The present invention relates generally to medical devices used for accessing, visualizing and/or treating regions of epicardial tissue within the pericardium. More particularly, the present invention relates to instruments having a reconfigurable frame for accessing epicardial tissue and treating the tissue within a stable working theater while under direct visualization.
In treating organs such as the heart, access by surgeons have typically involved an invasive procedure such as a sternotomy, thoracotomy, as well as subxiphoid incisions along with retraction of the sternum to expose the anterior pericardium. Such procedures are typically employed to dislodge the heart to provide access to various regions of the heart tissue. Moreover, procedures such as thoracotomies may additionally require the deflation of one or both lungs to provide the necessary access. However, because of their invasive nature, such procedures are not desirable.
Minimally invasive surgeries may employ small, access incisions or utilize ports, yet because such procedures are typically employed while under the direct vision of the surgeon, fairly large incisions are still utilized to provide the surgeon a direct view of the surgical field. Other minimally invasive procedures have utilized endoscopic devices and instruments which are introduced within the thoracic cavity via one or more ports positioned within the intercostal spaces. However, such methods fail to allow access to all regions of the heart by the surgeon.
Moreover, other conventional procedures, whether open heart surgery or minimally invasive surgery, typically require a relative large incision in the pericardium to expose the heart. As the heart typically underlies the pericardium, incising the pericardial sac without inadvertently damaging the heart tissue is typically handled by creating a second incision into the thoracic cavity. A separate instrument, such as graspers or forceps, is introduced into the chest to pull the pericardium away from the heart to allow for an incision to be made into the pericardial sac. However, this requires multiple incisions to be made into the patient and the advancement of multiple instruments in separate passageways.
Such incisions through the pericardium are desirably left as small as possible to reduce fibrous adhesions to the heart. Thus, dilating instruments are desirably as small as possible to minimize any trauma to the tissue. However, typical dilators such as balloon dissectors exert shear forces on the surrounding tissue as they are advanced in the body.
Thus, it is desirable to provide apparatus and methods which provide for relatively safe and minimally invasive access to all regions of the heart in an atraumatic manner while under direct visualization without having to provide additional incisions into the patient body.
A device utilized for retracting tissue and forming a working or surgical, theater within the body may generally comprise an expandable frame or structure which reconfigures to define the working or surgical theater within the body without the need for additional instrumentation. Such a device may provide a platform for minimally invasive treatments to be carried out for a variety of procedures while under direct visualization via an imager (e.g., CMOS, CCD, optical fiber, etc.) within the working or surgical theater.
A reconfigurable frame assembly may extend from a distal end of a flexible catheter such that segmented frame members may be collapsed into a low-profile configuration where the distal ends of each frame member may be tapered such that the frame members close tightly relative to one another forming a tapered portion with an atraumatic or blunted distal end which may also define an optional opening through which a guidewire may pass. The frame assembly may maintain its closed configuration without the aid of a sheath although other variations may utilize a slidable outer sheath to slide over and collapse and/or expand the multi-segmented frame members. Each frame member may be comprised of a rigid body that can be made from any number of materials, e.g., Titanium, stainless steel, or hard plastics such as thermoset plastics, polycarbonate, polyurethane, polysulfone, or other thermoset materials, etc. Alternatively, frame members may be comprised of resilient materials, e.g., shape memory materials (such as Nickel-Titanium alloys or shape memory polymers), which are capable of reconfiguring between its low-profile configuration and its deployed configuration.
A barrier or membrane may extend between the members or it may be attached as a continuous membrane to the members such that a contact edge which defines a lateral opening is formed along a side of frame assembly such that opening is off-axis relative to a longitudinal axis of the catheter. To actuate the frame members to reconfigure into their deployment configuration, the frame members may be biased to conform to its deployment shape (either when formed from a shape memory or superelastic material or other resilient material as previously mentioned) when in a relaxed configuration. Alternatively, one or more tensioning wires or members may be coupled to one or more corresponding frame members such that the proximal actuation of these wires may urge the frame members into their deployed configuration. In yet other variations, the deployment or retraction of the frame members relative to the catheter can be controlled by any number of mechanisms such as pullwires, hydraulics, electric motor-driven gears, cams, linkages, etc. These mechanisms may be incorporated within the elongated catheter and coupled to one or more frame members to control the opening and/or closing.
