1. Field of the Invention
The present invention generally relates to peptides, and nucleic acids encoding peptides, that are useful epitopes of target-associated antigens. More specifically, the invention relates to epitopes that have a high affinity for MHC class I and that are produced by target-specific proteasomes. The invention disclosed herein further relates to the identification of epitope cluster regions that are used to generate pharmaceutical compositions capable of inducing an immune response from a subject to whom the compositions have been administered.
2. Description of the Related Art
Neoplasia and the Immune System
The neoplastic disease state commonly known as cancer is thought to result generally from a single cell growing out of control. The uncontrolled growth state typically results from a multi-step process in which a series of cellular systems fail, resulting in the genesis of a neoplastic cell. The resulting neoplastic cell rapidly reproduces itself, forms one or more tumors, and eventually may cause the death of the host.
Because the progenitor of the neoplastic cell shares the host's genetic material, neoplastic cells are largely unassailed by the host's immune system. During immune surveillance, the process in which the host's immune system surveys and localizes foreign materials, a neoplastic cell will appear to the host's immune surveillance machinery as a “self” cell.
Viruses and the Immune System
In contrast to cancer cells, virus infection involves the expression of clearly non-self antigens. As a result, many virus infections are successfully dealt with by the immune system with minimal clinical sequela. Moreover, it has been possible to develop effective vaccines for many of those infections that do cause serious disease. A variety of vaccine approaches have been used successfully to combat various diseases. These approaches include subunit vaccines consisting of individual proteins produced through recombinant DNA technology. Notwithstanding these advances, the selection and effective administration of minimal epitopes for use as viral vaccines has remained problematic.
In addition to the difficulties involved in epitope selection stands the problem of viruses that have evolved the capability of evading a host's immune system. Many viruses, especially viruses that establish persistent infections, such as members of the herpes and pox virus families, produce immunomodulatory molecules that permit the virus to evade the host's immune system. The effects of these immunomodulatory molecules on antigen presentation may be overcome by the targeting of select epitopes for administration as immunogenic compositions. To better understand the interaction of neoplastic cells and virally infected cells with the host's immune system, a discussion of the system's components follows below.
The immune system functions to discriminate molecules endogenous to an organism (“self” molecules) from material exogenous or foreign to the organism (“non-self” molecules). The immune system has two types of adaptive responses to foreign bodies based on the components that mediate the response: a humoral response and a cell-mediated response. The humoral response is mediated by antibodies, while the cell-mediated response involves cells classified as lymphocytes. Recent anticancer and antiviral strategies have focused on mobilizing the host immune system as a means of anticancer or antiviral treatment or therapy.
The immune system functions in three phases to protect the host from foreign bodies: the cognitive phase, the activation phase, and the effector phase. In the cognitive phase, the immune system recognizes and signals the presence of a foreign antigen or invader in the body. The foreign antigen can be, for example, a cell surface marker from a neoplastic cell or a viral protein. Once the system is aware of an invading body, antigen specific cells of the immune system proliferate and differentiate in response to the invader-triggered signals. The last stage is the effector stage in which the effector cells of the immune system respond to and neutralize the detected invader.
An array of effector cells implements an immune response to an invader. One type of effector cell, the B cell, generates antibodies targeted against foreign antigens encountered by the host. In combination with the complement system, antibodies direct the destruction of cells or organisms bearing the targeted antigen. Another type of effector cell is the natural killer cell (NK cell), a type of lymphocyte having the capacity to spontaneously recognize and destroy a variety of virus infected cells as well as malignant cell types. The method used by NK cells to recognize target cells is poorly understood.
Another type of effector cell, the T cell, has members classified into three subcategories, each playing a different role in the immune response. Helper T cells secrete cytokines which stimulate the proliferation of other cells necessary for mounting an effective immune response, while suppressor T cells down-regulate the immune response. A third category of T cell, the cytotoxic T cell (CTL), is capable of directly lysing a targeted cell presenting a foreign antigen on its surface.
