTTGCCCCGCATTACCGAATGCGTCCGGGAAATATCCCATTTTACACATAGCTC





CGTACTTTTCAGCCTCTTTCATACCGACAAGCAAATTTCTGATATTTGCCTCACCGCTCGTATAAA





ATTCGTCTTGCAAGATATACCAAGGACCGATTATAAATTTACCCTCCTTGGTATACTTAATAAGT





TTTTCTTTATTTTCCGGTCTTATTTCAAGATAATCGTCAAGCACAATAGTCTGACCGTCAAGGAAA





AAGCTTTTGAATGAATCGTCCTTTTCAAAAACCTCCATACATTTATCTATCAATTCAACAAGTCG





CATTCTGTGTTGTTCAAACGGAAGATACCACTCTCTGTCCCAATGAGAGTGTGATATTATATGTA





CATTTTTGCTCATTTGAAATTCCTTCTTATACCATATAATAAATTTGGGTTTGATATATTTGTTATA





CATTATATCGCTATTATATATCAAAATCAATACTCAAGTAAAATTTCGTTGCACCTGTTGCACTAT





TATTACCGTCATAAAGTTCAACCTTTGATGTTGCAATAGATTGATTATCACGAATAAGTTTTATTT





GAATACCGTTAGTGCTTCCCTCCAATATAAACACCATTGCGTTTTACAATGATTTGTACCACGAG





TATAGAACTACTCTACACTGTCTCATTTGTATACGAATAGACTTCTTCATGATATATTTTAACTTC





AAATTATCTCCGTCCATTCCAATTATATATCAATTTTTTATTTGTTATGTATAATTATATTACACA





ATATATCAAAGTTCAGTATTTTTCTGTTTTTACATAATCTAAAATTTAATTTTAACAAAAAAAATA





AACCGTTAGATTGTTTCAAACGGTCTATTTTTAAAATTCAATTGCGAACAGCAATTTTAACAGGC





ACAATGTATTTAATTCCGGGCATTTCGCCGTTTATTTCTCTAAGAACGGTTTCACCTGCTTTCACA





CCCAGTTCAAAGAAGTTTTGCTCCACGGTTATTATCTTGTTTCCGCCATCCATTTCGTCAAGCTCG





CTTATATTATCAAAACCCATTATGCACATTTCATTTGGAACCGATATATCAAGTGCCTTACAACA





ATTATATACTTGAATTGCCACCCAATCGTTTTGGCACAAAACACAAGAAATTCCTTGTTCATGCA





TACGATTTACAATCGTTTTCAAATAATTTTCAACGTTGCCGTATTGTTGTCTTTCTTCTTCAGTCA





GCATTTCGTACTTGTCGTCAATGTTCGCATATACATAATCAAGATTAACTCCTAAACCTTTTTCTT





CAAGTGCCGCCGCATATCCCATATATCTATCCCTTATTGATATAGTTTCATTCACACGACCTCTGC





AAAAAAATCCAATCTTTTTATGTCCATGCTCTAATGCATATTCGCAAAGTGCTTTTCCGCCGCCG





CTGTTATCCGACACAATATAACTCATAGGCATATTTTCTATATAATTATCAATAAGCACAAGAGG





AATTTTTTTAACTAAAAACTGATTATACACTTCAAAATTTCTGCCACCACGTACAGGATAACATA





TAACGCCGTCTATCCCCTGTTCCAAAAGTGAACGAAGTATTTTCTCCTCGTTTTCCACACTTCTGT





TTGCATTATATATACTGACAAAGCAATTTTCCTTATTGAGCACACTATTAATTCCGTCAAAGCATT





TGAACATATTACCAAGCTTTATATCAAACGGCATAACCAATGCCACAAGAGATATATCTCTGTTT





TTTTTGTGTATCGTAACTGCGGCATTGTCTTCCTTGTCCTTGCCAAGAATACTCATCGCATTTTTT





GAAACAAAACTACCGCTGCCTCGTTTTCTGTTAATCAATCCGTCATGTTCAAGCTCCTCAAGTGC





TCTGATTGCGGTTATACGACTCACACCGTATTCCTTAGTAATTCTGTCCTCTGTGACAAACGGTGC





GTCGTATTCAAAATCTCCCGACTTTATACGCTCTTTTAATTTATCCATAATTTGTTTGTACAATGG





TTTTTTATCTGACATTAACGTTATTCCTCCAAGAACAATATATCTTAATTCATTTTCTTTCTTATAT





TTAATATATCACTTTTCGAGTGACTTGTCAAACAATATATCAATTAAAACAAACAATTTGTTTCTC





TCTCGA





SEQ ID NO: 32 - B intestinalis


CCTTGCAAACAACAAGTTAAGTTCTTGTTGACAAGGAATGGACTTCTTGCAAACACCTATAAATC





AAAGTCTTGTTTATTCCACTTACAGGCCCATAGCTTTTTTATATTTAAGCAATGCCTGTAAATAGT





AATAATCTGCATAATTTATAGAAGCATCGATCTCATATCCGCCTGGCTGATTACCAGTACTATGC





ATCAAAAAGGCAGGTTTTATGTCCCGACACTGATATCTTTCGGAAGATAATTCTCCCAACATCCG





TGTGGCTGCATTTAAATAGCGGGAGGCCAATGATGGAGTATCTTCCAGTTCGGATAACTCAATA





AGCGCAGAAGCCGTAATTGCTGCTGCCGAAGCATCTTTAGGTTGTTTGATCATGTCCGGTGCATC





AAAATCCCAATAGGGTATATAATCTTCGGGCAGGTTTTCCAAATAAAGTTCTGTGACTTTTTCGG





CAAATCGCAGAAATGTCTTATCCTGAGTTTCCCGATAAACCATCATATAGCCGTAGATAGCCCAT





GCCTGTCCGCGTGCCCATAAACTGGAGTCACCGTATCCCTGATTGGTTACCCCTTTTATGAAATG





TCCGTCAATCGTATCATAGACTGCAACATGATAATTGCCTCCATCTTCACGGAAGGAGTATTTCA





TAGTCGTTTGTGCATGTTTCACGGCTATATCATACAGTTCCTGTCCGCCACCATTCCTGGCAGCCC





AAAAGAGAATTTCCAGATTCATCATATTATCCATAATGGTATTATGGGGCCACCCCATTCTTTTT





ACCATTCCAGGCCACGAAAGTATGGTGCCTACCTTGGGATTATATAACTTTGCTAACTTTTGTGC





CCCTTTCAGGATGACCGTTTTATATTCCTCATTTCCGGTTATGCGATAAGCATTACCGAAACTACA





GAATATCTGGAAACCGATATCATGGTCGGCACCATGTGCAGGAGTTACCAATGGCAACAAACAT





TCGGTATACCGAATGGCTTGTGCTTTTATCTCTTCATCACCCGTAGCCTCATAATCATACCAAAG





GATACCGGGCCAGAAGCCACTGGTCCAATCATAAATATTGCTCATGTTCCAATTGGTCTGATTGG





CTTCCATGCTCCTGGGCATTAAACAGGAATCTTGATCGGCCTCGCTTAATGTCCGCCTTATCTGG





GCGTCACAGTACTCCAATTGTCGGTCTAAATGGATAGTATCTGCTTGTTTATCGGGCGCACAGCC





CACCCATCCGAGGCTGATGCTAACCAACAACAAACTCAGTTGCTTTCTCATACTTTTAGCTCATT





TAAATTATTATTCTTTACAACACACTCTTTACCTGCTTCAGATTGCCAATGGTTCCGACCCAACCG





CAAACAACCTCTTAGCAGACAGAGATCTTTTTCTTTTTATTCATTAATATGCCATGCATTTTCCTT





ATTTGTCAATTCATAAACAAGGGTAGCTCCTTCTGCTATTTCCCTGTGATATATCCACCCCTTATC





CAGTACCTTACCATTGATAGATACAGATTTTATGTAACAGGCATCAGGCGTATCCTTTAGAACCT





TGATACTTATTTTTTTCCCATTCTCCATAGTCAGTTCCACGTCAGTGAAGGCGGGTGGCAACAGA





TAATAAAAGTCTTGTCCCGCATTAGGGAATAACCCTATGGAGGTAAATATATACCAGGACCCCA





TCGCACCGCTATCTTCATTATCCGAATATCCTTTGAGCAGAGAAAAATTATCTTTTCGTATCTGAG





ACACATAACGAGCTGTCAGATCCGGTCTTCCGCAATGGGTAAATATGAAGGGAGATAAGAAACC





GGGTTCATTATTTAAACTGATCAGATTATTCTCAAATCCATAAGACAGCCGCTTTATCATATTCG





CTTTTCCACCACAATATTCTATCAATCGGTCAAACTGATGTGGAACAAACAAAGTGTAAGTCCAA





GAGTTACCTTCATAAAAATATTCTACCCACGAACCATATGCCTTGGCAGGGTCTATAGCTACCCA





TTCACCATTCGCCTTACGGGGTACTATGAATCCTTTATAAGTATGGCTTTCCTGCAAAGGATTGA





ATAATTGGCTCCAATTGCCGGAACGTTCGTAAAGTTCCTTTTGAGTATTTTCATCATGCATGATTC





CGGCTATTTCAGAAGTACAGAAATCATTGTAAGCATATTCTATTCCGGCACTACACGACATGATT





CCGCCAGTTTCCGGTTCCCAGCCTAATCGCAGATAGTCTTTACTGCGTGCATGATAAGCATTCCA





CTTCATAAGTGCATAAGCTTTTTCATAATCGAATCCCTTTACATTTTTCACGATAGCATCAGCTAT





TATATTATCCACATCGTCACCTCCCTGTTTAGAAGTCCAATCCAATGAACTGGTAAAAGTGGGAT





TGCATACACCATTGTGTGCAAAACGATCAATAAATGAATTTATAGTCTGAGCCACATAGCTCTCG





CGCAACAAAACCATGAGTGGATATTTGGTACGCCACGTATCCCAAACACAATAATGGTCGTCCA





TGTGGGCTGATTCACTATCCCAATGCGGATTATCGCCGGTACGATCTCGAGGCATCACAAAACTG





TGGTAAAGCGTGGTATAAAACAGCCGTTCCTCAGCTTCATTCTCAGATTTGATTTTTATGGAAGA





AAGCGTATTGTCCCATATCGCTTTAGCATTCTCCTTTACGGTATTGAAACTGTTATCCGCAATCTC





TTCTGATAAAAACAGGGAGGCATTTTCTATACTTTTCAATGATATACCTACGTTTAGATGGACTA





CTCCCGGATTCTTATTCAGAGCCAGACAAGCGTATAAAGCTTTGTCACCCTGATCTGTGATCTTC





ACTTCCTTCAAAGGTGTATCTGTTTTCATCGCAAAATACACTTTATAAGCATCTGTACTTCCAAAA





CCACCGCTGTATTCTCCCCATCCCGTCAAAGTTTGCTGTTCGGGATTGTAGTTTATCTCCCCGCCG





TGGAATAATCCTTTTACCTCAGGCACTATATGCTGCGGAATATTGTGCGCAATATCCAGTAGAAT





ATTCCCCTGATCCGTTTCAGGAAAAGTGAAACGATAGGCAACGCAATGATGTGTAGGCGAAATC





TCCACCTGAATATCGTATCGACTTAACATTACCTTATAATAGTAAGGTGTGGCTTCTTCACCTTGC





TTGGGCGAATCGTGATCTGTTTCACCTGGATTAAAACCGACTTGAGGTGACAGAAATATCTGTCC





GTAACGCCCCCAGCCGATTCCTGAAACATGCAGTTGTCCAAAGCCCCGTATCGGCTGATCGGGT





ACATAACCGGCATGTCCACCATATGCAGTCTGGGGAGATGGGTTGACGGAGCCATGTGGAAGTT





GAGGTCCGACAACACAATGCCCAGCTCCATAAGTTCCCATCCACATATCTACTTTGTCGGCTAAA





GATTGTCCTTTTATAAAGGATACATTCATTAATAAGAAAAGGCATATGCCCAATGTTCTGGTCTT





CATGGAATGTTATGTTTAAGGTGATAAATCTATTATTTTCATTGATACACAAAAGTACGCGATAG





TTACCATTGGCAGATACAAAAATTCTCTTAAAGTATACAACAATAACAAGCACTACAGCTTTTTA





CAATATTCTTGCACCCAAAAATTATATATTTGTATGTCGGAAATAAAAATAGGCCTACTTTTGGG





CAGTTAAAATCACTACTATGAAACAGCTTATTACTACCTTATTTATCTTTATATTCCTTCAGCCAT





CCTGGGCTTCGCTCTACAGAAACTATCAGGTGGAAGACGGGCTCTCTCATAATAGCGTCTGGGCT





GTTATGCAAGACAAGCAAGGTTTTCTATGGTTTGGGACGGTAGACGGCCTTAATCGTTTTGACGG





TAATTCCTTCAAGATCTATAAGAAATTGCAAGGGGATTCCTTATCCATAGGCAATAATTTTATCC





ATTGCCTGAAAGAAGATTCTCACGGTCATTTTCTGGTAGGAACCAAGCAGGGATTCTATCTGTTC





AACCGCGAGAGTGAAACATTCAGCCATGTCAGGCTGGACAACCGCTCACGTGGAGGAGATGATA





CCAGCATTAATTATATAATGGAAGATCCCGACGGAAATATATGGTTAGGATGCTACGGACAAGG





TATCTATGTGTTAGGCCCGGACCTGCAGGTCAGAAAACATTATATCAATAAAGGGAATCCGGGT





GACATTGCTTCCAATCATATCTGGTGCATGGTGCAGGATTATAATGGAGTAATCTGGATAGGAAC





AGACGGAGGAGGCTTAATCCGCCTTGACCCCAAGGACGAAAGATTTACTTCGATTATGCACGAA





AAGGACTTAAACCTGACAGATCCCACGATTTACAGTTTATACTGTGATATGGATAATACGATTTG





GGTAGGAACTTCTATCAGTGGACTCTATCGTTGTAACTTCCGGACAGGAAAGGTAACCAATATA





GTATACCCTCACCGTAAGATATTAAATATTAAAGCTATTACGGCATATTCCAATAATGAGTTGGT





GATGGGTTCGGACGCAGGACTGATCAAAGTCGATTGCATTCAGGAAACGATTTCCTTTATTAATG





AAGGACCGGCATTTGATAATATAACAGACAAAAGTATATTTTCCATAGCCCATGATATGGAAGG





CGGCCTATGGATAGGAACCTACTTTGGAGGTGTCAACTACTATTCTCCATACGCCAATAAATTTG





CCTATTATCCAGGATCCAGCGAAGAGGTTTCAAAGAGTATTATCAGTTATTTTACGGAAGAATCT





TCCGACAAGATATGGGTAGGAACCAAGAATGAAGGGCTATTACTATTCAATCCGGCAAAAATAT





CGTTTGAGACTACCCATTTACAGATTGATTATCACGACATCCAGGCATTGATGATGGACAATGAC





AAATTGTGGATCAGTGTATATGGGAAGGGAGTCAGTATGGTCGACGTACATTCCAATACCTTGCT





AAAGCGCTATTCCAATGACGTAGGAGGCCCTGATCTGCTAACATCCAATATTGTGAACGTCATAT





TTAAGTCGTCGAAAGGACAGATTTTCTTTGGAACCCCTGAAGGTGTTGATTGTCTGGATGCTGAA





ACTAAAAAAATCAACCGGCTGGAACGCACAAAGGGCATACCGGTGAAAGCCATAATGGAAGAT





TATAATGGTTCCATCTGGTTTGCCGCTCACATGCATGGACTGCTCCATTTATCGGCTGACGGAAC





CTGGGAATCCTTCACCCACATGCCGGAAGATTCAACCTCATTAATGAGTAACAATGTGAATTGCA





TTCATCAGGATGCCAGATATCGCATCTGGGTAGGTAGTGAAGGAGAAGGAATGGGACTTTTCAA





TCCGAAAACCAAGAAGTTTGAATACATACTTACCGAAAATCTGGGACTTCCCTCGAATATAATCT





ATGCCATCCAGGAAGATGCAGATGGCAATATATGGGTAAGTACCGGTGGCGGTCTGGCCCGGAT





TGAACCGGAAACACGTTCTATCTGTACTTTCAGATACATTGAAGACCTGATTAAGATACGTTACA





ACCTGAATTGCGCCCTGCGGGGTAGAGATAATCATCTATATTTCGGAGGAACAAATGGCTTCATT





GCTTTCAATCCGAAAGATATACAGAATAACGAGTATAAACCGCCCATCTGCCTCACGGGATTCC





AGATTTCAGGGAATGAAGTTGTCCCCGGTATCGAAGGTTCACCATTGAAGAAGTCTATAAGCAT





GACGCAGAAGATAGAACTTGAATCTAACCAGGCTGCCTTTAGTTTCGACTTTGTTTGCTTGAGTT





ATCTCTCGCCTGCACAGAACAAATATGCGTACAAGCTTGAAGGCTTTGATACGGACTGGCACTAT





GTGGCCAATGGTAATAACAAAGCCATCTATATGAATATACCTTCGGGCAAATATACTTTTTATGT





GAAAGGAACCAATAATGACGGAGTTTGGTGTGATACCCCTATAAAGGTGACTGTTATCGTAAAA





CGCCACTTCTGGCTATCCAATATGATGTTACTGGTTTATGCCATTCTCGCAATCTCCGCATTTACT





TTACTTATCCGCAGGTACAACAAGCGTCTGGACTCTATCAATCAGGATAAGATGTATAAGTACA





AAGTAGAAAAGGAAAAAGAAATATATGAAACCAAGATTAACTTTTTCACCAATATGGCCCATGA





AATACGTACTCCGTTGTCATTGATTGTAGCTCCTCTGGAGAACATCATTTCATCGGGCGACGGAA





GTCAGCAAACCAAAAGCAATCTGGAAATAATGAAACGGAATGCAAACCGGCTGCTGGAACTCG





TAAACCAACTATTGGATTTCCGCAAGATAGAAGAAGATATGTTCCGCTTGTGCTTCAGCAAGCA





GAATATTTCAGAGATTGTCCGCAATATACATAAACGGTATGTGCAATATGCAAAACTGAAAGAC