With the frame assembly deployed into its expanded configuration, each of the frame members may move apart from one another such that the membrane is distended to form a continuous curved, arcuate, or angled shape which defines the working or surgical theater therein. Any number of tools, e.g., RF ablation probe, optical fibers, laser, ultrasound, cryo-ablation probe, microwave ablation probe, graspers, needles, guidewires, illumination bundles, etc., may be advanced through one or more working lumens defined through the catheter and positioned within the working theater to treat the underlying tissue encompassed within the opening. Additionally and/or alternatively, any number of biological or chemical agents (e.g., saline, biological compounds, fluoroscopy contrast/dyes, etc.) may also be introduced through the catheter as well. The interior of the working or surgical theater and the underlying tissue may be visualized directly via a fiberscope or an electronic imager (e.g., CMOS, CCD, etc.) positioned along an interior surface of the frame assembly and angled such that the field of view of the imager encompasses the area defined by the assembly.
The treatment system may additionally incorporate a steerable section along the catheter proximal of frame assembly to provide for articulation of the device when deployed within the patient body. Manipulation of the steerable section may be controlled by the operator externally of the patient by any number of steering mechanisms to curve frame assembly in either a first direction or second direction opposite to the first direction. By optionally incorporating a steerable distal section, the frame assembly in either its low-profile or deployed configuration may be articulated within a plane (e.g., a curved plane) or out-of-plane to position the frame assembly along a curved tissue surface, such as the epicardial surface.
In use, the device may be advanced through a subxiphoid access point to access the thoracic cavity and the heart in particular. Generally, an incision may be made below the xiphoid process overlying the entry site and the linea alba, for instance, may be incised to obtain the subxiphoid access. The device in its low-profile tapered delivery configuration may be introduced through the incision and superiorly into the thoracic cavity until the frame assembly is adjacent to the pericardial sac of the heart. Once desirably positioned, the frame assembly may be deployed into its open configuration and opening may be placed against the exterior surface of the pericardial sac and the tissue may be directly visualized, either via the fiberscope or electronic imager. As the frame assembly is deployed, the surrounding tissue may be retracted by the frame members and the working or surgical theater may be created over the tissue surface.
Once the frame assembly has been deployed over the pericardial tissue, an instrument such as a tissue grasper may be advanced through catheter and into the working theater to grasp a portion of the pericardial tissue to stabilize it. A piercing instrument may then be advanced into the working theater through the catheter and an opening may be created through the pericardial sac. With the opening formed, a guidewire may be advanced, for example, through the piercing instrument and through the pericardial sac into the epicardial space. Once the guidewire has been passed through the opening in the pericardial sac, the piercing instrument may be removed and a dilating instrument may be advanced along the guidewire to dilate the opening. Alternatively, the collapsed frame assembly may be advanced through the pericardial opening to dilate it directly.
Frame assembly may then be collapsed back into its low-profile delivery configuration and advanced along the guidewire and through the dilated pericardial opening until it enters the epicardial space where frame assembly may then be reconfigured back to its deployed configuration. The re-deployment of the frame assembly may retract the pericardial tissue to create the working theater within the epicardial space while directly against the epicardial tissue. The entire procedure may be performed while under the guidance of direct visualization through the fiberscope or electronic imager within the working theater to facilitate the access procedure as well as any subsequent treatments.
In yet another variation, the frame assembly may further include one or more defined suction ports positioned around the opening to facilitate temporary securement or stabilization of the device against the tissue surface despite movement of the tissue such as when the heart beats. Generally, the frame assembly may comprise an attachment portion while the catheter may include a flexible and/or elastic portion to accommodate for the difference in relative movement between the frame assembly and the catheter.