The Major Histocompatibility Complex and T Cell Target Recognition
T cells are antigen-specific immune cells that function in response to specific antigen signals. B lymphocytes and the antibodies they produce are also antigen-specific entities. However, unlike B lymphocytes, T cells do not respond to antigens in a free or soluble form. For a T cell to respond to an antigen, it requires the antigen to be processed to peptides which are then bound to a presenting structure encoded in the major histocompatibility complex (MHC). This requirement is called “MHC restriction” and it is the mechanism by which T cells differentiate “self” from “non-self” cells. If an antigen is not displayed by a recognizable MHC molecule, the T cell will not recognize and act on the antigen signal. T cells specific for a peptide bound to a recognizable MHC molecule bind to these MHC-peptide complexes and proceed to the next stages of the immune response.
There are two types of MHC, class I MHC and class II MHC. T Helper cells (CD4+) predominately interact with class II MHC proteins while cytolytic T cells (CD8+) predominately interact with class I MHC proteins. Both classes of MHC protein are transmembrane proteins with a majority of their structure on the external surface of the cell. Additionally, both classes of MHC proteins have a peptide binding cleft on their external portions. It is in this cleft that small fragments of proteins, endogenous or foreign, are bound and presented to the extracellular environment.
Cells called “professional antigen presenting cells” (pAPCs) display antigens to T cells using the MHC proteins but additionally express various co-stimulatory molecules depending on the particular state of differentiation/activation of the pAPC. When T cells, specific for the peptide bound to a recognizable MHC protein, bind to these MHC-peptide complexes on pAPCs, the specific co-stimulatory molecules that act upon the T cell direct the path of differentiation/activation taken by the T cell. That is, the co-stimulation molecules affect how the T cell will act on antigenic signals in future encounters as it proceeds to the next stages of the immune response.
As discussed above, neoplastic cells are largely ignored by the immune system. A great deal of effort is now being expended in an attempt to harness a host's immune system to aid in combating the presence of neoplastic cells in a host. One such area of research involves the formulation of anticancer vaccines.
Anticancer Vaccines
Among the various weapons available to an oncologist in the battle against cancer is the immune system of the patient. Work has been done in various attempts to cause the immune system to combat cancer or neoplastic diseases. Unfortunately, the results to date have been largely disappointing. One area of particular interest involves the generation and use of anticancer vaccines.
To generate a vaccine or other immunogenic composition, it is necessary to introduce to a subject an antigen or epitope against which an immune response may be mounted. Although neoplastic cells are derived from and therefore are substantially identical to normal cells on a genetic level, many neoplastic cells are known to present tumor-associated antigens (TuAAs). In theory, these antigens could be used by a subject's immune system to recognize these antigens and attack the neoplastic cells. In reality, however, neoplastic cells generally appear to be ignored by the host's immune system.
A number of different strategies have been developed in an attempt to generate vaccines with activity against neoplastic cells. These strategies include the use of tumor-associated antigens as immunogens. For example, U.S. Pat. No. 5,993,828, describes a method for producing an immune response against a particular subunit of the Urinary Tumor Associated Antigen by administering to a subject an effective dose of a composition comprising inactivated tumor cells having the Urinary Tumor Associated Antigen on the cell surface and at least one tumor associated antigen selected from the group consisting of GM-2, GD-2, Fetal Antigen and Melanoma Associated Antigen. Accordingly, this patent describes using whole, inactivated tumor cells as the immunogen in an anticancer vaccine.
Another strategy used with anticancer vaccines involves administering a composition containing isolated tumor antigens. In one approach, MAGE-A1 antigenic peptides were used as an immunogen. (See Chaux, P., et al., “Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by In Vitro Stimulation with Dendritic Cells Transduced with MAGE-A1,” J. Immunol., 163(5):2928-2936 (1999)). There have been several therapeutic trials using MAGE-A1 peptides for vaccination, although the effectiveness of the vaccination regimes was limited. The results of some of these trials are discussed in Vose, J. M., “Tumor Antigens Recognized by T Lymphocytes,” 10th European Cancer Conference, Day 2, Sep. 14, 1999.