ATAGATATAAGACTGGTAGAACCGGAAAAGGACATTGCTTGTGTGGTAGATAAGGAAGCGATG





GAAAAAGTCATCGGAAACCTGCTCTCCAATGCCGTAAAATATGCCAATAGCCTGATAACTATCA





ACATAAGTACAGACAACAATCTATTAACAATCAGTGTAAAAGATGATGGTCCGGGCATTAAGAG





TGAATTTATAGACAAGATATTCGAATCATTTTTTCAGATAGAGAATAATGCGCAGAGAACAGGT





TCGGGATTAGGGTTGGCATTATCAAAATCACTGGTAACAAAACACAAAGGGAATATTGCAGCCT





CATCCGATTATGGGCATGGATGTACATTGACATTCACAATTCCTATGGATCTTCCAATCAGTATA





TCACAGCTTACGGAAGAATATCCGGAAAAAGAAGATATCTCCGTGCAACAAACTGCGCTATCTC





CTGTAGAAGGGAAGTTAAGAATAGTGTTGGCTGAAGACAATCAGGAACTCCGGAGTTTTTTAAG





TAATTATTTAAGTGACTATCTGGATGTATATGAAGCTCAAAATGGTTTGGAAGCATTACAATTGG





TAGAGAATGAAAACATTGATATCATAGTATCGGATATCCTTATGCCCGAAATGGACGGTCTGGA





GCTTTGCAAAGCCTTGAAGTCTAATCCGGCTTACTCGCATCTGCCGTTTATCTTATTGTCCGCCCG





AACAGATACGGCCACCAAGATAGAAGGACTGAACACGGGAGCCGACGTGTATATGGAAAAGCC





TTTTTCGAGCGAACAGTTGCGTGCACAGATCAACAGTATCATCAATAACCGTAACAGTATCCGTG





AAAACTTCATTAAATCGCCTTTGGATTATTACAAGCAGAAGAGTGCCGAACCCAATGGAAATAC





TGAGTTCATAGAGAAACTGAATATTATTATTTTAGATAACCTCACCAATGAGAAATTCTCCATAG





ACAATCTCTCCGAGATGTTTCTGATGAGCCGGTCCAATCTGCATAAGAAGATAAAGAATATCGT





AGGCATGACGCCTAATGATTATATCAAACTGATTCGTTTGAATCAAAGTGCACAGCTGCTGGCTA





CCGGGAAATATAAGATAAATGAGGTGTGCTATCTGGTAGGTTTTAATACACCTTCTTATTTCTCC





AAATGTTTTTATGAGCATTTTGGAAAGCTGCCAAAAGACTTTATCGTGATAGAATAAATGATTAC





TAACCCAATAATTCAAGAAGGGAGGCTTATGAGGAAAAGATAAAACAGGATGGTAATCGAAGA





AGAAAGCATGAGGCATCCGACCTCCCCATGCTCTCTGCATAATAAGACTTACAGCACAGGATAT





TTGTTTGCAAGCTGATATTATGCCCAAAGATAACCATTTTCACACTGAAGAGAAGTAACCATGAG





AATTTTATATTGGTTTTTATGGTTTGTTTGTAATTTCTAATACTAATAGTATCCATTAAACAAGGA





TTAATAGCATGAAAACAAAATTTATTGCCACATTCTTTTTGCTTATATGTGGTTCCGTCATGTTTG





CTCAAACACGTACGGTAAAGGGCAAGGTTGTCGATAAGGCAAATGAACCGCTGATTGGTGTAGC





AGTTAATATTAAGAATACATCACAAGGCAGTATTACAGACTTTGAAGGAAATTATTCCATACAA





GTGAATACGGAGAATGCCGTACTGGTATTTTCGTATATAGGATATGATAAACAAGAAATAAAAG





TAGGTGCACGCAATGTGATTGACGTGGTAATGCATGAAGCTTCCATTGCGCTGGACCAAGTAGT





GGTAGTAGGCTATGGAACATCCAAAAGAGGAGATGTAACCGGCTCTATCAGTTCCATCGATGCG





GCAGAAATAAAGAAAGTACCGGTGGTAAATGTAGGACAGGCTTTGCAAGGCCGTATGTCGGGTG





TGCAGGTGACCAATAATGACGGAACACCCGGAGCCGGAGTGCAGGTCCTGATACGTGGCGTAGG





ATCATTTGGAGATAACTCACCGCTGTATGTAGTGGATGGATATCCCGGTGCAAGCATTTCCAATC





TGAATCCGAGTGACATACAAAGCATTGACGTACTGAAAGATGCTTCAGCAGCAGCCATTTATGG





GAACCGTGCTGCTAACGGCGTTGTCATCATCACTACCAAAAGAGGAAATGCGGATAAAATGCAG





TTGTCGGTAGACGCAACTGTTTCCGTACAGTTTAAGCCTTCTACTTTTGACGTACTGAATGCACA





GGATTTTGCATCTTTGGCTACGGAAATAAGTAAAAAGGAAAATGCTCCGGTACTGGATGCATGG





GCTAATCCTTCCGGGTTGCGCACCATCGACTGGCAGGATCTGATGTATCGTGCCGGATTGAAGCA





GAACTACAATTTAAGTCTGCGGGGAGGTTCTGAAAAGGTACAGACTTCCATCTCTCTGGGATTAA





CCAATCAGGAGGGTGTAGTGCGGTTCTCTGATTACAAACGCTATAACATAGCATTAACACAGGA





TTACAAGCCGTTGAAATGGTTGAAATCTTCTACCAGCCTGCGCTATGCATATACGGACAATAAGA





CTGTATTCGGTTCCGGCCAGGGCGGCGTAGGAAGATTGGCCAAGCTGATTCCGACCATGACGGG





TAATCCACTCACCGATGAAGTGGAAAATGCAAATGGAGTATTCGGCTTCTATGACAAGAATGCC





AATGCCGTAAGAGATAACGAGAACGTATATGCACGTTCCAAATCGAACGACCAGAAAAACATAT





CCCATAATCTGATAGCCAATACCTCATTGGAAATCAACCCTTTCAAAGGCTTGGTATTCAAGACT





AATTTTGGTATCAGCTACGGTGCTTCTTCCGGTTACGACTTCAATCCTTACGACGACCGTGTTCCC





ACCACACGCCTTGCCACTTACAGACAGTATGCCAGCAATAGTTTTGAGTATTTGTGGGAAAACAC





CCTGAATTACTCTAACACATTCGGCAAACATAGCATCGACGTATTGGGTGGTGTATCTATTCAGG





AGAACACAGCACGCAACATGAGTGTGTATGGTGAAGGATTATCGAGTGACGGTCTGAGAAACCT





GGGCTCTCTGCAAACGATGCGTGATATCAGTGGCAACCAGCAAACCTGGTCTCTGGCTTCACAAT





TTGCCCGTCTGACCTACAAATTTGCCGAACGTTACATCCTGACAGGAACAGTTCGTCGCGACGGT





TCATCCCGTTTTATGCGCGGAAACCGCTGGGGTGTATTCCCTTCCGTATCAGCAGCATGGCGTAT





TAAGGAAGAAAGTTTCCTGAAAGATGTGGATTTCATCAGTAACCTGAAGTTGAGAGCAAGTTAT





GGTGAAGCAGGTAACCAGAATATCGGTCTGTTCCAATACCAGTCATCTTACACTACCGGTAAGC





GCAGCAGCAATTATGGATATGTATTCGGACAAGACAAAACCTATATCGACGGTATGGTTCAGGC





CTTCTTGCCGAACCCTAACCTGAAATGGGAAACTTCCAAACAGACGGATATAGGTATAGACCTG





GGATTCTTCAATAATAAGCTGATGCTTACAGCCGATTATTACATCAAGAAATCAAGTGACTTCCT





ACTGGAAATCCAGATGCCTGCACAAACCGGTTTTACTAAAGCCACACGTAATGTAGGTAGCGTT





AAAAACAATGGTTTTGAATTCAGCGTGGATTACCGCGACAACAGTCACGACTTTAAGTATGGTG





TAAATGTGAATTTAACTACCGTAAAGAACAAGATTGAAAGATTGTCACCGGGAAAAGATGCCGT





TGCGAATCTTCAATCATTAGGCTTCCCAACTACGGGTAACACATCCTGGGCCGTATTCAGTATGT





CGAAGGTAGGTGGTTCTATCGGAGAATTTTATGGATTCCAGACAGACGGTATCATTCAGAATCA





GGCAGAAATTGACGCCTTGAATGCGAATGCCCACAGATTGAATCAAGACGACAATGTGTGGTAC





ATCGCTTCCGGAACAGCTCCCGGAGACCGCAAGTTTATAGACCAGAACGGTGATGGCGTAATTA





CCGATGCCGACCGTGTTTCCCTGGGTAGCCCGCTTCCGAAGTTTTATGGAGGTATCAACCTCTCC





GGTGAGTATAAAGGCTTTGATTTCAATTTATTCTTCAACTACTCCGTTGGAAATAAGATATTGAA





CTTCGTTAAGCGCAATTTGATAAGTATGGGAGGTGAAGGCAGTATCGGTTTGCAGAATGTCGGC





AAAGAATTCTACGATAACCGCTGGACTGAAACGAATCCGACCAACAAATACCCGCGTGCCGTAT





GGTCTGACGTTAGTGGAAACAGCCGTGTGTCGGATGCTTTCGTGGAAGACGGTTCTTATCTTCGC





CTGAAGAATATTGAAGTAGGATATACATTGCCGGCAAACATCCTGAAGAAAGCCAGTATTTCTA





AGCTGAGAATCTTTGCCAGCGTACAGAACCTCTTCACTATTACCGGCTATTCAGGTATGGACCCG





GAAATAGGTCAGAGCATGAGCAGTTCAACCGGAGTTGCCGGTGGAGTTACCGCCTCGGGAGTTG





ATGTTGGCATTTATCCTTACTCACGCTTTTTCACCATGGGATTCAATCTTGAATTCTAAGGAGAGA





CATTTCTGTATGACAAATTATAAATTTACAATACAATGAAAAAAAGACATATAATCGGTTCATTC





CTGCTCGGATTGCTTTTAACGGTAAATACCGGCTGTGAAGATTTTCTTGATCAGAAAGATACATC





GGGTATCAATGAGAATTCTCTTTTCTTAAAACCTGAAGACGGTTACTCTTTAGTCACAGGCGTAT





ACTCTACTTTCCACTTCAGTGTAGACTATATGCTGAAAGGAATCTGGTTTACCGCCAACTTCCCT





ACTCAGGATTTTCACAATGACGGTTCGGATACGTTCTGGAATACGTATGAAGTACCGACTGATTT





TGATGCATTAAACACGTTCTGGGTTGGAAACTATATCGGAATTTCCAGAGCCAATGCTGCTATTC





CTATTTTACAGCGCATGAAAGACAACGGTGTACTGAGTGAAAAAGAAGCTAACACACTGATTGG





CGAATGTTATTTCCTGAGAGGTGTATTCTATTATTATCTCGCTGTTGATTTTGGAGGTGTACCTCT





GGAACTTGAAACAGTAAAAGACGAAGGTTTACATCCGCGCAATTCACAGGATGAAGTATTTGCA





TCGGTAGTCTCGGATATGAACATAGCAGCAGGCTTGCTCCCGTGGAAAGCGGAACAAGGCAGTG





CAGACAGAGGACGTGCTACCCGAGAAGCGGCCTTGGCGTATCAGGGAGATGCTTTGATGTGGCT





AAAGCAATATAAAGAGGCAGTAGAGGTATTCAATCAACTGGACAGCAAATGCCAACTGGAAGA





AAACTTCCTGAATATCCACGAAATTGCCAACAGAAACGGAAAAGAATCTATTTTCGAAGTGCAG





TTTACAGAATATGGTTCTATGAACTGGGGCGCTTTTGGTGTAAACAACCATTGGATCAGTTCGTT





CGGCATGCCGGTTGCCATTTCCGGTTTTGCTTATGCATATGCCGACAAAAAGATGTACGACTCTT





TCGAGAATGGTGACTTACGTAGACACGCCACCGTTATCGGACCGGGTGATGAACATCCGTCACC





ATTGATTGACCTGCAGGATTATCCGAAGCTGAAAGATTTCGCAACGAAAGGGAATGGGAATATC





CCGGCTTCTTTTTATCAGGATGAGGAAGGTAATGTGCTGAATACCTGCGGAACAGTAGAAAACC





CCTGGTTAGACGGTACACGTTCCGGATATTATGGAGTAAAATACTGGCGTAATCCGGAAGTTTGC





GGAACCAGAGGTGCAGGTTGGTTTATGAGTCCGGACAACATTATGATGATGCGTTATGCCCAGG





TACTTTTAAGTAAAGCGGAATGTTTGTATCGCCTGAATGACAGTAATGGTGCAATGGCTATTGTA





CAAAAAGTCAGAGACCGTGCTTTTGGTAAATTACAGAATTCCGCAGTAGAGGTACCGGCACCTG





CCAACACAGACGTACTTAAAGTAATCATGGATGAATATCGTCATGAACTCACCGGTGAAACGTC





TCTTTGGTTCTTGCTGAGAAGGACGGGAGAGCATGCCAATTACATCAAAGAGAAATATGGCATA





ACGATACCTACCGGAAAGGATTTGATGCCAATACCTCAGACACAAATTGGTTTGAACCAGAATT





TGAAACAAAATCCCGGGTATTAATTCTTAAGTAGGTAAGAAGATTGTATTTTTGTGGTGGGTTGC





CATGTGAAAGCCGGCAACCCACCCTATTTCAATACTAATAAAAAAAGATGTAGGATATGAAGAA





CACTGTTTTACCGTTGATACTGTTTTTATGTATGCTTTGTTTGGGTTCACACTTGTATGCCGGCCA





CAGTATGCATCCTCTGAATCAGATATCTTACGTAAAGAAGAAAATAAAAGAACAGCAAGAGCCT





TATTTTACGGCTTATCGCCAGTTAATGCATTATGCAGATTCGATACAGGAGGTTTCACAGAATGC





CTTGGTCGATTTTGCGGTTCCGGGGTTCTATGATAAACCGGAAGAACACCGGGCTAATTCTCTGG





CTTTACAGCGTGATGCTTTTGCGGCCTATTGCTCGGCATTGGCTTACCAGTTATCCGGTGAAGAA





CGCTATGGGCAAAAGGCATGTTACTTTCTGAATGCCTGGTCTTCTACCAATAAAAAATATTCGGA





ACATGATGGTGTCCTGGTAATGAGTTATTCAGGCTCCGCCTTGCTGATGGCGGCAGAGTTAATGA





TGGATACGCCGATATGGAATCCTCAGGATAAAGATGCTTTTAAAACTTGGGTATCCCAAGTGTAT





CAGAAAGCTGTGAATGAGATTCGCGTTCATAAGAATAATTGGGCGGACTGGGGACGTTTCGGTT





CTTTGCTGGCAGCTTCCCTTCTGGATGATAAAGAAGAAGTGGCCCGTAACGTGCAGTTGATAAA





GTCCGATTTATTTGTGAAGATTGCAGAAGACGGACACATGCCGGAAGAAGTGGTCCGGGGAAAT





AATGGAATATGGTATACCTATTTTTCATTGGCTCCGATGACTGCCGCCTGCTGGTTGGTTTACAA





CCTGACCGGTGAGAACTTGTTTGTATGGGAACATAACGATGCGTCATTAAAGAAAGCTCTGGAC





TACATGTTTTACTTCCACCAGCACCCTTCGGAGTGGAAATGGGATACACGGCCAAATTTAGGAGC





CCATGAGACCTGGCCTGATAATTTACTGGAAGCAATGGCAGGAATCTATAATGATGCTTCATATC





TTCAGTATGTAGAAAGCAGTCGCCCGCACATATATCCATTGCATCATTTCGCCTGGTCTTTTCCTA





CTTTGATGCCAGTGTCGCTTAAAGGCTATGACTTAACGGATAATAATACATGGGCTAATTATAAT





CGCTATGAAGTGGCAAATAAAACAGTGAAGAAGCCTGTAGCTATTTTCATGGGAAATTCCATAA





CGGAAGGCTGGAACCGCAGTCACCCGGACTTCTTTACACAGAACGGATATGTGGGACGTGGCAT





TTCAGGACAGGTCACAGCACAAATGCTGGCCCGCTTCCGTGCGGATGTTCTGGATTTGAAGCCTC





AGGTAGTATGTATCTTAGCCGGTACAAACGATATTGCCCAAAACTGCATGTATATGTCGGTTGAG





AATATAGCCGGCAATATCTTTTCTATGGCGGAACTGGCCAAAGCCAATGGAATAAAAGTCGTTA





TCTGTTCCGTACTGCCTGCTACCCGTTATTCATGGCGTCCTACTGTTCAGAATCCTGCCGGTCAGA





TTATTCAATTAAACAAGCTACTGCAAAAGTATGCTCAAAAGAATAAGATTCCTTATGTCGATTTT





CATTCCATGATGAAAGACGAACAGAACGGACTGCCTCAAAAATACTCCAAAGATGGAGTACATC





CAACCAAAGAAGGCTTCAGCATGATGGAACCCATCATAAAAGAAGCAATTGACAAACTGCTGA





AATAAATTCAGCGCACGTAAACCTTTATAGAATGAAGAATATATATTATATCCTGATACTTTGTT





GTTTATGCTTATTCTCATGTGACTCACACCCTGATACTAAAAGCTCACTGCCTTTCGGCGTGAACC





TGGCCGGTGCGGAATTTTTCCATAAGAAAATGGACGGAGTGGGACAGTTTGGAATAGATTACCA





TTATCCAACCACCAGAGAGTTCGATTATTGGAAGTCAAAAGGCCTGACCTTAATACGTCTTCCCT





TCAAATGGGAACGTATTCAACGCGAACTCTACGGCGAATTGAATCGCGAAGAAATTGATTATAT





AAAGTATCTGCTGGATGAAGCCGGAGCACGCGATATGAAAATCCTGATAGATATGCACAACTAC





GGACGCCGGAAAGATAATGGCAAAGACCGTATCATAGGTGACAGTGTTTCTATCGATCATTTTG





CATCGGTCTGGAAGCAAATTGCCGGTGAGCTTAAAGAACATAGTGCCCTATACGGATATGGTCT





GATAAATGAGCCGCATGATATGTTAGATTCCGTGCCCTGGTTCAAGATTGCCCAGGCTGCAATTG