In performing any number of procedures within or upon a body lumen or body cavity, such as within a heart chamber, peritoneal, or thoracic cavity, etc. of a patient, an instrument having a low-profile configuration for delivery into and/or through a body and an expandable configuration for retracting or moving tissue from a working distal end of the assembly may be utilized. Such a device may generally comprise an expandable frame or structure which reconfigures to define a working or surgical theater within the body without the need for additional instrumentation. Such a device may provide a platform for minimally invasive treatments to be carried out for a variety of procedures while under direct visualization via an imager (e.g., CMOS, CCD, optical fiber, etc.) within the working or surgical theater.
As visualization and deployment of instruments may be provided through the device and contained within the working theater, access and treatment may be effected upon tissue such as the epicardial tissue surface through a minimum number of entry ports into the body. For example, visualization and treatment upon epicardial tissue may be effected through a single device introduced. Into the body via a single subxiphoid access point or more access points if necessary or desired. As the device provides a defined working or surgical theater within the body by retracting any surrounding tissue and containing the visualized working space, the device provides for minimally invasive access potentially over the entire region of the epicardial tissue by additionally providing articulation of the reconfigurable frame assembly.
Moreover, the system utilizing the device may be introduced into different areas of the body for various procedures, e.g., trans-septal access and/or patent foramen ovale closure, cutting of the corrugator muscle and accessing the breast from the navel in cosmetic surgery, placing of neurostimulator leads for pain management, implanting of artificial discs and/or injecting of agents (such as artificial nuclei) to the spine, visualization and treatment of the lungs along a subxiphoid approach, etc.
Turning now to
As illustrated in
At least a proximal portion of frame members 14 may be translatable relative to catheter 12 such that proximally retracting members 14 (or advancing catheter 12 relative to frame members 14) may urge or bias members 14 into their collapsed configuration relative to one another. The proximal withdrawal of catheter 12 (or distal advancement of members 14) relative to members 14 may un-constrain the frame members 14 such that they are free to conform to their deployed configuration, as shown. Collapsing the frame members 14 from their deployed configuration back to their delivery configuration may be effected by reversing the process such that catheter 12 may be advanced distally (or frame members 14 may be withdrawn proximally) at least partially over a proximal portion of the frame members 14 such that the members 14 collapse into their low-profile shape. Alternatively, one or more tensioning wires or members may be coupled to one or more corresponding frame members 14 such that the proximal actuation of these wires may urge the frame members 14 into their deployed configuration.
In yet other variations, the deployment or retraction of the frame members 14 relative to the catheter 12 can be controlled by any number of mechanisms such as pullwires, hydraulics, electric motor-driven gears, cams, linkages, etc. These mechanisms may be incorporated within the elongated catheter 12 and coupled to one or more frame members 14 to control the opening and/or closing.
With frame assembly 10 deployed into its expanded configuration, as shown in
Additional variations of the frame assembly 10 may also encompass conical structures as well as other structures as shown and described in further detail in U.S. pat. app. Ser. No. 11/259,498 filed Oct. 25, 2005 (U.S. Pat. Pub. 2006/0184048 A1), which is incorporated herein by reference in its entirety.
The treatment system may additionally incorporate a steerable section 40 along catheter 12 proximal of frame assembly 10 to provide for articulation of the device when deployed within the patient body, as shown in the top view of
In use, the device may be advanced through a subxiphoid access point to access the thoracic cavity and the heart in particular.