In another example of tumor associated antigens used as vaccines, Scheinberg, et al. treated 12 chronic myelogenous leukemia (CML) patients already receiving interferon (IFN) or hydroxyurea with 5 injections of class I-associated bcr-abl peptides with a helper peptide plus the adjuvant QS-21. Scheinberg, D. A., et al., “BCR-ABL Breakpoint Derived Oncogene Fusion Peptide Vaccines Generate Specific Immune Responses in Patients with Chronic Myelogenous Leukemia (CML) [Abstract 1665], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999). Proliferative and delayed type hypersensitivity (DTH) T cell responses indicative of T-helper activity were elicited, but no cytolytic killer T cell activity was observed within the fresh blood samples.
Additional examples of attempts to identify TuAAs for use as vaccines are seen in the recent work of Cebon, et al. and Scheibenbogen, et al. Cebon, et al. immunized patients with metastatic melanoma using intradermallly administered MART-126-35 peptide with IL-12 in increasing doses given either subcutaneously or intravenously. Of the first 15 patients, 1 complete remission, 1 partial remission, and 1 mixed response were noted. Immune assays for T cell generation included DTH, which was seen in patients with or without IL-12. Positive CTL assays were seen in patients with evidence of clinical benefit, but not in patients without tumor regression. Cebon, et al., “Phase I Studies of Immunization with Melan-A and IL-12 in HLA A2+Positive Patients with Stage III and IV Malignant Melanoma,” [Abstract 1671], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999).
Scheibenbogen, et al. immunized 18 patients with 4 HLA class I restricted tyrosinase peptides, 16 with metastatic melanoma and 2 adjuvant patients. Scheibenbogen, et al., “Vaccination with Tyrosinase peptides and GM-CSF in Metastatic Melanoma: a Phase II Trial,” [Abstract 1680], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999). Increased CTL activity was observed in 4/15 patients, 2 adjuvant patients, and 2 patients with evidence of tumor regression. As in the trial by Cebon, et al., patients with progressive disease did not show boosted immunity. In spite of the various efforts expended to date to generate efficacious anticancer vaccines, no such composition has yet been developed.
Antiviral Vaccines
Vaccine strategies to protect against viral diseases have had many successes. Perhaps the most notable of these is the progress that has been made against the disease small pox, which has been driven to extinction. The success of the polio vaccine is of a similar magnitude.
Viral vaccines can be grouped into three classifications: live attenuated virus vaccines, such as vaccinia for small pox, the Sabin poliovirus vaccine, and measles mumps and rubella; whole killed or inactivated virus vaccines, such as the Salk poliovirus vaccine, hepatitis A virus vaccine and the typical influenza virus vaccines; and subunit vaccines, such as hepatitis B. Due to their lack of a complete viral genome, subunit vaccines offer a greater degree of safety than those based on whole viruses.
The paradigm of a successful subunit vaccine is the recombinant hepatitis B vaccine based on the viruses envelope protein. Despite much academic interest in pushing the reductionist subunit concept beyond single proteins to individual epitopes, the efforts have yet to bear much fruit. Viral vaccine research has also concentrated on the induction of an antibody response although cellular responses also occur. However, many of the subunit formulations are particularly poor at generating a CTL response.
Previous methods of priming professional antigen presenting cells (pAPCs) to display target cell epitopes have relied simply on causing the pAPCs to express target-associated antigens (TAAs), or epitopes of those antigens which are thought to have a high affinity for MHC I molecules. However, the proteasomal processing of such antigens results in presentation of epitopes on the pAPC that do not correspond to the epitopes present on the target cells.
Using the knowledge that an effective cellular immune response requires that pAPCs present the same epitope that is presented by the target cells, the present invention provides epitopes that have a high affinity for MHC I, and that correspond to the processing specificity of the housekeeping proteasome, which is active in peripheral cells. These epitopes thus correspond to those presented on target cells. The use of such epitopes in vaccines can activate the cellular immune response to recognize the correctly processed TAA and can result in removal of target cells that present such epitopes. In some embodiments, the housekeeping epitopes provided herein can be used in combination with immune epitopes, generating a cellular immune response that is competent to attack target cells both before and after interferon induction. In other embodiments the epitopes are useful in the diagnosis and monitoring of the target-associated disease and in the generation of immunological reagents for such purposes.