AGGAGAGCAGAAAAGTAGATTTAAAGACAGCGATTGTCGTAGGTGGTAATCATTGGAGTTCCGC





TGCCCGCTGGCAGGAGATTAGCGATGATTTGAAACACTTACATGATCCTTCGGACAATTTGATTT





TTGAAGGCCATTGCTATTTTGACGAGGATGGTTCGGGTATTTATCGGCGCTCCTATGATGAAGAG





AAGGCATATCCTACTATTGGGATTGATCGTACCCGCCCCTTCGTAGAGTGGTTGAAAACAAATAA





TCTACGGGGATTCATCGGAGAATACGGAGTTCCAGGAGATGACGAACGTTGGCTGGTATGTCTG





GATAATTTTCTGGATTACCTGAGTAAGGAAAATATAAACGGTACTTACTGGGCAGCCGGTGCAC





AATGGAATAAATATATATTATCAATCCATCCGGATGATAACTATCAAACAGATAAGATACAGTT





AGGAGTTCTGACAAAGTATTTAGAAACCAAGAATTAAATCAAACAGATTCAACAATGAAAACAT





TCATATTATCTTTTTTAATATATGCCGGCTGTTCATTACCCTTGACGGCGCAACAGATAAAACCC





GCTATTCCTTCTGATCCGGAAATAGAGGCAAAGATTAACAAGCTCTTACAGAAACTGACGCTTG





AGGAAAAGATCGGGCAAATGTGCGAGATCACAATTGATGTAATCACAGATTTCTCGGACAAAGA





AAACGGATTCAGATTGAGTGAGAGCATGCTCGATACCGTAATCGGTAAATATAAAGTAGGTTCT





ATTCTGAACACTCCCTTTAGTATAGCTCAGGAAAAAGAAGTCTGGGCAGACCTGATTACAAGAA





TCCAGAAAAAGTCAATGGAAGAAATAGGTATTCCCTGTATATATGGAGTCGATCAGATTCATGG





CACCACCTACACTCGCGGAGGAACTTTCTTTCCTCAAAGCATCAACATGGCTGCCGCCTTCAACC





GGCAACTCACGCGACGTGGAGCTGAAATCTCGGCTTATGAAACCAAAGCATGCTGTATTCCCTG





GAATTACGCTCCGGTTATGGATCTGGGACGTGATCCCCGCTGGCCGCGTATGTGGGAGAGCTAC





GGCGAAGACTGCTATGTAAATGCAGAAATGGGCGTACAGGCAGTGAAAGGTTTGCAGGGAGAA





AATCCGAACCATATCGGTGAGAATAATGTGGCTGCCTGCATCAAGCACTTCATGGGTTATGGCGT





ACCTGTTTCAGGAAAAGACCGCACTCCTTCCTCTATCTCCCGCACGGATTTACGCGAGAAGCATT





TTGCTCCTTTCCTGGCATCCATCCAGGCCGGTGCTTTATCCCTAATGGTTAATTCAGGCGTAGACA





ACGGCGTACCTTTTCATGCAAACAAAGAATTGCTGACCGGCTGGCTAAAGGAAGAACTGAACTG





GGACGGCATGATTGTAACAGACTGGGCCGATATCAATAACCTTTGCCTGCGTGATCATATTGCCG





AAACGAAGAAGGAGGCAATTCAAATAGCCATTAATGCCGGCATTGACATGTCTATGGTTCCCTA





TGAAGTAAGTTTCTGCACTTATCTGAAAGAATTGGTAGAAGAGGGTAAAGTATCGATGGCTCGT





ATTGACGACGCTGTATCTCGTGTACTCCGGTTGAAATATCGCCTGGGACTCTTTGATAATCCTTAT





TGGGACATCAGGAAATACGATCAATTTGCATCACCGGAATTCGCAAGTGTAGCATTGCAGGCAG





CGGAAGAGTCGGAAGTTCTACTGAAGAACGAAGACGATATTCTTCCTTTGGCGAAAGGAAAAAA





GATATTACTGACCGGTCCTAACGCAAACTCCATGCGTTGCCTGAATGGAGGATGGTCTTATTCCT





GGCAGGGAGACAAAGCGGATGAATGTGCACAAGCATACAATACAATCTACGAAGCTTTCTGTAA





CGAGTATGGAAAAGAATCTGTTATCTATGAACCGGGAGTCACTTATAAGACTTCTGCCGATGCTT





TATGGTGGGAAGAAAATACTCCCCGGATAGCCCAAGCCGTATCGGCAGCAGAAAAAGCTGATGT





TATTATAGCCTGTATAGGTGAGAATTCGTATTGCGAAACTCCGGGGAATCTGACAGACCTGAATT





TATCAACGAATCAGAAAGATTTAGTGAAAGCGCTGGCAGCAACAGGTAAGCCGATCATTTTGGT





TTTAAATGAAGGACGCCCACGAATTATCCATGATATCGTTCCTTTGGCGAAAGCCGTTGTACACA





TCATGTTACTCGGCAACTATGGAGCTGATGCATTGGTCAATCTGGTATCAGGGAAAGCGAACTTC





AGTGGAAAACTTCCTTTTACGTACCCGCATCTCATAAATTCATTGGCTACTTACGATTATAAACC





TTGTGAAAACATGGGGCAGATGGGTGGTAACTACAATTATGATGCTGTAATGGATGTGCAATGG





CCGTTTGGCTTCGGACTGAGTTATACCACTTACAGTTATAGTAATTTGAAAGTGAATCGTACTTC





TTTCGATGCTGATAATGAGTTAGTATTTACTGTGGACGTAACTAATACGGGAAAAATGGCAGGA





AAAGAAAGCGTACTATTGTACTCACGTGATTTAGTGGCAAGCATCACTCCTGATAATATCCGCCT





GCGTAACTTTGAGAAAGTGGATCTTCAACCCGGTGAAACAAAAACTGTTACCATGAAATTAAAG





GGAAGTGACTTGGCCTTTGTCGGTGCTGATGGAAAGTGGAGGCTGGAAAAAGGTGCTTTCCGTA





TGACATGCGGAACACAAAAGCTGGAGGTACATTGTACTACAACAAAGATATGGCAGACGCCTAA





TATTAGTAAATCCGGAATTTGAAAAGACCTGTACTTAAATAAGAAAATATAAAAGAAAGAGTAA





AGTTATCCTTTAGGGAGACTTTACTCTTTCTTTTATATAACCAG





SEQ ID NO: 33 - Mouse R. UCG13 GH5, truncated


GSAEINYNRSVPLEVKGNKIVKQGTDEMVVLRGVNVPSMDWGMAENLYESMTMVYDCW





GANLIRLPIHPKYWKDGSIWDGKNLTKEQYQKYIDDMVKAAQARGKYIILDCHRYVMPQQ





DDLDMLKELAVKYGNNSAVLFGLLNEPHDIKPTDIEKPTMEDQWEVWYNGGQIIVGGEEV





TAIGHQQLLNEIRALGANNICIAGGLSWAFDISGLADGYNGRENGYRLIDTAEGHGVMYDS





HAYPVKGTKSSWDTIIGPVRRVAPILIGEWGWDSSDNNISGGDCTSDIWMNQIMNWMDDTD





NQYDGIPLNWTAWNLHMKSSPRMISSWDYKTTAYNGTYIKNRLQSYGNLPETQDGVYSTD





FSTNDVFRGYKAPSGAASVSYSEANENIVVSHKPADWYATLNFPFDWDLNGIQTITMDISAD





TAETLNIGLYGSDMEEWTAPVKVDSTVKNITLSIDQLVRQGNQQTDGILNGAVSGIYIGSSTT





ETANNTKVVTMADEDNTAEYKINNYENGKVSVRKRTDAEDSASTVIVAFYDKNSVLTGIST





ANIRADEKGDEIIKAVNEPASYSCAEVFMWDSLNGMVPRCNPISNKVNITIDNIKIVKLAEPI





YTATEYPHTDIGAESYIDVDNTDFASQSTTKGAASTSYFTCENAEVVGADGENTQAKYITYD





RREGLYGGTVQFDLETVPSMDTKYFTISLKGSGTAQTINVNLGSEVSYNIALAEGDTDWHQ





YIFDISYGAQYPEDIAFVKLASNTKIESYFYADDFGFSKTKPERVIPNPEKTFIYDFATYNRNT





AKYEAVISTMPGSNDDEIRAEKVDGGLDFETQALEITYSRNGNIPSKTMVVYSPSDFFKGNS





NDDERTANRATLKADMEYMTDLVFYGKSTSDKNEKINVGVIDAANSMMTYTDTKEFTLTS





QWQQFRVPFDEFKVLDGGSELDCSRVRGFVFSSAENSGEGSFMIDNITHTSVADIEWAE





SEQ ID NO: 34 - B salyersiae CE7


MRHRVILFICVLQTLFAYAVGAETHFMLTLNEQWKFSTGDSSAWATTEFDDNQWGTISSRQ





YWEEQGYDGYDGYGWYRQHFMISEDWKPIVTNAGGLYIRYEFADDVDEVFVNGVSVGRM





GEFPPEYKVIYGGMRKYKISPGLLRFGEENLIAIRVYDNGGAGGLKTENILLQSITPMDDLML





DIRCDDSDWVFENTETIDFRVRPKQPLAAGGEFNLVCSVTTDTYLPVDSFVYRVKGDFEQPV





SFVPPAPGFYRITLYGEQQGVKSDFLKFNMGYCPEQIISPVDVEPDFDQFWETTLKELSEVVP





DYRMTLLEEKSQGAKNIYRVEMYSLGNVRIEGYYAVPKQKGKFPSVISFLGYGSGGGFPRP





DNLPGFCEFILSTRGQGIQLPVNTYGKWIVHGLEDKSQYYYRGAFMDLVRGIDFLCSRPEVD





TEKIFAEGGSQGGAFTLAACALDRRICAAAPYIPFLSDFEDYFKIAPWPRSVFEEYLRSHEESS





WDEIYRLLSYFDSKNLAPRITCPIIMGVGLQDNICPPHINFSGYNQVKSPKRYYIYYDKEHTV





GKSWWTIRNNFFRSFCN





SEQ ID NO: 35 - B salyersiae GH3 A


MKKLFKLFAFTCLAMSATAQNKTPIYLDETKPIEQRVEDALQRMTLEEKIKLCHAQSKFSSH





GVPRLGIPELWMTDGPHGIREEVLWDEWKGAAWTSDSCIAFPALTCLAATWDLDMSALYG





KSIGEEARFRGKDVLLGPGVNIYRTPLNGRNFEYMGEDPYLAAKMVVPYIKGVQQNGVAA





CVKHFALNNQEMYRGHINVEVSDRALHEIYLPAFKAAVLEGGTWSIMGAYNQYKGQHCCH





NQYLLNDILKKDWNFDGTVISDWGGVHDTYQSAYYGLDLEMGTWTDGLSWGKTNAYNN





YYMALPLLEKIKNGEIEENTVNDKVRRLLRMMFRTSMNTQKPWGSFGTEEHALAGRTIAEN





GIVLLKNENGLLPVDLSQIKKIAVIGENATKVMTLGGGSSSLKVKYEVSPLEGLKKRVGNAV





ELVYAPGYASPLTDKRDPRYIVLEGYRLPDAEKLTKEALEAAKNADIVLFFGGLNKNEHQD





SEGTDRLNYHLPYGQDELIAQLSKVNKNIAVILISGNAVAMPWIKEVPSVLEAWFSGTESGN





AIASVLVGDVNPSGKLPMTFAVRLEDYPAHTVGEYPGDSINVKYNEGIFVGYRWTDKHKIR





SLFPFGHGLSYTTFQYGKALLSSSEMNEKEILTVTIPIKNTGKVKGKEIVQLYIGDEKSSLERP





VKELKGFQKIELNPGEEKVVEFNITSNDLKFYDEAIQDWKAEQGKFNIFIGSSSTDIRAKTKF





NLK





SEQ ID NO: 36 - B salyersiae GH3 B


MGVSVFAADDGGALYLDAGRPVEQRVKDLMSRMTLEEKVGQMCQWVGLEHMRTASQDL





TVDELSNNTARGFYPGITEEDVRQMTIDGKVGSFLHVLTVKEANQLQELAMKSRLKIPLIIGI





DAIHGNAQVVGTTAYPTSIGQASMFDVGLVEEICRQTALEMRATGSQWTFNPNVEVARDPR





WGRVGETFGEDPYLVSLLGVASVRGYQGDGFGKAENVLACAKHFIGGSQPINGTNGSPTDI





SERTLREVFLPPFKATVDAGVYSFMTAHNELNGIPCHANPWLMEDILRKEWGFDGFIVSDW





MDIEHIHDLHRTAVDNKDAFYQSVDAGMDMHMHGPEFYEKVIELVKEGKLTEARIDESCR





KILAAKFRLGLFEKSFTDEKAAKSVLFNEKHQATALEAARKSIVLLTNDGILPLDEAKYKNV





FVTGMNADNQTILGDWALTQPDENVITVLEGLKLVSPDTKFSFVDLGWNIREMDKNKVEQ





AAKQAAKADLAIVAVGEYSLRTNWYDKTCGEDCDRSDINLAGLQQELVESILATGVPTVV





VLVNGRQLGVEWIAGHANALVEAWEPGSLGGQAIAEILYGKVNPSGKLPVTVPRHVGQIQ





MIYNHKPSMYFHPYAIGESTPLFYFGYGLSYTEYAYSDLTVSSAQMSGDGSVEVSVKVTNT





GTTDGEEIVQLYIRDLYSSATRPVKELKDFRRVPLRVGETKTVSFILPAGKLAFYDKKMDYT





VEPGDYEIMVGASSRDEDLMKRIVNVK





SEQ ID NO: 37 - B salyersiae GH5_5


MEKKTKRIAFVLATMLCGWQMMLAQPVSPAPTPTRAANDVKAMFSDAYPEKFGKFQIDY





DDWNSDKFLTTKTIVTPFGAADEVLKIEGLSTGSLQHNAQIALGTCNLSDMEYLHMDVYSP





SENGIGEFSFYLVSGWSKTVSCNVWYNFDTKQEYDQWISIDIPMSTFKNGGLNLAEINVLRI





ARGKQGAPGTIVYVDNVYAYGKAVEPESDVKIVANGNANLTTDVPLISAPTPKVAAANVFN





FFSDHYGDGKFDYAQSDYGDQKTVKSLITINDTEDQVFKIDNIVNGSKANVSIGSPNLSGVD





MLHLDIFSPGNDQGIGEFDFALTDFGGNGNDAGIWLNITDKGWHGQWISIDIPLSKWTGAAN





MIRFRRGGKGSTGKLLYVDNVYAYKSESDDPKPVPDPTTVPVLTKDKSDVISIFCEQYEEPG





YQDEFGIVSAGNWGQNAKQKDEFVEIVAGNQTLKLTSWDLFPFKVHKNSDVMDLSQMDY





LHLSIYQNGALDENNKPVSVCIWINDKDNKVAQAPLLEVKQGEWTSVSFGMDYFKNKIDLS





RVYVIRLKVGGYPTQDIYVDNIFGYKGDPIRPGQVTEPYVDECDQKIQDSTPGTLPPMEQAY





LGVNLASASGGSNPGTFGHDYLYPKFEDLYYFKAKGIRLLRIPFRAPRLQHEVGGELDYDA





GNTSDIKALAAVVKEAERLGMWVMLDMHDYCERNIDGVLYEYGVAGRKVWDSAKNTWG





DWEAMDEVVLTKEHFADLWKKIATEFKDYTNIWGYDLMNEPKGININTLFDNYQAAIHAIR





EVDTKAQIVIEGKNYANAAGWEGSSDILKDLVDPVNKIVYQAHTYFDKNNTGTYKNSYDQ





EIGGNVEVYKQRIDPFIAWLEKNNKKGMLGEYGVPYNGHAQGDERYMDLIDDVFAYLKEK





QLTSTYWCGGSMYDAYTLTVQPAKDYCTEKSTMKVMEKYIKDFDTSIPSSLVETNADGNAI





VLYPNPVKDNLKITSESGIEQVIVFNMIGQKVSERNEKGTNIELNLEALGKGTYLVTVRLEDG





NVVNRKIVKM





SEQ ID NO: 38 - B salyersiae GH88


MSCVLVCAGVLLLLSGLRETDVVGTKKQLSYCDTQIKKTLDAIEGSGLMPRCIDTDATDWY





KIDIYDWTSGFWPGILWYDYENTQNEEIRKAAIHYTESLVPLLDPEHPGDHDLGFQFYCSFG





NAYRLTKDDKYKQVLLKGADKLAGFYDPRVGTILSWPGMVTEMNWPHNTIMDNMMNLE





LLFWAAKNGGNREYYGMAVSHAKVTKENQFRPDGSCYHVAVYDTIDGRFLKGVTNQGYS





DSSLWARGQAWAIYGYTLVYRETGDKEYLRFAEKITDIYLKRLPEDYVPYWDFDDPAIPDA





PRDASAAAIVASGLLELVQLEDNTEKAEEYRDAAVNMLLSLSSDAYQSGIKKPSFLLHCTGN





LPGGYEIDASINYADYYYIEALTRYKKMQAGRDIVEKYPQATQKQVTIAM





SEQ ID NO: 39 - B salyersiae GH92_GH5


MKSHPLLILLIIIPTCLFAGNPDKVSLVDMFMGVKNSSNCVIGPQLPHGSVNPAPQTPNGGHN





GYDENDVIRGFGQLHVSGIGWGRYGQVFISPQVGFKPGETEHDSPKSDEVATPYYYKVNLD





RYKIKTEITPTHHSVYYRFTYPKSGNKNILLDMKHNIPQHIVPIVKGTFLGGNIEYDKASGLLT





GWGEYAGGFGSAAPYKVFFAMRPDVKLKEVKVTDKGTKALYARLSLPEEAETVHLGIGVS





LRSVENACKYLEQEIGARSFDEVKRVAKSAWEDVFATIDVKGGTQEEQRLFYTAMYHSFV





MPRDRTGDNPRWTSGQPHLDDHFCVWDTWRTKYPLMMLVNESFVAKTVNSFIDRFAHDG





ECTPTFTSSLEWEMKQGGDDVDNIIADAFVKNLKGFDRQKAYELVKWNAFHARDSLYLKK





GWIPETGARMSCSYTMEYAYNDDCGARIARIMKDDETADYLENRSQQWVNLFNPNLESHG





FNGFVGPRKENGEWIGIDPALRYGPWVEYFYEGNSWVYTLFAPHQFSRLIRLCGGKEAMAD





RLTYGFEKELIELDNEPGFLSPFIFSHCDRPGQTAKYVDFIRKNHFSRATGYPENEDSGAMGA





WYIFTSIGFFPNAGQDFYYLLPPAFSEVTLTMENGKKIDIKTVKSTPEVNYIESVSLNGKLLDR





TWIRHAEIAEGATIVYHLTDKPGQWSISPFEASRREPQPFGVNLAGAEFFHKKMEGVGRFNK





DYHYPTTDELDYWKSKGLTLIRLPFKWERIQRKLYGELNREEMDYIKFLLAEADKRDMQILI





DMHNYGRRKDDGKDRIIGDSLSIDHFASAWGSISRELKDCKGLYGYGLINEPHDMLASTPW