Once the frame assembly 10 has been deployed over the pericardial tissue, an instrument such as a tissue grasper may be advanced through catheter 12 and into the working theater to grasp a portion of the pericardial tissue to stabilize it 56. A piercing instrument may then be advanced into the working theater through the catheter 12 and an opening may be created through the pericardial sac 58. With the opening formed, a guidewire may be advanced, for example, through the piercing instrument and through the pericardial sac into the epicardial space 60. Once the guidewire has been passed through the opening in the pericardial sac, the piercing instrument may be removed and a dilating instrument may be advanced along the guidewire to dilate the opening 62. Frame assembly 10 may then be collapsed back into its low-profile delivery configuration and advanced along the guidewire and through the dilated pericardial opening until it enters the epicardial space 64 where frame assembly 10 may then be reconfigured back to its deployed configuration. The re-deployment of the frame assembly 10 may retract the pericardial tissue to create the working theater within the epicardial space while directly against the epicardial tissue 66. The entire procedure may be performed while under the guidance of direct visualization through the fiberscope or electronic imager within the working theater to facilitate the access procedure as well as any subsequent treatments.
With cannula 86 desirably positioned, catheter 12 with frame assembly 10 in its low-profile delivery configuration may be advanced directly through cannula lumen 88 such that its distal end is advanced subxiphoid into the thoracic cavity 72 and in proximity to the pericardium 82, as shown in
Once catheter 12 has been advanced subxiphoid posterior to xiphoid process 76 and sternum 74 and into proximity to the surface of pericardium 82, frame assembly 10 may be reconfigured into its deployed configuration and opening 24 may be placed against the surface of the pericardial tissue, as shown in
With frame assembly 10 deployed and placed in apposition to pericardium 82, as shown in
With the engaged pericardial tissue portion 94 retracted from the underlying epicardial tissue, a hollow piercing instrument 96 may be advanced through catheter 12 and into the working theater and while under visual guidance via imager 90, a needle tip 98 of instrument 96 may be safely pierced through the engaged portion 94 and into the pericardial sac to form a pericardial opening 100, as shown in
Once the opening 100 has been suitably dilated, dilating instrument 104 may be removed and frame assembly 10 and catheter 12 may be re-advanced along guidewire 102 through opening 100 with frame assembly 10 configured in its low-profile shape. Once frame assembly 10 has been introduced within the epicardial space, frame assembly 10 may be reconfigured into its deployed configuration and placed into apposition directly against the epicardial tissue, which may be visualized within the working space while the pericardium 82 and other surrounding tissue is retracted by the expanded frame assembly 10. Frame assembly 10 may then be advanced along guidewire 102 to view and/or treat various regions of the epicardial tissue or the distal portion of catheter 12 may be articulated to move the frame assembly 10 around the epicardial surface, as shown in
In another variation,
The piercing instrument 96 may be advanced from an adjacent working channel through catheter 12 below a working channel for tissue engager 92 and advanced distally into the working theater until the piercing tip 98 punctures through the pericardial tissue to form an opening 100, as shown in
In yet another variation, the frame assembly 10 may further include one or more defined suction ports 138 positioned around the opening 24 to facilitate temporary securement or stabilization of the device against the tissue surface despite movement of the tissue such as when the heart beats. Generally, the frame assembly 10 may comprise an attachment portion 136 while the catheter 12 may include a flexible and/or elastic portion 134 to accommodate for the difference in relative movement between the frame assembly 10 and the catheter 12. As shown in the perspective views of
Moreover, including flexible segment 132 may also enable image stabilization within the working or surgical theater when visualizing a moving epicardial surface. As the distal hood member is attached and moving together with the beating heart, relative motion of the synchronized objects may allow visualized images of the moving epicardial surface to appear stationary.
In illustrating the utility and flexibility of the system for use in different procedures, various instruments are shown advanced through catheter 12 and positioned within the working or surgical theater in the perspective and partial cross-sectional side views of
Moreover, examples of various procedures that can be performed with the system may include, but are not limited to, pacing lead implantation, ablation of cardiac arrhythmias, left atrial appendage closure, percutaneous septal defect closure, percutaneous valve replacement, tamponade repair, epicardial ECG pacing and mapping, etc.
In yet another variation,
The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other treatments and areas of the body. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.
This application claims the benefit, of priority to U.S. Prov. Pat. App. 61/021,839 filed Jan. 17, 2008, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61021839 | Jan 2008 | US |