VGIAQAAIDSIRKNDAKNAIVVGGNHWSSAERWKLVSDDLKNLRDPSRNLIFEAHCYFDED





GSGIYRRSYEEEKAHPYIGVERMRPFVEWLKENDFRGLVGEYGVPADDERWLECLDNFLAY





LSAEGVNGTYWAAGARWNRYILSVHPENDYRKDKPQMKVLMKYLRTQ





SEQ ID NO: 40 - B salyersiae HTCS


MKHTILVLLGLALSFFPARAYHFRSYQVEDGLSHNSVWAVMQDSKGFMWFGTNDGLNRF





DGKKIKVYRKIQGDSLSIGNNFIHCLKEDSRGRFLIGTKQGLYLFDDKLEKFRHIDLDKNIKD





DVSINAIMEDPSGNIWLACHGYGLYVLTPELTTKKHYLSGSDPYSLPSNYIWSIVQDYYGNI





WLGTVGKGLVHFDPKEEKFTQMTQAKELGIDDPVIYSLYCDIDNNIWIGTATSGLIRYTPRS





QKATHYINHVFNIKSIIEYSDHELIMGSDKGLVKFDRTLESFDLINDDTSFDNMTDKSIFSIAR





DKEGSFWIGTYFGGVNYYSPAINRFQYCYNSPHNSSKKNIISGFAENENGDIWIGTHNDGLY





LFNPKSLSFKKPYDIGYHDVQSILSDQDKLYASLYGKGIHILNIKNGQVSASANDIGINHTINS





IAKTSKGQILFTSEGGVISMDASGTLKTLDYLTNTPVKDIAEDYDGSIWFATHSKGLIRLTSD





NRWEVFVNNPDNPKSLPGNNVNCVFQDSKFHIWAGTEGEGLVRFNAKEQNFEPILNDQSGL





PSNIIYSILDDSDGNLWVSTGGGLVKISSDLKNIKTFAYIGDIQRIQYNLNCALRASDNRLYFG





GTNGFITFNPKEITDNPNKPVVMVTGFQIASKEITLSESSPLKETISATKEITLRHDQSTFSFDF





VALSYLSPEQNRYAYILEGFDKEWHYTSDNKAMYMNIPPGTYVFRVKGTNNDGVWSDETA





DITVKIKPPFWLSNLMIGLYIVLAIGIILYFIRRYHRFIERKNQEKIFKYQTAKEKEMYESKINF





FTNIAHEIRTPLSLIAAPLEKIILSGDGNEQTRNNLGMIERNANRLLELINQLLDFRKIEEDMFH





FKFKRQNVVKIVEKVYKQYYQTAKFNKLEISLEAEKNDIECNVDSEAIYKIVSNLIANAIKYA





KSQILITVKERSGNLEIKIKDDGTGIEKQYMEKIFEPFFQIQDKNNAVRTGSGLGLSLSQSLAM





KHNGKISIESEYGKNCNFTLTIPIADGTEEEVQETEAAIPEKSEMPEQSVVEAGTRIIIVEDNTD





MRTFLCESLNDNYTVFEAENGVQALEMVEKENIDIIISDIMMPEMDGLELCNRLKSDPAYSH





LPLVLLSAKTDTSTKIEGLNQGADVYMEKPFSIEQLKAQISSIIENRNNLRKNFIKSPLQYFKQ





NTENNESADFVKKLNTIILENMSDEDFSIDSLSSQFAISRSNLHKKIKNITGMTPNDYIKLIRLN





ESARMLSTGKYKINEVCFLVGFNTPSYFSKCFFEQFKKLPKDFIQITNE





SEQ ID NO: 41 - B salyersiae NZ_KB905466


MKKQFSTLIALLIVGAAPLLGQETDPLNDPTNIDADLYLHAGFSQDSIRPDYSHTYYDNTNH





KLVKGEDGIYSITVPLKKEQIVNKNMEVGIYTYAYSVIYGGKVNGSGNDAVKGSVGPVIAD





EPRLFELAEDRDVTFYAKKLNTGTADAPWYRTMFICDAQPLYLDGTELPLPGEDGVTRYVV





DRGETSRRWEYKLSPIGRWSKTQDFMEDVIPAKWKSNEAYAFLPNGGWWLGGRFLLAYD





YKKLSLEVGKLVDELQTPLFTVNGESIPENLGIVDELLLNGSVITFLKGYYANGGKDSYDPA





FNTSIATVKLCWQIDELPAASFPLTNGEVVRDDNYNKTTEWTVSEADLFEGTTLPAGIHTLK





VWYESEYLGDVLTSEVQSTSFEIEEIVVIPLENKGTAVDLILEGDWNPETFRTIIEEQAVRITTI





DLTGVAGLTELPEMEGLNPNCLVYVNPDVVIAEGVDNVVVFDNEEGRAANILLTEGSDENN





VRLFTADRISYSHNFTADVWSTICLPFSADKGDVTVEEFTGADGEKVIFTGTSAIEANVPYLA





KTSNSEVKTFTATDVQMSVTAEPAPVVPENGYAFHAGYRAVEGDAVVGLHLMNDVGTAF





VKVADGNPEAAGVSAFHAYMQATVDELLTIVHGDDNPTGLGSTEDTGRLTIISHNGSVEIKT





GKAQMIGLYALDGRLVKMVELSQGSNFVNGLDKGIYIMDCQKVVVK





SEQ ID NO: 42 - B salyersiae putative PL


MKKIITIAFLSFLYFVYGYASNHSMHPLKQIDYVLKQVKAQQEPYYSAYQQLIHDADSILKV





SHHALVDFAVPGFYDKPEEHRANSLALQRDAYAAYCSALAYTLSGQQEYGEKACYFLNAW





ASTNEKYSEHDGVLVMTYSGSAFLMAAELMADDPLWSNKEKKDFRKWVKRIYQHAANTI





RVHQNNWADWGRFGSLLAASFLNEKKEVAENVRLIKSDLFHKIATDGSMPEETRRGGNGI





WYTYFSLAPMTGACWLVYNLTGENLFALEQDGTSIKKALDYMAYYNKHPKEWKWDKNP





NTGKNEVWPENLLEAMANLYNDNSYVEYVKGKRPIIYRNHHFCWTFPTLMPTSFENYQ





SEQ ID NO: 43 - B salyersiae SusC


MISKDENIKRRIIGVLFFLCALSPALWAQSRIIKGEVLDPNGEPLIGVGVMIKNTTAGTITDVD





GRYSIQVPDNNAVLSFSYVGYKRKEVKVGSQSVINISLEEESVLMDQVVIVGYGSQKKVNLT





GAVAAISVDESLAGRSVANVSSALQGLMPGLSVSQSSGMAGNNSAKLLIRGLGTINSADPLI





VVDDMPDADINRLNMNDIESITVLKDATASSVYGSRAANGVILVKTKSGKGLEKTQITFSGS





YGWEKPTNTYDFISNYPRALTLQQISSSTNPGKNGENQNFKDGTIDQWLALGMIDDKRYPN





TDWWDYIMRTGSIQNYNVSATGGSEKSNFYASVGYMKQEGLQINNDYDRYNARFNFDYK





VMKNVNTGFRFDGNWSNFTYALDNGFTSDSNLDMQSAIAGIYPYDPVLDVYGGVMAYGE





DPQAFNPLSFFTNQLKKKDRQELNASFYLDWEPVKGLVARVDYGLKYYNQFYKEADIPNR





SYNFQTNSYGIREYVTENAGVTNQTSTGYKTLLNARLNYHTVFATHHDLNAMFVYSEEYW





HDRYQMSYRQDRIHPSLSEIDAALSGTQSTSGNSSAEGLRSYIGRINYSAYGKYLLELNFRVD





GSSKFQPGHQYGFFPSAALGWRFSEESFVKPYIGKWLASGKLRASYGKLGNNSGIGRYQQQ





EVLYQNNYMLDGSIAKGFVYSKMLNPDLTWESTGVFNLGLDLMFFDGKLAAEFDYYDRLT





TGMLQKSQMSILLTGAYEAPMANLGTLRNRGFEANLTWRDRIADFTYSANFNISYNRTNLE





KWGEFLDKGYVYIDMPYHFVYSQPDRGLAQTWTDSYNATPQGVAPGDVIRLDTNGDGRID





GNDKVAYTNFQRDMPTTNFALNLQMGWKGIDVSLLFQGSAGRKDFWNNKYTEINLPDKR





YTSNWDQWNKPWSWENRGGEWPRLGGLVTNKTETDFWLQNMTYLRMKNLMIGYTFPKK





WTRKCFIENLRIYGTAENLLTITGYKGLDPEKAANSQDLYPITKSYSIGVNLSF





SEQ ID NO: 44 - B salyersiae SusD


MKRVYIKYIGLIAGMMMLFSSCADLLNQEPTVDLPATNYWKTESDAESALNGLVSDIRWLF





NRDYYLDGMGEFVRVRGNSFLSDKGRDGRAYRGLWEINPVGYGGGWSEMYRYCYGGINR





VNYVIDNVEKMIANASSEKTIKNLEGIIGECKLMRALVYFRLIMMWGDVPYIDWRVYDNSE





VENLPRTPLAEVKDHILDDLLDAFKKLPEKATVEGRFSQPAALALRGKVLLYWASWNHYG





WPELDTFTPSEEEARKAYKAAAEDFRTVIDDYGLTLFRNGEPGECDEPGKADKLPNYYDLF





LPTANGDAEFVLAFNHGGTNTGQGDQLMRDLAGRSVENSQCWVSPRFEIADKYQSTITGDF





CVPLVKLNPSSVPDARTRPNSAVNPESYKDRDYRMKASIMWDYEICQGLMSKKVTGWVPFI





YKMWGSEVVINGETYMSYNTDGTNSGYVFRKFVRNYPGEERADGDFNWPVIRLADVFLM





YAEADNAVNGPQPYAIELVNRVRHRGNLPVLASSKTSTPEAFFEAIKQERIVELLGEGQRAF





DTRRWREIETVWCEPGGRGVKMYDTYGAQVAEFYVNQNNLAYERCYIFQIPESERNRNPN





LTQNKPYR





SEQ ID NO: 45 - B salyersiae


TTATTTTAGATTAAACTTGGTTTTTGCGCGTATGTCAGTAGATGAGCTGCCTATGAAGAT





ATTGAATTTGCCTTGTTCGGCTTTCCAGTCCTGTATGGCTTCATCGTAGAATTTCAGGTC





ATTGGAGGTGATGTTGAACTCTACCACCTTTTCTTCGCCCGGATTCAGTTCTATTTTTTGG





AACCCTTTCAACTCTTTGACAGGACGTTCCAATGAGCTTTTTTCATCACCGATATAGAGT





TGCACAATCTCTTTTCCTTTTACTTTTCCGGTGTTTTTTATAGGGATAGTAACGGTCAGTA





TCTCCTTTTCGTTCATTTCGGAGGATGAAAGAAGGGCTTTTCCATATTGGAAAGTGGTGT





AGCTTAAACCGTGTCCGAACGGGAACAAGCTCCGGATTTTATGTTTGTCCGTCCAACGG





TAGCCTACGAATATGCCTTCGTTGTATTTCACGTTGATGCTGTCACCGGGATACTCTCCG





ACGGTATGTGCCGGATAGTCCTCCAGGCGGACAGCGAAAGTCATCGGTAACTTGCCGGA





AGGGTTAACATCTCCAACCAATACGGAAGCAATGGCATTACCGGATTCCGTACCGCTGA





ACCAGGCTTCCAAAACAGACGGCACCTCTTTGATCCACGGCATTGCGACTGCATTTCCC





GAAATAAGAATAACGGCTATGTTCTTATTTACTTTGCTGAGTTGGGCTATCAGTTCGTCC





TGTCCGTAAGGCAAATGATAGTTGAGCCGGTCCGTGCCTTCGCTGTCCTGGTGTTCGTTC





TTATTCAGACCTCCGAAGAACAGTACAATATCCGCATTTTTGGCAGCTTCAAGAGCCTCT





TTCGTTAGTTTCTCCGCATCGGGAAGCCGGTATCCTTCGAGAACGATGTACCGGGGATCT





CTCTTATCGGTGAGCGGGCTTGCATATCCGGGAGCGTAAACCAGTTCGACGGCATTGCC





TACCCGTTTCTTCAGCCCTTCGAGCGGAGAAACTTCGTATTTCACTTTCAATGAAGAAGA





GCCACCTCCCAATGTCATGACTTTCGTGGCATTTTCGCCGATAACGGCTATTTTCTTTATT





TGGGAAAGATCGACAGGCAGCAATCCGTTTTCGTTCTTGAGTAGCACGATGCCGTTTTC





GGCAATGGTGCGTCCTGCCAGTGCATGTTCTTCCGTGCCGAATGATCCCCATGGCTTTTG





AGTGTTCATGCTTGTCCGGAACATCATGCGAAGCAGCCTGCGCACTTTGTCATTCACGGT





GTTTTCTTCGATTTCTCCGTTTTTGATCTTTTCCAGTAGCGGCAATGCCATGTAGTAGTTG





TTGTAGGCATTGGTTTTTCCCCAGCTCAATCCGTCTGTCCATGTTCCCATTTCCAGATCGA





GTCCGTAATAGGCCGATTGGTAAGTGTCGTGTACACCTCCCCAGTCGGAAATCACAGTT





CCGTCGAAATTCCAGTCTTTTTTCAGTATATCGTTCAGCAAATACTGGTTGTGGCAGCAA





TGTTGGCCTTTGTATTGGTTGTAAGCCCCCATAATGGACCATGTTCCCCCTTCCAGTACG





GCCGCTTTGAAAGCAGGCAGGTAAATTTCGTGCAGGGCGCGGTCACTGACCTCCACATT





GATGTGTCCGCGATACATTTCCTGATTGTTCAATGCAAAATGCTTGACACAGGCGGCCA





CCCCGTTTTGTTGTACCCCTTTGATGTATGGCACTACCATTTTAGCGGCCAGATAAGGAT





CTTCTCCCATGTACTCAAAGTTTCGTCCGTTGAGTGGTGTGCGGTATATGTTGACACCCG





GACCCAGCAGAACATCTTTCCCCCGGAAGCGGGCTTCTTCGCCTATCGACTTGCCATAC





AGGGCCGACATATCAAGATCCCATGTGGCGGCAAGGCAGGTCAGTGCAGGGAAAGCGA





TGCAGGAATCACTGGTCCAGGCAGCTCCTTTCCATTCATCCCACAGCACCTCTTCCCGGA





TACCGTGTGGTCCGTCGGTCATCCAAAGTTCCGGTATGCCGAGACGGGGCACGCCATGG





GAACTGAATTTAGATTGTGCATGGCACAATTTTATTTTTTCTTCCAGAGTCATTCGTTGA





AGTGCATCTTCCACGCGTTGCTCTATCGGTTTTGTTTCGTCCAGATAGATCGGAGTTTTG





TTTTGCGCCGTGGCAGACATTGCCAGGCATGTGAATGCGAATAATTTAAAAAGCTTTTTC





ATGTTGTAAGATAATCTTTATTGATAATTTTCAAAAGAAGTGGGCATCAGCGTGGGGAA





TGTCCAGCAGAAGTGATGGTTGCGGTAAATGATTGGACGCTTCCCTTTTACATATTCCAC





ATAAGAGTTGTCATTGTATAGGTTTGCCATTGCTTCGAGAAGGTTCTCGGGCCAGACTTC





ATTTTTCCCGGTATTCGGGTTCTTGTCCCATTTCCATTCTTTGGGATGTTTATTATAGTAG





GCCATATAGTCCAGCGCTTTTTTTATGGAGGTTCCGTCTTGTTCCAGAGCGAACAGATTC





TCTCCGGTGAGATTGTACACTAGCCAGCACGCTCCGGTCATCGGTGCCAGTGAGAAATA





GGTGTACCATATGCCGTTGCCGCCTCTCCGGGTCTCTTCGGGCATGCTGCCGTCTGTTGC





TATTTTATGGAATAAGTCCGATTTTATCAGGCGCACGTTTTCCGCAACTTCTTTTTTCTCA





TTTAGGAATGAAGCCGCCAGCAGCGAGCCGAAACGTCCCCAATCCGCCCAGTTGTTCTG





ATGAACCCGGATGGTATTGGCGGCGTGCTGGTAGATGCGTTTCACCCATTTCCGGAAAT





CCTTTTTTTCTTTATTGCTCCAAAGCGGATCATCTGCCATCAGTTCCGCTGCCATCAGGA





ATGCTGAACCGGAATAGGTCATCACCAACACTCCGTCGTGTTCCGAATATTTCTCGTTGG





TAGATGCCCATGCATTCAGGAAATAGCAGGCTTTTTCTCCATATTCCTGTTGGCCGGATA





GGGTGTAGGCCAATGCCGAACAGTAGGCGGCATATGCATCCCGCTGCAATGCCAGGGA





GTTGGCACGGTGTTCCTCGGGTTTATCATAGAATCCCGGTACGGCAAAATCTACCAGTG





CATGGTGCGACACTTTCAAGATGGAGTCGGCATCGTGAATCAATTGCTGATAGGCAGAA





TAATAGGGCTCTTGCTGTGCCTTGACCTGTTTTAGTACATAGTCGATTTGCTTTAACGGA





TGCATGCTGTGATTGCTGGCGTATCCGTAGACGAAATATAAAAAAGAGAGAAATGCTAT





CGTTATAATTTTCTTCATTTTTAGGATTTATTTATTCGTTTGTTATTTGTATAAAATCTTTA





GGAAGTTTCTTGAACTGTTCGAAGAAACATTTTGAGAAATAAGACGGTGTGTTGAAACC





TACCAGGAAGCATACTTCGTTTATTTTGTATTTGCCGGTGGACAACATCCGTGCGCTTTC





ATTCAGCCTGATCAGCTTGATGTAGTCGTTGGGGGTCATTCCTGTGATGTTTTTAATCTTT





TTGTGCAGGTTTGAACGGCTTATGGCAAACTGGCTGGAAAGGCTGTCGATGGAGAAGTC





CTCATCCGACATGTTTTCCAATATGATGGTATTCAGCTTCTTCACGAAATCTGCGCTTTC





GTTGTTTTCCGTGTTCTGTTTGAAATACTGCAACGGAGATTTGATGAAGTTCTTTCGCAG





GTTGTTCCTGTTTTCAATAATGCTGCTTATTTGCGCTTTTAGTTGTTCGATGGAGAATGGT





TTTTCCATGTAAACGTCGGCTCCCTGGTTCAGACCCTCTATTTTAGTGGAAGTATCCGTT





TTGGCAGATAGCAACACCAAAGGCAGGTGAGAGTAGGCGGGATCGCTTTTCAGCCGGTT





ACATAATTCCAACCCGTCCATTTCCGGCATCATAATATCGGATATGATGATGTCTATGTT





CTCTTTTTCCACCATTTCCAGTGCCTGTACTCCGTTCTCTGCTTCAAAGACGGTGTAGTTG





TCGTTTAGGCTTTCGCAAAGGAAAGTCCGCATATCCGTGTTGTCTTCCACGATGATGATC





CTCGTACCCGCTTCCACGACCGATTGTTCGGGCATTTCACTCTTTTCGGGTATGGCAGCT





TCCGTTTCCTGTACCTCTTCCTCTGTTCCGTCGGCAATGGGGATTGTCAGTGTAAAATTA





CAGTTCTTTCCGTATTCCGATTCGATGGAAATTTTTCCGTTGTGTTTCATGGCCAGCGATT





GCGATAGCGATAACCCCAGGCCGGAGCCTGTCCGCACAGCGTTGTTCTTATCCTGTATCT





GGAAGAAAGGTTCGAATATTTTTTCCATATACTGCTTTTCAATGCCGGTACCATCGTCTT





TAATCTTTATTTCCAGGTTTCCGCTTCTCTCTTTTACGGTTATCAGGATTTGGCTTTTGGC





ATATTTAATGGCGTTGGCAATCAGGTTGCTGACAATCTTATAGATGGCTTCGGAGTCGA





CATTGCATTCTATATCGTTCTTTTCCGCTTCCAAAGAGATTTCCAGTTTGTTGAATTTGGC





CGTCTGGTAATATTGCTTATACACTTTTTCCACAATCTTGACGACATTCTGCCGCTTGAA





TTTGAAGTGGAACATGTCCTCTTCTATTTTACGGAAGTCCAGCAGTTGGTTGATCAGTTC





GAGCAGCCTGTTGGCATTGCGTTCTATCATCCCCAGGTTGTTCCTGGTCTGTTCGTTTCC





GTCTCCGGACAAAATTATTTTTTCCAATGGTGCGGCAATCAGCGAGAGCGGTGTACGTA





TTTCATGGGCAATGTTCGTGAAGAAATTGATTTTCGATTCGTACATCTCTTTTTCTTTGGC





CGTCTGGTATTTGAATATCTTTTCCTGGTTTTTACGTTCGATAAAGCGGTGGTATCTCCG





GATAAAATAAAGGATAATGCCGATGGCAAGGACAATATACAGGCCGATCATGAGGTTG





GACAACCAGAACGGGGGCTTTATTTTCACCGTAATGTCTGCCGTTTCATCGCTCCATACT





CCATCATTATTCGTGCCTTTCACACGGAATACATAAGTTCCGGGCGGGATGTTCATGTAC





ATGGCCTTATTGTCGGAGGTGTAATGCCACTCTTTGTCGAAGCCTTCGAGGATGTAGGC





ATATCTGTTTTGTTCCGGCGAAAGATAGCTCAATGCTACAAAGTCGAAGCTGAAAGTGG





ACTGGTCGTGCCGCAACGTTATCTCTTTGGTTGCGCTGATGGTCTCTTTTAGTGGCGACG





ATTCGGAAAGTGTTATCTCTTTGCTGGCAATCTGGAAACCTGTGACCATGACGACCGGTT





TGTTGGGGTTATCTGTAATCTCTTTCGGATTGAATGTGATGAATCCGTTGGTTCCGCCAA





AGTAAAGTCGGTTGTCGGAAGCTCTCAATGCGCAGTTCAGATTGTATTGTATCCGTTGTA





TATCGCCGATATAGGCAAATGTTTTAATGTTTTTCAAGTCGGAGGATATTTTAACCAACC





CTCCGCCTGTGCTTACCCACAGATTGCCGTCCGAATCGTCCAGTATGGAATAGATGATGT





TGGAAGGTAGGCCCGACTGGTCGTTTAAGATTGGTTCGAAGTTTTGCTCTTTGGCGTTGA





ACCGTACCAGCCCTTCTCCTTCCGTCCCTGCCCAGATGTGGAATTTGGAGTCTTGAAATA





CGCAGTTGACATTATTTCCCGGCAAGGATTTCGGATTATCGGGATTATTTACGAATACTT





CCCATCTATTGTCTGAGGTGAGCCGTATCAGCCCTTTGGAATGGGTGGCAAACCAAATG





GAGCCGTCATAATCTTCTGCAATGTCTTTTACCGGGGTGTTGGTCAGGTAATCGAGGGTC





TTGAGCGTGCCGGATGCATCCATCGAGATCACTCCGCCTTCGGAGGTGAAGAGTATCTG





CCCTTTGGAGGTTTTGGCTATGGAGTTGATGGTATGATTAATTCCTATGTCGTTGGCGGA





GGCGCTGACCTGTCCGTTCTTTATGTTCAGGATATGGATGCCTTTGCCGTAAAGGCTTGC





ATAAAGTTTGTCCTGGTCCGACAGAATGCTCTGTACATCGTGGTAACCGATGTCGTATG





GCTTCTTGAAGCTCAGGCTCTTCGGATTGAAAAGGTATAGTCCGTCGTTGTGCGTTCCGA





TCCATATGTCCCCATTTTCATTCTCGGCGAATCCGCTGATGATATTTTTTTTGGAAGAGTT





GTGTGGAGAGTTATAGCAATACTGGAAACGGTTGATGGCAGGCGAATAATAATTTACGC





CCCCAAAGTAAGTTCCGATCCAGAAAGACCCTTCCTTGTCACGTGCAATGGAGAAAATG





GATTTATCCGTCATGTTGTCAAAAGAAGTATCGTCGTTGATCAGGTCGAAACTCTCCAGC





GTACGGTCGAATTTCACCAGTCCTTTGTCCGATCCCATGATGAGCTCGTGGTCGGAATAT





TCGATGATGGATTTGATGTTGAATACATGATTTATATAATGTGTGGCTTTCTGTGATCTG





GGGGTATAGCGTATCAATCCGCTTGTGGCCGTCCCTATCCAGATGTTATTGTCTATGTCG





CAATACAGGCTGTAAATCACGGGATCGTCGATGCCCAACTCTTTAGCCTGTGTCATTTGC





GTGAACTTTTCCTCTTTAGGATCAAAGTGTACAAGGCCTTTGCCCACTGTGCCCAACCAT





ATATTTCCGTAATAATCCTGAACGATGCTCCAGATGTAATTGGAGGGCAACGAATAGGG





ATCGCTACCGGATAGATAATGTTTCTTGGTCGTTAATTCGGGAGTAAGGACATACAGGC





CATATCCGTGGCAGGCCAGCCATATATTTCCGGAAGGGTCTTCCATAATAGCATTGATG





CTCACGTCGTCTTTTATGTTTTTGTCCAGGTCGATGTGTCTGAACTTCTCTAACTTATCGT





CGAAAAGATAGAGCCCTTGTTTGGTTCCGATGAGGAATCTTCCTCGCGAATCCTCTTTCA





GGCAGTGGATAAAGTTATTGCCGATAGATAAAGAGTCGCCCTGTATTTTGCGGTACACT





TTGATTTTCTTGCCATCGAAACGGTTGAGGCCGTCGTTGGTCCCGAACCACATGAAGCCT





TTGCTGTCCTGCATAACCGCCCAGACACTGTTATGCGACAATCCGTCTTCCACCTGATAG





CTCCTGAAGTGATAGGCGCGTGCAGGAAAAAAAGATAAAGCCAAACCTAATAAAACTA





AAATCGTATGTTTCATAGCCTGATGAAATTAAGATGTTCAAATATAGGGCTTTGCTCTCT





TTGGCGATGCAAATATCTTCTTAAAACCTATAAAAATATGGTATAATTGTGAGAATGCA





GTGTATTTATATCTTTGAAAAGTATATTTCTATCCACTTTGTTTTATCAGTTCTACATTTG





TGTCATTCATATTAGTAATTAAAGTCTAATCTTTAGAAACATGAATAAGTTAGTCAGTAC





TTTTATTATTTCATCCTTTACTGCTGCTATGGGCGTATCGGTTTTTGCTGCTGATGATGGC





GGTGCGTTATATCTGGATGCGGGCCGGCCTGTCGAGCAGAGGGTGAAAGATTTGATGTC





GCGCATGACTCTGGAGGAGAAAGTGGGGCAGATGTGTCAATGGGTCGGCTTGGAGCAT





ATGCGAACCGCTTCACAGGATTTGACGGTAGACGAATTGAGTAATAACACGGCGCGGG





GGTTCTATCCCGGCATCACGGAAGAAGACGTGAGACAAATGACGATAGACGGGAAGGT





GGGCTCTTTCTTGCATGTACTCACAGTCAAGGAGGCCAATCAGTTGCAGGAGCTGGCAA





TGAAAAGCCGTCTCAAAATCCCTTTGATTATAGGCATCGATGCCATTCACGGCAATGCG





CAGGTAGTGGGTACTACGGCGTATCCGACGAGCATCGGGCAGGCATCCATGTTCGATGT





CGGCCTGGTTGAAGAGATTTGCCGGCAAACGGCTTTGGAGATGCGTGCTACAGGTTCGC





AGTGGACATTCAATCCCAATGTAGAGGTCGCCCGCGACCCGCGTTGGGGGCGTGTCGGC





GAAACTTTCGGCGAAGATCCCTACTTGGTATCTTTATTGGGCGTGGCTTCCGTGCGCGGG





TATCAGGGAGACGGGTTTGGAAAGGCGGAAAATGTGTTGGCTTGTGCCAAGCATTTTAT





TGGAGGCAGCCAACCGATAAACGGAACGAACGGCTCTCCCACAGACATTTCGGAACGG





ACACTCCGGGAGGTATTCCTGCCCCCCTTTAAGGCGACCGTAGATGCCGGTGTATATAG





CTTTATGACAGCTCATAATGAACTGAACGGCATTCCCTGTCATGCCAATCCATGGCTGAT





GGAAGATATTCTTCGCAAAGAATGGGGATTCGATGGTTTCATAGTCAGTGATTGGATGG





ACATCGAGCATATACACGACTTGCATCGCACGGCAGTGGATAATAAAGATGCTTTCTAC





CAGTCGGTAGATGCCGGAATGGATATGCACATGCATGGACCGGAGTTTTACGAAAAGGT





GATTGAACTGGTGAAGGAGGGAAAACTCACGGAAGCCCGGATCGATGAGTCTTGCCGG





AAAATATTGGCTGCGAAATTCCGGTTAGGACTGTTCGAGAAATCTTTTACCGATGAGAA





AGCGGCGAAAAGCGTCCTGTTCAATGAAAAGCATCAGGCCACGGCATTGGAAGCGGCG





CGTAAGTCCATTGTGCTATTGACCAATGACGGCATACTTCCGCTGGATGAAGCAAAATA





TAAAAATGTATTCGTAACCGGAATGAATGCCGACAATCAGACGATTCTCGGTGATTGGG





CTTTGACACAGCCGGATGAGAATGTGATTACAGTGCTCGAAGGGCTGAAACTGGTATCT





CCCGACACTAAATTTTCATTTGTGGATTTGGGATGGAACATCCGGGAAATGGATAAAAA





CAAAGTGGAACAGGCCGCAAAGCAGGCTGCCAAAGCCGATTTGGCAATTGTGGCGGTG





GGAGAATATTCCTTGCGGACCAACTGGTACGACAAAACTTGTGGCGAAGACTGCGACCG





TTCGGATATCAATCTGGCAGGGTTACAGCAGGAACTTGTGGAGTCCATTCTGGCAACGG





GAGTTCCTACCGTTGTGGTTTTAGTAAACGGGCGTCAGTTGGGGGTGGAATGGATTGCC





GGTCATGCCAATGCTTTAGTCGAAGCGTGGGAGCCGGGTAGTCTCGGAGGACAGGCCAT





TGCCGAAATATTATATGGAAAAGTAAACCCTTCCGGCAAACTGCCGGTGACGGTTCCGC





GCCATGTGGGACAGATACAGATGATTTATAACCATAAGCCGTCCATGTATTTTCATCCGT





ATGCCATCGGAGAGAGTACGCCTTTGTTCTATTTTGGATACGGCCTGAGTTATACGGAAT





ATGCGTATTCGGATCTCACGGTTTCCTCGGCGCAGATGTCGGGGGACGGCAGTGTGGAA





GTGTCCGTGAAAGTGACGAATACGGGAACAACGGATGGGGAGGAGATTGTGCAGTTGT





ATATCCGCGACCTCTATTCCAGTGCGACGCGTCCGGTGAAAGAGTTGAAGGACTTCAGG





CGCGTGCCCCTTCGTGTAGGCGAAACCAAGACAGTTTCTTTCATCTTACCGGCAGGGAA





ACTTGCTTTCTATGATAAGAAGATGGACTATACGGTGGAACCTGGAGACTATGAAATCA





TGGTGGGAGCTTCGTCGAGGGATGAAGATTTAATGAAGAGAATTGTAAATGTAAAATA





ATAGTTGGGATGAAAAGATTGATGAGCTGTGTGTTGGTTTGCGCAGGAGTATTGCTTTT





GCTGTCGGGACTGAGAGAAACAGATGTAGTCGGAACAAAAAAGCAATTATCGTATTGT





GACACGCAGATAAAGAAAACACTGGATGCCATCGAAGGTTCCGGATTGATGCCCCGTTG





CATCGATACGGATGCCACAGACTGGTATAAAATCGATATTTATGATTGGACGAGCGGTT





TCTGGCCCGGCATCTTGTGGTACGATTATGAGAACACCCAAAATGAAGAGATCAGGAAA





GCAGCCATTCACTATACGGAATCGCTTGTGCCTTTGCTCGATCCGGAGCATCCGGGCGA





CCATGATCTGGGATTCCAGTTTTATTGCAGCTTTGGCAATGCCTATCGACTGACAAAGGA





CGACAAATACAAGCAGGTATTGCTGAAAGGTGCCGATAAACTGGCCGGATTTTATGACC





CCCGGGTGGGGACAATCCTCTCGTGGCCGGGTATGGTGACGGAGATGAACTGGCCACAC





AATACCATCATGGACAACATGATGAATCTTGAACTGCTGTTTTGGGCGGCCAAGAATGG





CGGCAACAGGGAATACTATGGCATGGCGGTGAGCCATGCAAAGGTGACAAAAGAGAAT





CAGTTTCGTCCCGACGGTTCTTGCTACCATGTAGCGGTGTACGATACCATCGACGGGAG





GTTCTTGAAAGGCGTTACGAATCAAGGATATAGTGATAGCTCCCTGTGGGCGCGCGGAC





AGGCATGGGCCATTTATGGGTATACGTTGGTTTACAGGGAAACCGGTGATAAGGAATAC





CTCCGTTTTGCCGAGAAAATAACGGATATATACCTCAAACGTTTGCCGGAAGATTATGT





TCCGTATTGGGATTTCGACGATCCGGCTATCCCGGACGCTCCGAGAGACGCATCTGCAG





CGGCCATTGTAGCTTCCGGATTGCTGGAGCTGGTGCAATTGGAAGATAATACGGAGAAA





GCCGAAGAGTATAGAGATGCGGCTGTTAATATGCTGCTCAGTCTGTCGTCTGATGCTTA





CCAGAGTGGTATCAAAAAACCGTCTTTCCTGCTCCATTGCACGGGCAATTTACCGGGAG





GGTATGAGATCGACGCATCCATTAATTATGCTGACTATTATTACATTGAAGCGCTGACA





CGTTACAAAAAAATGCAGGCTGGGCGTGATATTGTTGAAAAGTACCCACAAGCTACGCA





GAAACAGGTCACTATTGCTATGTAAACAGGATTTTGGTAGTAATAAATAATATTGTTGT





ATTTGTTTATCGCTTGTCGGGCTACTTTTGTGCAGAACAGATTGTTTAAACTTAAAAATA





TTGTATTATGAAAAAACAGTTTTCTACTTTGATTGCATTACTTATTGTCGGAGCTGCTCC





CCTTTTGGGGCAAGAAACCGACCCTCTGAACGATCCGACTAATATTGATGCGGATCTCT





ATCTTCACGCCGGATTTTCTCAGGATTCCATCCGGCCGGATTATTCCCATACTTATTATG





ATAACACCAACCATAAACTGGTAAAAGGGGAGGATGGCATATATTCCATTACGGTTCCT





TTGAAGAAAGAGCAGATTGTGAATAAAAACATGGAGGTTGGTATTTATACCTATGCTTA





CTCTGTTATTTATGGAGGAAAAGTGAACGGTTCAGGCAATGATGCCGTTAAGGGAAGTG





TAGGACCGGTTATTGCCGATGAACCCAGACTCTTTGAACTGGCCGAAGACCGGGATGTC





ACTTTTTATGCAAAGAAACTGAATACAGGAACGGCGGATGCTCCGTGGTACAGAACTAT





GTTCATCTGCGATGCACAACCGCTATATCTGGACGGAACGGAGCTGCCGTTGCCGGGCG





AAGATGGAGTGACGAGATACGTAGTGGATAGAGGTGAAACCAGCAGACGGTGGGAGTA





TAAACTCAGCCCTATCGGGCGTTGGAGCAAAACGCAGGATTTTATGGAAGATGTGATAC





CGGCCAAATGGAAATCTAACGAAGCATACGCTTTTCTGCCCAATGGCGGCTGGTGGCTC





GGAGGGCGTTTTCTGTTGGCGTATGACTATAAGAAGTTGAGTCTGGAGGTCGGCAAATT





GGTTGATGAACTGCAAACTCCCTTGTTTACGGTGAATGGAGAAAGTATTCCGGAGAATT





TGGGAATAGTCGATGAATTGTTGCTGAATGGTTCTGTGATTACATTCCTGAAAGGATATT





ATGCCAATGGCGGCAAAGACTCTTATGATCCGGCATTTAATACAAGCATCGCCACCGTG





AAATTGTGTTGGCAGATAGACGAATTGCCTGCTGCCTCTTTCCCTTTGACAAACGGTGAG





GTGGTCAGAGACGATAATTATAATAAAACGACCGAGTGGACGGTTAGTGAAGCGGATC





TTTTCGAAGGAACAACTTTGCCGGCGGGAATACATACGCTGAAAGTATGGTACGAGTCA





GAATATTTAGGGGATGTACTTACTTCTGAAGTACAATCGACGTCCTTCGAGATCGAAGA





GATTGTGGTTATTCCTCTTGAAAATAAAGGAACGGCTGTCGATCTTATTCTGGAGGGAG





ACTGGAATCCGGAAACGTTCCGTACGATTATCGAAGAACAAGCCGTTAGGATTACTACG





ATTGACCTTACCGGAGTGGCCGGCCTGACGGAACTTCCCGAAATGGAAGGTTTAAATCC





GAACTGCCTGGTTTATGTGAATCCGGATGTTGTTATCGCAGAGGGCGTTGATAACGTGG





TTGTATTTGATAACGAAGAGGGTAGAGCAGCCAATATACTTCTGACGGAAGGTTCCGAT





TTCAATAACGTGAGATTATTTACGGCCGACCGGATCTCCTACTCCCATAACTTTACTGCT





GATGTTTGGTCTACCATCTGCTTGCCTTTCAGTGCGGATAAGGGAGATGTAACCGTAGA





AGAGTTTACGGGTGCCGATGGTGAGAAAGTCATCTTTACGGGAACATCCGCCATCGAAG





CCAATGTTCCCTATTTGGCTAAAACAAGTAATTCGGAGGTTAAGACCTTTACGGCAACA





GATGTACAGATGAGCGTTACGGCAGAACCAGCTCCGGTAGTTCCGGAAAATGGTTACGC





ATTCCATGCCGGTTACCGTGCGGTAGAAGGAGATGCTGTCGTAGGACTCCATTTGATGA





ACGATGTGGGGACTGCTTTCGTAAAAGTAGCCGATGGAAATCCGGAAGCTGCGGGAGTT





TCTGCTTTTCATGCTTACATGCAGGCAACTGTTGATGAACTGTTGACAATCGTCCATGGT





GACGATAACCCTACCGGATTGGGTTCGACGGAAGATACCGGCCGGTTGACGATTATCTC





CCATAACGGTTCTGTCGAAATTAAGACGGGCAAGGCGCAGATGATAGGTTTGTATGCAT





TGGATGGCCGTTTGGTGAAGATGGTTGAACTGAGCCAGGGCAGTAATTTTGTCAATGGA





TTGGATAAAGGTATTTATATTATGGATTGCCAAAAGGTAGTAGTGAAGTAAAAGAAGTC





TCCGTGTCTTGTCCCTTGTACAAGCCGGTAGAATCAGAATAAAGAAAAATTTGAATGGA





TAATAAATAAAAGAGGTATTGTTTTTTTTATGCAGATTCAAGATAATAAGTTCATTGTAT





CACTTTATCTTGAATCTGCTTTTTTTGAAATGACAGCCTCTCCCCAACCCTCTCCGTGGG





AGAGGGAGCAAAAAATGACTTGTAAACAATTGATTAACAGAACTAACTTTAGCTCCCTC





TCCCACGGAGAGGGTTGGGGAGAGGCTTTATAACTTTATAAAAATGAGACATCGGGTTA





TCCTATTTATTTGTGTGTTGCAAACCCTGTTTGCATATGCTGTGGGTGCGGAGACTCACT





TTATGCTCACCTTGAATGAGCAATGGAAATTCTCGACGGGCGATTCATCCGCATGGGCC





ACTACGGAATTCGACGATAACCAATGGGGCACTATCTCTTCCAGGCAATACTGGGAAGA





ACAGGGTTATGACGGCTATGACGGTTATGGTTGGTACAGGCAGCATTTCATGATTTCCG





AGGATTGGAAACCGATCGTAACGAATGCCGGAGGTTTATATATAAGATATGAATTTGCC





GATGACGTGGATGAGGTTTTTGTCAACGGGGTCTCTGTCGGTAGGATGGGAGAGTTTCC





ACCGGAATATAAAGTTATTTATGGCGGTATGCGTAAATACAAGATCAGCCCGGGACTGT





TGCGATTCGGTGAAGAGAATCTCATTGCCATCCGGGTGTACGACAACGGTGGTGCAGGA





GGGTTGAAGACAGAAAATATACTCCTGCAATCCATAACTCCGATGGACGATCTGATGCT





GGATATTCGTTGTGACGATAGCGACTGGGTATTCGAAAATACAGAGACAATCGATTTCC





GTGTACGTCCGAAACAACCGCTTGCGGCGGGAGGGGAGTTTAATCTCGTTTGCAGCGTG





ACGACGGATACCTATCTCCCGGTAGACTCTTTTGTGTACCGGGTGAAAGGAGATTTTGA





GCAACCCGTCTCTTTCGTTCCGCCGGCTCCGGGTTTTTACCGGATTACTTTGTATGGAGA





ACAACAAGGTGTAAAAAGCGATTTTCTGAAATTTAATATGGGATATTGCCCGGAACAGA





TTATTTCTCCCGTCGATGTCGAACCCGATTTCGACCAGTTCTGGGAAACTACGCTGAAAG





AGCTTTCCGAAGTTGTTCCCGATTACCGCATGACTTTACTGGAAGAGAAGTCACAAGGA





GCCAAAAACATCTACCGGGTGGAAATGTATTCGTTAGGAAATGTCCGTATCGAAGGGTA





TTACGCCGTTCCCAAGCAAAAGGGCAAGTTTCCGTCTGTCATCTCTTTTCTGGGCTATGG





TTCCGGGGGTGGTTTTCCTCGTCCGGATAATCTGCCCGGCTTTTGCGAGTTTATCCTTTCC





ACCAGAGGGCAAGGCATTCAGCTTCCTGTCAACACCTATGGCAAATGGATCGTACACGG





GCTGGAAGATAAATCACAATACTATTATCGGGGGGCATTTATGGATTTGGTGCGTGGGA





TCGACTTCCTGTGTTCACGTCCGGAGGTGGACACGGAGAAGATTTTTGCCGAAGGCGGA





AGTCAGGGCGGAGCTTTTACGCTGGCAGCCTGTGCACTGGATAGACGCATCTGTGCGGC





AGCACCTTACATCCCTTTCCTGTCGGATTTTGAGGATTATTTTAAGATCGCACCCTGGCC





GCGTAGTGTGTTCGAAGAGTATCTGCGTAGCCATGAGGAGAGTAGTTGGGACGAAATAT





ACCGGTTGCTTTCCTATTTCGACAGTAAGAATCTGGCACCGCGTATTACGTGTCCCATCA





TCATGGGCGTAGGGTTGCAAGATAATATTTGCCCTCCCCATATCAATTTTTCCGGCTACA





ATCAGGTGAAGTCTCCTAAGCGTTATTATATCTATTACGATAAAGAACATACGGTTGGG





AAGAGTTGGTGGACAATCAGAAATAACTTTTTCCGTAGTTTTTGCAACTGAATCTAATTT





ATGTATACCAAAATATTGTTCTTGTCATATTTTGGTATACATAGATTATATTTTTGCATAA





GCGGATTCTTTTTTGGGCTTATTTTGCTTCTGTCAAGAAAGCTAAATTGTTTAATTAAAG





AATCTGTGAATACAATGAAAAGTCACCCTTTACTCATCTTATTAATAATTATTCCCACTT





GTCTTTTCGCCGGAAATCCGGATAAGGTATCTCTGGTAGATATGTTCATGGGGGTAAAG





AACAGCAGTAATTGTGTAATTGGCCCTCAGTTGCCGCATGGCTCTGTGAACCCGGCGCC





GCAAACTCCCAACGGCGGTCACAACGGATACGATGAAAACGATGTGATTCGCGGATTC





GGACAGCTGCATGTTTCCGGCATTGGGTGGGGACGCTACGGACAGGTGTTTATCTCTCC





GCAGGTCGGTTTCAAACCCGGCGAGACGGAACACGACTCTCCTAAGTCCGATGAAGTGG





CTACGCCCTATTATTATAAGGTAAATTTGGACCGCTATAAGATAAAAACCGAAATAACC





CCCACTCACCACAGTGTGTACTACCGCTTCACCTATCCGAAATCCGGTAACAAGAATAT





CCTTTTGGATATGAAACACAACATTCCGCAGCACATTGTCCCCATAGTGAAAGGTACTTT





TCTGGGAGGGAATATCGAATACGACAAGGCATCGGGCTTGCTGACCGGTTGGGGCGAA





TACGCCGGAGGTTTCGGAAGCGCTGCTCCCTACAAAGTGTTTTTTGCCATGCGTCCGGAT





GTGAAATTGAAGGAGGTGAAAGTCACCGATAAGGGGACGAAGGCTCTGTATGCCCGTT





TGAGTTTGCCGGAAGAGGCTGAAACTGTCCATCTGGGCATCGGCGTTTCACTCAGAAGT





GTGGAGAATGCATGTAAATATCTGGAACAGGAGATCGGTGCGCGTAGCTTCGACGAGG





TGAAGCGTGTGGCGAAATCTGCTTGGGAGGATGTGTTTGCCACTATCGATGTAAAAGGG





GGAACCCAAGAAGAGCAGCGTCTGTTCTATACAGCCATGTATCATAGTTTTGTGATGCC





CCGCGATCGTACGGGCGACAATCCCCGTTGGACGAGCGGACAACCTCATCTTGACGATC





ATTTCTGCGTGTGGGATACATGGCGCACCAAGTATCCTTTGATGATGCTTGTCAATGAGA





GTTTCGTGGCAAAAACGGTGAATTCTTTTATAGACCGTTTCGCTCACGACGGAGAGTGT





ACTCCGACCTTTACCAGCTCTCTGGAATGGGAGATGAAACAGGGCGGAGATGACGTGG





ACAATATCATAGCCGATGCTTTCGTGAAAAACCTGAAAGGATTCGACCGCCAGAAGGCG





TATGAACTGGTGAAATGGAATGCGTTTCATGCCCGTGACAGCCTTTACCTGAAAAAGGG





ATGGATTCCTGAAACGGGAGCAAGGATGAGTTGCAGCTACACTATGGAGTATGCCTACA





ATGACGATTGCGGTGCACGTATTGCAAGGATAATGAAGGATGATGAGACGGCGGACTA





TCTGGAAAACCGTTCCCAACAGTGGGTGAATTTGTTTAATCCGAATCTGGAAAGTCATG





GTTTCAATGGCTTTGTCGGTCCGCGCAAAGAGAACGGCGAATGGATCGGTATCGATCCG





GCGTTGCGCTACGGTCCGTGGGTGGAATATTTCTACGAAGGTAATTCTTGGGTGTACAC





ATTGTTCGCTCCTCATCAGTTCAGTCGTCTGATCCGTCTTTGCGGAGGGAAAGAGGCGAT





GGCAGACAGGCTTACTTATGGATTCGAAAAAGAGTTGATCGAACTGGACAATGAACCG





GGATTCCTGTCTCCCTTTATCTTCAGCCACTGCGACCGTCCCGGTCAAACCGCCAAATAT





GTAGATTTTATCCGGAAAAACCACTTCTCCCGGGCTACCGGTTATCCGGAGAATGAAGA





TAGCGGAGCAATGGGGGCATGGTACATCTTTACATCGATCGGTTTCTTTCCCAATGCCG





GACAGGATTTCTACTATTTGCTTCCTCCGGCTTTTTCGGAGGTGACGCTGACAATGGAGA





ATGGCAAGAAAATAGATATTAAAACCGTTAAGTCGACTCCCGAAGTCAATTATATAGAG





TCTGTCAGTCTGAACGGAAAACTGCTGGACCGGACATGGATACGCCATGCCGAGATTGC





GGAAGGCGCTACGATTGTCTATCACTTGACGGATAAACCGGGACAGTGGAGCATCTCTC





CTTTTGAAGCAAGCAGAAGAGAGCCGCAACCGTTCGGGGTGAATCTGGCAGGGGCGGA





GTTCTTCCACAAAAAGATGGAGGGAGTGGGGCGCTTTAATAAAGATTATCACTACCCGA





CTACGGACGAGCTGGACTACTGGAAGTCCAAAGGACTCACTTTGATTCGATTACCTTTC





AAATGGGAACGCATACAGCGTAAGTTATACGGAGAATTGAACCGGGAAGAGATGGATT





ATATCAAATTCTTATTGGCCGAAGCAGATAAGCGCGACATGCAGATATTGATCGATATG





CACAATTACGGCCGGCGTAAGGACGATGGTAAGGACCGCATCATAGGCGACAGCCTTTC





GATCGATCATTTTGCATCGGCTTGGGGATCGATCTCCAGAGAATTGAAAGACTGCAAAG





GCCTGTACGGTTACGGCCTGATCAACGAACCGCATGATATGCTGGCTTCTACTCCGTGG





GTAGGGATTGCACAGGCAGCCATCGACTCCATTCGCAAAAATGATGCGAAGAATGCCAT





TGTGGTGGGTGGTAATCATTGGAGTTCTGCCGAACGCTGGAAACTGGTCAGTGATGATT





TGAAGAACTTGCGCGACCCGTCACGCAATCTGATATTCGAAGCGCATTGCTACTTTGAT





GAAGACGGATCGGGCATTTACCGCCGTTCGTATGAGGAAGAAAAAGCACATCCGTACA





TTGGCGTGGAGCGTATGCGGCCTTTTGTGGAGTGGCTGAAAGAGAATGATTTTCGCGGG





CTTGTCGGTGAATACGGAGTTCCGGCAGACGATGAGCGCTGGCTGGAATGTCTGGACAA





TTTCCTGGCTTATCTTAGTGCGGAAGGCGTGAACGGTACCTATTGGGCGGCCGGTGCCA





GATGGAACAGGTATATTCTTTCCGTTCATCCGGAGAACGATTACCGGAAAGACAAACCG





CAGATGAAAGTATTGATGAAATATTTGAGAACTCAATAATAGATTGTAAACTAAAATTA





AGTATTATGGAGAAAAAAACAAAAAGGATTGCATTTGTCCTGGCAACCATGCTATGTGG





ATGGCAAATGATGCTGGCCCAACCGGTTAGCCCGGCACCGACGCCAACACGGGCGGCG





AATGATGTGAAGGCAATGTTCAGTGACGCTTATCCGGAGAAGTTCGGAAAGTTCCAGAT





AGACTATGATGACTGGAATAGCGATAAATTTTTGACTACCAAAACGATTGTTACTCCTTT





CGGAGCTGCGGACGAGGTGCTTAAAATAGAAGGTCTGTCCACCGGTTCTTTGCAGCACA





ATGCCCAGATAGCCTTGGGTACATGTAATTTGAGCGATATGGAGTATCTTCATATGGAT





GTATATTCTCCTTCCGAAAACGGAATAGGCGAGTTTAGCTTTTATCTGGTAAGCGGTTGG





AGCAAGACAGTATCTTGCAATGTGTGGTACAACTTTGATACGAAGCAGGAGTACGACCA





GTGGATTTCGATAGACATACCGATGAGCACATTTAAAAACGGAGGATTGAACCTGGCCG





AAATCAATGTGTTACGAATTGCAAGAGGAAAACAGGGAGCACCCGGCACAATTGTCTA





TGTGGACAATGTTTATGCATACGGTAAAGCGGTTGAACCGGAGTCGGATGTGAAGATTG





TGGCCAATGGCAATGCCAACCTGACTACGGATGTTCCTTTGATCTCCGCTCCGACACCG





AAGGTAGCTGCCGCCAATGTATTCAACTTCTTCAGCGATCACTATGGCGACGGTAAGTT





CGATTATGCACAAAGCGATTATGGCGATCAGAAAACAGTGAAATCCCTCATTACCATTA





ATGATACGGAGGATCAGGTATTCAAGATCGATAACATCGTGAATGGAAGTAAGGCGAA





TGTTTCCATCGGCTCACCGAATCTTTCGGGAGTGGACATGCTGCATCTGGATATATTTTC





TCCGGGCAATGATCAGGGAATCGGTGAATTTGATTTTGCCCTGACGGATTTTGGAGGAA





ACGGTAATGATGCCGGTATCTGGCTGAATATTACGGACAAAGGATGGCATGGACAATG





GATCTCCATCGATATACCTCTCAGCAAGTGGACGGGAGCTGCCAATATGATCAGATTCC





GCCGTGGTGGTAAAGGCTCGACCGGTAAGCTGTTGTATGTAGACAACGTTTATGCTTAC





AAGAGTGAATCGGACGATCCGAAACCGGTTCCCGATCCTACTACTGTTCCTGTTCTTACC





AAAGATAAGTCCGATGTTATTTCTATTTTCTGCGAACAGTACGAAGAGCCGGGATACCA





AGATGAATTTGGCATAGTAAGTGCCGGAAACTGGGGGCAAAATGCGAAGCAGAAAGAT





GAATTTGTAGAAATTGTAGCAGGTAACCAAACATTAAAACTTACGTCGTGGGATCTCTT





CCCGTTCAAAGTGCATAAGAACAGTGACGTGATGGATTTATCCCAAATGGACTATTTGC





ACTTAAGCATATATCAGAATGGCGCTTTGGATGAAAACAACAAACCGGTTAGCGTTTGT





ATCTGGATCAACGACAAGGATAATAAGGTGGCACAAGCTCCTTTGTTGGAAGTGAAGCA





AGGCGAATGGACTTCCGTCAGTTTCGGGATGGATTATTTCAAAAACAAGATCGATTTGA





GCCGTGTATATGTGATCCGTTTGAAAGTGGGCGGTTATCCTACCCAGGATATTTACGTAG





ATAATATTTTTGGTTATAAGGGCGATCCTATCCGTCCGGGTCAAGTAACCGAGCCATAT





GTGGACGAGTGCGATCAGAAGATTCAGGATTCCACACCGGGCACTCTGCCGCCGATGGA





ACAGGCCTATCTGGGAGTGAATTTAGCTTCTGCTTCCGGTGGAAGTAATCCGGGCACAT





TCGGACACGATTACTTGTATCCTAAGTTTGAGGATTTGTATTATTTCAAGGCGAAAGGCA





TACGTTTGCTCCGTATCCCGTTCCGTGCTCCGCGTTTGCAACACGAAGTTGGAGGAGAAC





TGGATTATGATGCCGGTAATACGTCGGATATCAAGGCGTTGGCCGCTGTTGTGAAAGAA





GCGGAAAGATTAGGTATGTGGGTTATGCTGGATATGCACGACTACTGCGAACGGAATAT





TGACGGTGTATTGTATGAATATGGAGTTGCCGGACGCAAGGTATGGGACTCTGCCAAAA





ACACCTGGGGAGATTGGGAAGCAATGGATGAAGTGGTGTTGACCAAAGAGCATTTTGC





CGACCTGTGGAAGAAGATTGCTACTGAATTTAAAGATTATACGAATATCTGGGGATACG





ACCTGATGAACGAGCCCAAAGGCATTAACATCAATACGCTGTTTGATAATTATCAGGCT





GCCATTCATGCGATTCGTGAGGTGGATACAAAAGCACAAATAGTAATCGAAGGTAAGA





ATTATGCCAATGCTGCCGGTTGGGAAGGTTCAAGCGACATACTGAAAGATCTGGTCGAT





CCGGTCAATAAGATCGTTTATCAGGCACATACCTACTTTGACAAGAACAATACGGGTAC





CTATAAAAATTCTTACGATCAGGAGATTGGCGGAAATGTAGAGGTCTATAAACAACGTA





TCGATCCTTTTATTGCCTGGTTAGAAAAGAACAACAAAAAAGGTATGTTGGGTGAATAC





GGAGTTCCTTATAATGGACATGCGCAAGGTGACGAGAGATATATGGACTTGATCGATGA





TGTATTTGCTTATCTGAAAGAGAAACAGCTTACCTCTACTTATTGGTGCGGTGGATCGAT





GTACGATGCTTATACGCTGACTGTACAACCTGCCAAGGATTATTGTACAGAGAAATCTA





CCATGAAGGTTATGGAGAAATATATCAAGGATTTTGATACCAGTATTCCTTCTTCCCTGG





TGGAAACCAATGCTGACGGCAATGCCATCGTGCTCTATCCCAATCCGGTGAAAGATAAC





TTGAAGATTACTTCTGAAAGCGGAATCGAACAGGTGATTGTCTTCAATATGATAGGCCA





GAAAGTAAGCGAGCGAAATGAAAAGGGCACTAACATCGAATTGAACCTCGAAGCATTG





GGCAAGGGTACTTACTTAGTAACTGTCCGCTTGGAAGACGGTAATGTGGTGAACCGTAA





GATTGTGAAAATGTAATTGATGATGAAATGAAATACAGCCGGGCAACGGCTGTATTTCC





ATACTTGACAGATAGACAAAAGAGACGCAGCATCTTATTGAAAAGGTGCTGCGTCTCTT





TTTTAATGAAAGATTGATAGAGATAGGAACGACTTATTATTTTTTCGACAGAAGAACAA





AAGAACATATTTCCTGCATAGCCTTTATAGGCGGTTTATTTGTTCTTTTGTTCTTCTGTCG





AAAAATAGATTCGTGACTTGTTTTGAGTTGAAGTTGAACCGTTTTATCGATGATATTGAA





TAAAGGCAGCCAGTGGAATCCCCATCGTAGGATAATTTTTGTAGGGATGAGGCTGATAG





ATCTGCATGCCCTCTTCGTCATAGTAATAGCCGTCTTCGTTGTCTATCGTGATACCGATG





TCTACCAGATAATACCCTTCGGATTCCTTTTTATCGAAATTGTCGATCAGGTATTTCCGG





AAACGCCACATGGCAAAGTTTTGCATGACGGTGAAGTTCCCGTCTTTGTTGTCCATCGTA





CCGCAGGTGCTGCAAGGGATCAGTATCACAAACTTGCCGTTGGGCACCGCTTTCAGATA





CGACTCTTTCACTATTCTCAGTTGTTTGTCGAAAGTGGAGAAGTCGGCGTTGATGTTGTT





TCTGAAATCGTTCAGACCGAGCATTTCCGCTAAGAACTGGGGAGGGGTAATGTTCCACA





TGGCAAGGTATTTGCCATAGTCGAAATTCCATGTGAAATCATCTTTCTGGACATTGACCC





ATTGGTTGCCATCGTACATGACGAATGATCTTTTAGCGTTGTCATATAGTATGTCCCCTT





TTGCGGGCGACTTAAGATACCCGTCTTCGTTGAACTTATACAGGCAACTTCCATATTTAC





CGTTGGTGGCTTCCAGGTTGGGTCTTTCTCCTTTCTCTACAAGGAAACAGAGTTGCCAGA





ATTCGGTCGATCCCCAATAACGGAAATCCCCGTCCGGATGCATGAAACCGTGATAGCGG





TTGTTTCCCGTGAATACCTCAAAGTACCAGCTCATGCAGGCGCCGTTGCGTCCTTCGTCG





TATTGCCCGGTTGTGTACTGCGGATCGTCTTCCGTTTCAACCTTTACGTCTCTTAATCCTA





CGAGCTTGAGGTTCGGTACATATCCTTTTCGCAATAACGCATCTTTGTAAAAGGCACCTT





GTGTATAGCTGTCGCCGATGATTTGTGCCACGACTTCGGAATTACCGGTACCTTTTATTC





CCAGTCTGATTCTGGAAGAGTGAGTCGCCACTCTGGTGAAGTTTTTGAGTTCGTATAAGT





TGGCAATGATTTTCTTGTCATTTTCCGGTTTGTCTACCGATACTACCCGTTCCAACCGGC





GTGAGTAGAAATCTCCATTGAATAGGACACTATAATCGAACGGATACCATCTTTTTATG





AACGGTTCTACAAAAATGTCATTTCTGGTATCCGACAGCATGTACAGATAACTGGGCAG





GCATATTTCATTTACGTCGGACTTATTGACGGCCAGCGTGATCTGTGTACCGTCACTGAA





ACTGAAAGTCATTTGATCGCCATTGGCCGAGATATTTGTAATTTGGCTTCCGTCGGTGCC





GTCGATTCCGTTTTGCAGCACAACGGTGCTCCCATCGGAGAGGGTGATTGTGTAACCAT





CGTCCGTAGTGGCTACATGGGTGATGTAGATATTGTTTTGAGATGCTTCGAGCAGCTGTT





TCTGGACGTTTAGCTCGTTGCGCAATTTTTCTACTTCCTCTTTCCAGTCGTCGTTCTGACA





CGAAGGCAGGAGGAGGGTACAACATAAAAGAATGGTGGTGGTGATGAGGTTTTTCATA





AGCGTTTTTATTAAATAATGATGAGATTAAAAATGAAAATATCCCGAAACTGCTTGAAT





CCCGGGATATTTTAGGTAATGATGGAAACTGGTCTTTTTTACAGTTTTATAATGTGTTTG





CTTACTGTTTTTCCACTAACCAACTTCACGGAAATAATGTATGAACCCGATTGCAGGGCC





GATAGGTTGATTTGATTCTCTCCTGCCATGTTGTAGCTGCCGGCCAATTGACCGCTGATG





GCATACAGGTTGGCCGACTGAACTGCTTCTTCGGAATCGATCGTAATATAGTCTGTTACG





GCAGTAGGATAGATGTTTAAACCGTCGTTGGCTTTAGCAGACTTGATTCCTGTGGGCGA





ACCTTTATAAGCGAATATGTTGGATACATAAATATTAGGTGCATATTGCTTGGAGAGTG





GTTCGTATATACCGTCTCTGCTGCCGAGTCTTAAGCCGTTGATCACATAATTCTTATTCTC





CGCAGTCCAGTCGAAGTTTTCGATAGGAAGATCGATAGAATTCCATTGATTGGCTTTCA





AGTCGAATATTTCGCTGTAAGCATCTGCCATTGCCGGGTAATTCCAGGTTACGCCTACCA





CGAACTGGCAATCCTGATCCGGCCAGAAATCGAAATGCAGATAGTCATAATCGGTAACG





GTGGCGCCGGCATTGGTATAGAATGAGGACCATTCCAGGTTAATCATATGCAGAACCGC





ATCCTTATTAATATAATCGTCTACGAAATTATCCGGACTAAGTCCCCAGTTTGTACGTAG





GATCAGTTTGTGATCTGATGCCGGTTCATAAGTCTTTCCATAGAACGAAATGACGTCTGC





TTCCGGGTAAGTCGGAGTAGGAGCGGCCATTGTCGGTTCTTGTGCATTTGCAAATTGTGT





ACTGCCTAATAATGCCAAGGCTGCAATAAAATAAGTAATCTTTCTCATAATCTTAAAATT





TTAGAGTTTAACGATTTGTTCCCTTTTGGTGTGGGCAAAGTAATGGAAAAGATCATTTTG





GGGATGTAATAATCTTATTTTTTTATAGAAGAATATTGTTTTAACTATTTATTTTTCTGAA





ATTCAACCCCACTAAACTAAGATTATTATATCCTTCTATAAATATGAAATATTCTTCTAT





GGAACAAGCTCCGAGGAAGCTACTTTTGTAGACAGGTAAAAGAAAACTTAGTTTGTCAA





CAAAAGAAAGGAGGACATGTAGAAGAAACGATGAATTCAATAAACTGCACTTGTGATA





GATGATAATCTTCCGGGTCGGAGAGCTTGTGATTTATTTAAAAAAGAATCTAATACTGA





TAATTGTATGATTTCAAAAGACGAAAATATAAAAAGGCGGATCATTGGTGTTTTATTTTT





CTTATGTGCTCTAAGTCCTGCATTATGGGCTCAGTCGCGCATTATAAAAGGTGAAGTGCT





CGATCCCAACGGAGAACCTCTGATAGGTGTAGGGGTTATGATTAAAAATACTACTGCTG





GAACCATCACTGATGTCGATGGAAGATATTCCATTCAGGTTCCCGATAATAATGCTGTTC





TTTCCTTCTCTTATGTAGGCTATAAAAGAAAAGAGGTCAAGGTGGGAAGTCAAAGCGTG





ATTAATATTTCTCTGGAAGAGGAATCCGTATTGATGGATCAAGTTGTCATTGTGGGATAT





GGTAGCCAGAAGAAAGTCAATCTGACGGGAGCCGTAGCTGCAATTTCCGTTGACGAATC





CCTTGCCGGCCGTTCGGTTGCCAATGTCTCTTCCGCTTTGCAGGGGTTGATGCCGGGACT





GTCCGTGAGCCAGAGCTCGGGTATGGCGGGAAATAATTCTGCCAAACTGTTGATTCGTG





GTTTAGGAACGATCAATAGTGCCGATCCGCTGATCGTGGTGGACGACATGCCGGATGCC





GATATTAACCGGCTAAATATGAATGATATAGAAAGTATAACCGTCTTGAAGGATGCAAC





GGCTTCTTCCGTTTACGGTTCTCGTGCAGCCAACGGTGTAATACTTGTTAAAACCAAATC





GGGTAAAGGTTTGGAAAAGACGCAAATAACCTTCTCCGGATCGTATGGATGGGAAAAG





CCGACGAATACTTACGATTTTATATCCAATTATCCACGCGCTTTGACTTTACAGCAAATT





TCCTCTTCGACCAATCCCGGCAAGAATGGAGAAAATCAGAATTTTAAGGATGGAACGAT





CGACCAATGGCTGGCATTGGGAATGATTGACGACAAGCGGTATCCGAACACGGACTGG





TGGGATTACATCATGCGAACGGGTTCCATTCAAAATTATAATGTATCGGCAACGGGTGG





AAGCGAGAAATCGAACTTTTACGCATCTGTGGGATATATGAAGCAGGAAGGATTACAG





ATAAATAATGACTACGACCGCTATAACGCCCGTTTTAACTTTGACTATAAGGTGATGAA





AAATGTGAATACCGGATTCCGTTTTGACGGGAACTGGAGTAATTTCACTTATGCCTTGG





ACAATGGTTTCACGAGCGATTCTAACCTGGATATGCAGAGTGCGATTGCCGGTATCTAT





CCTTATGATCCGGTTCTGGATGTTTATGGCGGTGTAATGGCGTATGGAGAAGATCCACA





GGCTTTCAATCCGTTGAGCTTTTTCACAAATCAGTTGAAGAAGAAAGACAGACAGGAGT





TGAATGCTTCTTTCTATCTTGACTGGGAACCCGTAAAGGGTCTGGTAGCCCGCGTGGATT





ATGGTTTGAAGTATTATAACCAATTTTATAAGGAAGCGGACATCCCCAACCGTTCTTAC





AATTTCCAGACGAACTCGTATGGTATCAGGGAATATGTTACGGAGAATGCCGGAGTTAC





AAACCAGACGAGCACCGGTTACAAAACTCTGTTGAATGCCCGTTTGAATTATCACACGG





TTTTTGCTACACACCATGATTTGAATGCCATGTTCGTATATAGCGAGGAATACTGGCACG





ACCGTTATCAGATGTCCTATAGGCAGGACAGAATTCATCCGTCACTCTCCGAAATAGAT





GCTGCCTTGTCCGGAACACAGTCTACTTCCGGTAATTCTTCGGCAGAAGGACTCCGTTCT





TATATCGGACGTATCAATTATTCTGCTTACGGCAAATATTTGCTGGAACTTAATTTCCGT





GTCGATGGTTCGTCTAAGTTTCAACCGGGACACCAGTACGGCTTTTTCCCGTCGGCAGCT





TTGGGCTGGAGGTTTAGCGAAGAGTCGTTTGTGAAGCCTTATATAGGGAAATGGCTGGC





AAGCGGAAAACTCCGTGCTTCTTACGGTAAGCTGGGTAACAATAGCGGTATTGGCAGAT





ACCAGCAGCAAGAGGTGCTTTATCAGAATAACTATATGCTGGACGGTTCGATTGCCAAA





GGTTTTGTGTATTCTAAAATGTTGAACCCGGATCTGACTTGGGAATCTACGGGAGTATTC





AACCTGGGACTGGACCTGATGTTTTTCGATGGAAAACTCGCTGCGGAATTTGATTATTAC





GACCGTCTGACGACCGGTATGTTGCAAAAGTCGCAGATGTCCATTCTGCTGACCGGTGC





TTATGAAGCGCCTATGGCAAATCTGGGGACGCTCCGTAACCGGGGATTCGAAGCGAACT





TAACCTGGAGAGACCGGATTGCAGACTTTACTTATTCTGCCAATTTCAATATCTCTTATA





ACCGTACGAACCTTGAGAAGTGGGGGGAGTTCCTGGATAAAGGATATGTTTACATAGAT





ATGCCTTATCATTTTGTATACAGCCAGCCGGATCGCGGATTGGCTCAAACCTGGACCGA





TTCCTATAACGCTACCCCTCAAGGAGTGGCTCCGGGAGATGTGATCCGTCTGGATACCA





ATGGCGACGGACGCATTGATGGCAATGACAAAGTGGCCTATACAAACTTCCAGCGCGAT





ATGCCGACTACCAACTTCGCCTTGAACCTTCAGATGGGATGGAAAGGTATCGATGTATC





TTTACTGTTTCAAGGATCGGCTGGTCGTAAAGACTTCTGGAACAACAAATATACGGAAA





TCAACCTGCCGGACAAGCGTTATACCTCCAACTGGGATCAATGGAATAAGCCTTGGTCG





TGGGAGAACAGAGGAGGAGAGTGGCCGCGTTTGGGAGGATTGGTGACTAACAAGACGG





AAACTGATTTCTGGTTGCAGAACATGACTTATTTAAGAATGAAGAACCTCATGATCGGT





TATACCTTTCCGAAAAAATGGACGAGAAAGTGTTTCATAGAGAATCTCCGGATTTATGG





AACGGCGGAAAATCTGCTGACTATTACCGGTTATAAAGGACTCGATCCGGAAAAAGCG





GCTAACTCACAAGATTTGTATCCTATCACCAAATCTTATTCTATTGGCGTTAATCTGAGT





TTTTAATAAATGAAAAGCGGAAATTATGAAAAGAGTTTATATTAAATATATAGGTTTGA





TTGCTGGGATGATGATGCTATTCAGTTCCTGTGCCGACTTGTTGAATCAAGAACCTACGG





TGGATCTGCCGGCTACTAATTATTGGAAAACAGAGTCCGATGCCGAATCAGCATTGAAC





GGGCTGGTATCCGATATACGCTGGCTTTTTAACCGGGACTACTATCTCGACGGAATGGG





AGAATTTGTCAGAGTGCGCGGTAACTCTTTCCTGAGCGATAAAGGACGCGACGGAAGA





GCTTACAGGGGGCTTTGGGAAATCAATCCGGTAGGCTACGGCGGCGGATGGTCCGAAAT





GTACAGGTATTGCTATGGGGGCATCAACCGTGTAAACTATGTAATCGACAATGTCGAGA





AGATGATAGCTAATGCAAGTAGTGAAAAAACGATCAAGAACTTGGAAGGCATAATCGG





TGAATGTAAGCTGATGCGGGCTTTGGTTTATTTCAGATTGATCATGATGTGGGGAGATGT





GCCTTATATCGACTGGAGAGTATACGATAATTCGGAGGTTGAGAACTTACCGCGTACTC





CGCTTGCCGAAGTAAAGGATCATATCCTGGATGATTTGCTGGATGCTTTTAAGAAATTG





CCCGAAAAGGCGACAGTTGAAGGCCGTTTTTCACAACCTGCCGCATTGGCTTTACGCGG





AAAGGTACTGCTTTATTGGGCAAGCTGGAACCATTACGGTTGGCCGGAACTGGATACGT





TTACACCGAGCGAAGAGGAAGCTCGAAAAGCATATAAGGCGGCAGCCGAAGATTTCAG





AACGGTGATTGATGACTATGGTCTGACTCTGTTCAGAAATGGAGAGCCGGGAGAATGTG





ACGAGCCGGGAAAAGCCGACAAGCTGCCCAATTACTATGACCTGTTTTTGCCTACGGCA





AACGGTGATGCCGAATTTGTACTGGCATTTAATCACGGTGGCACGAACACAGGGCAGGG





CGATCAGCTGATGCGGGATTTAGCCGGACGAAGTGTTGAAAACTCACAATGTTGGGTAT





CTCCCCGTTTCGAAATTGCCGATAAATATCAGTCTACGATAACCGGTGACTTCTGTGTAC





CGTTGGTTAAGTTGAATCCCTCTTCTGTGCCCGATGCCCGTACCCGTCCTAATTCAGCCG





TGAATCCGGAGAGTTATAAGGACCGGGATTACCGTATGAAAGCGTCGATCATGTGGGAT





TATGAAATATGCCAGGGACTCATGTCCAAGAAAGTGACAGGATGGGTGCCTTTCATCTA





CAAGATGTGGGGAAGTGAAGTAGTTATTAATGGTGAAACCTATATGTCCTACAATACCG





ATGGTACCAATTCCGGATATGTATTCCGGAAGTTTGTGAGGAACTATCCTGGTGAAGAA





CGGGCTGACGGAGATTTCAATTGGCCTGTCATACGTCTTGCCGATGTGTTTTTAATGTAT





GCTGAGGCGGATAATGCCGTAAACGGTCCTCAGCCTTATGCCATAGAGCTGGTGAACAG





AGTGCGTCACAGAGGTAATCTTCCGGTGTTGGCATCCAGTAAGACATCTACTCCCGAAG





CATTTTTCGAAGCGATAAAGCAGGAGAGAATTGTGGAACTGCTGGGAGAGGGCCAGCG





TGCATTTGATACGCGCAGGTGGAGAGAGATCGAAACAGTCTGGTGCGAACCCGGTGGC





AGAGGAGTAAAGATGTATGATACGTATGGAGCACAGGTTGCCGAATTTTATGTGAATCA





GAATAACCTGGCTTATGAACGTTGCTATATTTTCCAGATACCGGAGTCGGAACGTAACC





GTAATCCGAATTTGACTCAGAATAAACCATACAGATAA






REFERENCES



  • 1. García-Ochoa, F., Santos, V. E., Casas, J. A. & Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 18, 549-579 (2000).

  • 2. Shepherd, E. S., Deloache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434-438 (2018).

  • 3. Laudisi, F. et al. The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress-Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cmgh 7, 457-473 (2019).

  • 4. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92-96 (2015).

  • 5. Etienne-Mesmin, L. et al. Experimental models to study intestinal microbes-mucus interactions in health and disease. FEMS Microbiol. Rev. 43, 457-489 (2019).

  • 6. King, J. A. et al. Incidence of Celiac Disease Is Increasing Over Time. Am. J. Gastroenterol. 1 (2020). doi:10.14309/ajg.0000000000000523

  • 7. Beal, J., Silverman, B., Bellant, J., Young, T. E. & Klontz, K. Late onset necrotizing enterocolitis in infants following use of a Xanthan gum-containing thickening agent. J. Pediatr. 161, 354-356 (2012).

  • 8. Vojdani, A. & Vojdani, C. Immune reactivities against gums. Altern. Ther. Health Med. 21, 64-72 (2015).

  • 9. Hehemann, J. H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl. Acad. Sci. U.S.A 109, 19786-19791 (2012).

  • 10. Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590-596 (2013).

  • 11. Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. U.S.A 108, 6252-6257 (2011).

  • 12. Kim, C. C. et al. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. ISME J. 13, 1437-1456 (2019).

  • 13. Hashimoto, W., Nankai, H., Mikami, B. & Murata, K. Crystal structure of Bacillus sp. GL1 xanthan lyase, which acts on the side chains of xanthan. J. Biol. Chem. 278, 7663-7673 (2003).

  • 14. Jensen, P. F. et al. Structure and Dynamics of a Promiscuous Xanthan Lyase from Paenibacillus nanensis and the Design of Variants with Increased Stability and Activity. Cell Chem. Biol. 26, 191-202.e6 (2019).

  • 15. Aspeborg, H., Coutinho, P. M., Wang, Y., Brumer, H. & Henrissat, B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol. 12, (2012).

  • 16. Jongkees, S. A. K. & Withers, S. G. Unusual enzymatic glycoside cleavage mechanisms. Acc. Chem. Res. 47, 226-235 (2014).

  • 17. Rovira, C., Males, A., Davies, G. J. & Williams, S. J. Mannosidase mechanism: at the intersection of conformation and catalysis. Curr. Opin. Struct. Biol. 62, 79-92 (2020).

  • 18. Kool, M. M. et al. Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan. Carbohydr. Polym. 111, 222-229 (2014).

  • 19. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420-423 (2019).

  • 20. Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide utilization loci: Fueling microbial communities. J. Bacteriol. 199, 1-15 (2017).

  • 21. McLean, R. et al. Functional analyses of resurrected and contemporary enzymes illuminate an evolutionary path for the emergence of exolysis in polysaccharide lyase family. J. Biol. Chem. 290, 21231-21243 (2015).

  • 22. Abbott, D. W., Thomas, D., Pluvinage, B. & Boraston, A. B. An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence. Appl. Biochem. Biotechnol. 171, 1911-1923 (2013).

  • 23. Artzi, L., Bayer, E. A. & Moraïs, S. Cellulosomes: Bacterial nanomachines for dismantling plant polysaccharides. Nat. Rev. Microbiol. 15, 83-95 (2017).

  • 24. Ebbes, M. et al. Fold and function of the InlB B-repeat. J. Biol. Chem. 286, 15496-15506 (2011).

  • 25. Bleymüller, W. M. et al. MET-activating residues in the B-repeat of the Listeria monocytogenes invasion protein InlB. J. Biol. Chem. 291, 25567-25577 (2016).

  • 26. Kool, M. M., Gruppen, H., Sworn, G. & Schols, H. A. Comparison of xanthans by the relative abundance of its six constituent repeating units. Carbohydr. Polym. 98, 914-921 (2013).

  • 27. Moroz, O. V. et al. Structural Dynamics and Catalytic Properties of a Multi-Modular Xanthanase. ACS Catal. 8, 6021-6034 (2018).

  • 28. Nankai, H., Hashimoto, W., Miki, H., Kawai, S. & Murata, K. Microbial system for polysaccharide depolymerization: Enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl. Environ. Microbiol. 65, 2520-2526 (1999).

  • 29. Yang, F. et al. Novel Endotype Xanthanase from Xanthan-Degrading Microbacterium Microbacterium sp. Strain XT11. 85, 1-16 (2019).

  • 30. Yang, F. et al. Production and purification of a novel xanthan lyase from a xanthan-degrading microbacterium sp. Strain XT11. Sci. World J. 2014, (2014).

  • 31. Ruijssenaars, H. J., De Bont, J. A. M. & Hartmans, S. A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1. Appl. Environ. Microbiol. 65, 2446-2452 (1999).

  • 32. Gregg, K. J. et al. Analysis of a new family of widely distributed metal-independent α-mannosidases provides unique insight into the processing of N-linked glycans. J. Biol. Chem. 286, 15586-15596 (2011).

  • 33. Daly, J., Tomlin, J. & Read, N. W. The effect of feeding xanthan gum on colonic function in man: correlation with in vitro determinants of bacterial breakdown. Br. J. Nutr. 69, 897-902 (1993).

  • 34. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-5120 (2013).

  • 35. Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541 (2009).

  • 36. Massie, H. R. & Zimm, B. H. THE USE OF HOT PHENOL IN PREPARING DNA. Proc. Natl. Acad. Sci. 54, 1641-1643 (1965).

  • 37. Nie, X. Relationships between dietary fiber structural features and growth and utilization patterns of human gut bacteria. ProQuest Diss. Theses 136 (2016).

  • 38. Tuncil, Y. E., Thakkar, R. D., Marcia, A. D. R., Hamaker, B. R. & Lindemann, S. R. Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci. Rep. 8, 1-13 (2018).

  • 39. Arnal, G., Attia, M. A., Asohan, J. & Brumer, H. A Low-Volume, Parallel Copper-Bicinchoninic Acid (BCA) Assay for Glycoside Hydrolases. in Protein-Carbohydrate Interactions. Methods and Protocols (eds. Abbott, D. W. & Lammerts van Bueren, A.) 1588, 209-214 (Springer New York, 2017).

  • 40. Wang, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55-60 (2012).

  • 41. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70-78 (2017).

  • 42. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859-868 (2017).

  • 43. Gu, Y. et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 8, (2017).

  • 44. He, Q. et al. Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. Gigascience 6, 1-11 (2017).

  • 45. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895-905 (2015).

  • 46. Nishijima, S. et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23, 125-133 (2016).

  • 47. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61-66 (2017).

  • 48. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541-546 (2013).

  • 49. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65 (2010).

  • 50. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science (80-.). 357, 802-805 (2017).

  • 51. Conteville, L. C., Oliveira-Ferreira, J. & Vicente, A. C. P. Gut microbiome biomarkers and functional diversity within an Amazonian semi-nomadic hunter-gatherer group. Front. Microbiol. 10, 1-10 (2019).

  • 52. Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20, 1-19 (2019).

  • 53. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).

  • 54. Dorotea, I. et al. Polypeptides having Xanthan Degrading Activity and Polynucleotides Encoding the Same United States Patent U.S. Pat. No. 9,458,441B2. 2, (2016).

  • 55. McDonald, Sean A., Exploring protein structure-function relationships in xanthanases from glycoside hydrolase family 9 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2019.

  • 56. O'CONNELL, T. Detergent Compositions Comprising Polypeptides Having Xanthan Degrading Activity. WO 2017/046232 A1. (2014).

  • 57. TJON-JOE-PIN, Robert, M. & CARR, Michelle, Alana. YANG, B. Methods and Materials for Degrading Xanthan. EP0975708B1. (2005).

  • 58. Kim Bruno Andersen; Morten Foverskov; Ole, T. R., Martin, S. K. J. M. & Andersen, N. L. Microencapsulation of detergent enzymes. US 2016/0075976 A1. 1, (2016).

  • 59. Baba Hamed, S. & Belhadri, M. Rheological properties of biopolymers drilling fluids. J. Pet. Sci. Eng. 67, 84-90 (2009).

  • 60. Weaver, J. D., Michael A. McCabe & Ronnie G. Morgan. Wellbore Servicing Compositions and Methods of Making and Using Same. US 2016/0271610 A1. (2016).

  • 61. Kumar, A., Rao, K. M. & Han, S. S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym. 180, 128-144 (2018).

  • 62. Ramburrun, P., Kumar, P., Choonara, Y. E., du Toit, L. C. & Pillay, V. Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery. Expert Opin. Drug Deliv. 14, 291-306 (2017).

  • 63. García-Ochoa, F., Santos, V. E., Casas, J. A. & Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 18, 549-579 (2000).

  • 64. Shepherd, E. S., Deloache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434-438 (2018).

  • 65. Casas, J. A., Santos, V. E. & Garcia-Ochoa, F. Xanthan gum production under several operational conditions: Molecular structure and rheological properties. Enzyme Microb. Technol. 26, 282-291 (2000).

  • 66. Sworn, G. Xanthan gum. in Handbook of Hydrocolloids 262, 833-853 (Elsevier, 2021).

  • 67. Mortensen, A. et al. Re-evaluation of xanthan gum (E 415) as a food additive. EFSA J. 15, (2017).

  • 68. Pilgaard, B., Vuillemin, M., Holck, J., Wilkens, C. & Meyer, A. S. Specificities and synergistic actions of novel PL8 and PL7 alginate lyases from the marine fungus Paradendryphiella salina. J. Fungi 7, 1-16 (2021).

  • 69. Zhu, B. & Yin, H. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6, 125-131 (2015).

  • 70. Terrapon, N. et al. PULDB: The expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res. 46, D677-D683 (2018).

  • 71. Sun, Z., Liu, H., Wang, X., Yang, F. & Li, X. Proteomic Analysis of the Xanthan-Degrading Pathway of Microbacterium sp. XT11. ACS Omega 4, 19096-19105 (2019).

  • 72. Guillén, D., Sánchez, S. & Rodríguez-Sanoja, R. Carbohydrate-binding domains: Multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85, 1241-1249 (2010).

  • 73. Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412-D419 (2021).

  • 74. Glenwright, A. J. et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541, 407-411 (2017).

  • 75. Kielbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487-493 (2011).

  • 76. Chen, I. M. A. et al. The IMG/M data management and analysis system v.6.0: New tools and advanced capabilities. Nucleic Acids Res. 49, D751-D763 (2021).

  • 77. Liang, R. et al. Metabolic capability of a predominant Halanaerobium sp. in hydraulically fractured gas wells and its implication in pipeline corrosion. Front. Microbiol. 7, 1-10 (2016).

  • 78. Schnizlein, M. K., Vendrov, K. C., Edwards, S. J., Martens, E. C. & Young, V. B. Dietary xanthan gum alters antibiotic efficacy against the murine gut microbiota and attenuates Clostridioides difficile colonization. bioRxiv 5, 1-10 (2019).

  • 79. Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stab. 59, 81-84 (1998).

  • 80. Team, R. C. R: A language and environment for statistical computing. (2020).

  • 81. Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1-20 (2007).

  • 82. Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014). Available at: cran.r-project.org/package=RColorBrewer.

  • 83. Wickham, H. Elegant Graphics for Data Analysis: ggplot2. Applied Spatial Data Analysis with R (2008).

  • 84. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, (2011).

  • 85. Pope, P. B. et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science (80). 333, 646-648 (2011).

  • 86. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

  • 87. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824-834 (2017).

  • 88. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015, 1-15 (2015).

  • 89. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043-1055 (2015).

  • 90. Chen, I. M. A. et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45, D507-D516 (2017).

  • 91. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, 490-495 (2014).

  • 92. Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282-W288 (2018).

  • 93. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925-1927 (2020).

  • 94. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068-2069 (2014).

  • 95. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722-736 (2017).

  • 96. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100 (2018).

  • 97. Vaser, R., Sović, I., Nagarajan, N. & Sikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737-746 (2017).

  • 98. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing Genome Assembly and Annotation Completeness BT —Gene Prediction: Methods and Protocols. (2019).

  • 99. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 1-8 (2018).

  • 100. Kunath, B. J. et al. From proteins to polysaccharides: lifestyle and genetic evolution of Coprothermobacter proteolyticus. ISME J. 13, 603-617 (2019).

  • 101. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014).

  • 102. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211-3217 (2012).

  • 103. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525-527 (2016).

  • 104. Speer, M. A. DEVELOPMENT OF A GENETICALLY MODIFIED SILAGE INOCULANT FOR THE BIOLOGICAL PRETREATMENT OF LIGNOCELLULOSIC BIOMASS. (Pennsylvania State University, 2013).

  • 105. Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765-1786 (2013).

  • 106. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359 (2012).

  • 107. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169 (2015).

  • 108. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2009).

  • 109. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform. 14, 178-192 (2013).

  • 110. Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953-961 (2019).

  • 111. Peng, X. et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol. 6, 499-511 (2021).

  • 112. Clum, A. et al. The DOE JGI Metagenome Workflow. bioRxiv (2020).


Claims
  • 1. A polypeptide comprising a truncated xanthanase, wherein the truncated xanthanase comprises a glycoside hydrolase family 5 endoglucanase domain and three carbohydrate binding domains.
  • 2. The polypeptide of claim 1, wherein the glycoside hydrolase family 5 endoglucanase domain comprises an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 1.
  • 3. The polypeptide of claim 1, wherein the polypeptide comprises an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 2 or SEQ ID NO. 33.
  • 4. (canceled)
  • 5. A polynucleotide comprising a nucleic acid sequence encoding the polypeptide of claim 1.
  • 6-8. (canceled)
  • 9. A composition comprising the polypeptide of claim 1, wherein the composition is a cleaning composition or a well treatment composition a wellbore servicing composition.
  • 10. (canceled)
  • 11. The composition of claim 9, wherein the composition is a laundry detergent, a dishwasher detergent or a hard-surface cleaner.
  • 12-13. (canceled)
  • 14. The composition of claim 9, wherein the composition is a liquid, gel, powder, granulate, paste, spray, bar, or unit dose.
  • 15. A method of cleaning comprising contacting an object or a surface with the polypeptide of claim 1, or a composition thereof.
  • 16. (canceled)
  • 17. The method of claim 15, wherein the object or surface comprises a textile, a glass, a plate, tile, dishware, silverware, a wellbore filter cake, or a wellbore.
  • 18. A method of making intermediate sized xanthan gums and/or pentasaccharide repeating units of xanthan gum comprising: contacting xanthan gum or a composition comprising xanthan gum with the polypeptide of claim 1 or a composition thereof.
  • 19. A genetically modified bacterium comprising the polypeptide of claim 1 or a polynucleotide encoding thereof.
  • 20. The genetically modified bacterium of claim 19, wherein the bacterium is in the genus Bacteroides, Parabacteroides, Alistipes, Prevotella, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus, Peptostreptococcus, Bifidobacteria, Escherichia, or Lactobacillus.
  • 21. (canceled)
  • 22. The genetically modified bacterium of claim 19, wherein the bacterium is a gram-positive gut commensal bacteria.
  • 23-24. (canceled)
  • 25. A genetically modified bacterium comprising a heterologous xanthan-utilization gene or gene locus, wherein the heterologous xanthan-utilization gene or gene locus comprises one or more nucleic acids encoding a xanthan or xanthan oligonucleotide degrading enzyme and wherein the xanthan-utilization gene or gene locus comprises a gene encoding a glycoside hydrolase family 5 enzyme having at least 70% sequence identity to SEQ ID NO: 2, SEQ ID NO: 3, or SEQ ID NO: 33.
  • 26-28. (canceled)
  • 29. The genetically modified bacterium of claim 25, wherein the heterologous xanthan-utilization gene or gene locus further comprises one or more nucleic acids encoding at least one or all of: one or more carbohydrate uptake proteins; one or more carbohydrate esterases; a polysaccharide lyase family protein; a glycoside hydrolase family 88 enzyme; a glycoside hydrolase family 94 enzyme; and a glycoside hydrolase family 38 enzyme.
  • 30-34. (canceled)
  • 35. The genetically modified bacterium of claim 25, wherein the heterologous xanthan-utilization gene or gene locus further comprises one or more nucleic acids encoding at least one or all of: one or more carbohydrate uptake proteins; a polysaccharide lyase family protein; a glycoside hydrolase family 88 enzyme; a glycoside hydrolase family 92 enzyme; and a glycoside hydrolase family 3 enzyme.
  • 36-45. (canceled)
  • 46. The genetically modified bacterium of claim 25, wherein the bacterium is in the genus Bacteroides, Parabacteroides, Alistipes, Prevotella, Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus, Peptostreptococcus, Bifidobacteria, Escherichia, or Lactobacillus.
  • 47. (canceled)
  • 48. The genetically modified bacterium of claim 46, wherein the bacterium is a gram-positive gut commensal bacteria.
  • 49-51. (canceled)
  • 52. A method for treating a subject in need thereof comprising administering the genetically modified bacterium of claim 19 or a composition thereof to the subject.
  • 53. The method of claim 52, wherein said subject suffers from a gastrointestinal disease or disorder.
  • 54-55. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Nos. 63/079,318, filed Sep. 16, 2020, and 63/195,983, filed Jun. 2, 2021, the contents of which are herein incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US21/50494 9/15/2021 WO
Provisional Applications (2)
Number Date Country
63079318 Sep 2020 US
63195983 Jun 2021 US