In some aspects, the invention disclosed herein relates to the identification of epitope cluster regions that are used to generate pharmaceutical compositions capable of inducing an immune response from a subject to whom the compositions have been administered. One embodiment of the disclosed invention relates to an epitope cluster, the cluster being derived from an antigen associated with a target, the cluster including or encoding at least two sequences having a known or predicted affinity for an MHC receptor peptide binding cleft, wherein the cluster is an incomplete fragment of the antigen.
In one aspect of the invention, the target is a neoplastic cell.
In another aspect of the invention, the MHC receptor may be a class I HLA receptor.
In yet another aspect of the invention, the cluster includes or encodes a polypeptide having a length, wherein the length is at least 10 amino acids. Advantageously, the length of the polypeptide may be less than about 75 amino acids.
In still another aspect of the invention, there is provided an antigen having a length, wherein the cluster consists of or encodes a polypeptide having a length, wherein the length of the polypeptide is less than about 80% of the length of the antigen. Preferably, the length of the polypeptide is less than about 50% of the length of the antigen. Most preferably, the length of the polypeptide is less than about 20% of the length of the antigen.
Embodiments of the invention particularly relate to epitope clusters identified in the tumor-associated antigen PRAME (SEQ ID NO: 77). One embodiment of the invention relates to an isolated nucleic acid containing a reading frame with a first sequence encoding one or more segments of PRAME, wherein the whole antigen is not encoded, wherein each segment contains an epitope cluster, and wherein each cluster contains at least two amino acid sequences with a known or predicted affinity for a same MHC receptor peptide binding cleft. In various aspects of the invention the epitope cluster can be amino acids 18-59, 33-47, 71-81, 78-115, 99-108, 126-135, 222-238, 224-246, 290-303, 305-324, 343-363, 364-447, 394-409, 422-443, or 459-487 of PRAME.
In other aspects, the segments can consist of an epitope cluster; the first sequence can be a fragment of PRAME; the fragment can consist of a polypeptide having a length, wherein the length of the polypeptide is less than about 90%, 80%, 60%, 50%, 25%, or 10% of the length of PRAME. The fragment can consist essentially of an amino acid sequence beginning at amino acid 18, 33, 71, 78, 99, 126, 222, 224, 290, 305, 343, 364, 394, 422, or 459 of PRAME and ending at amino acid 47, 59, 81, 108, 115, 135, 238, 246, 303, 324, 363, 409, 443, 447, or 487 of PRAME. In some embodiments, the encoded fragment consists essentially of amino acids 18-47, 18-59, 18-81, 18-108, 18-115, 18-135, 18-238, 18-246, 18-303, 18-324, 18-363, 18-409, 18-443, 18-447, 18-487, 33-47, 33-59, 33-81, 33-108, 33-115, 33-135, 33-238, 33-246, 33-303, 33-324, 33-363, 33-409, 33-443, 33-447, 33-487, 71-81, 71-108, 71-115, 71-135, 71-238, 71-246, 71-303, 71-324, 71-363, 71-409, 71-443, 71-447, 71-487, 78-108, 78-115, 78-135, 78-238, 78-246, 78-303, 78-324, 78-363, 78-409, 78-443, 78-447, 78-487, 99-108, 99-115, 99-135, 99-238, 99-246, 99-303, 99-324, 99-363, 99-409, 99-443, 99-447, 99-487, 126-135, 126-238, 126-246, 126-303, 126-324, 126-363, 126-409, 126-443, 126-447, 126-487, 222-238, 222-246, 222-303, 222-324, 222-363, 222-409, 222-443, 222-447, 222-487, 224-238, 224-246, 224-303, 224-324, 224-363, 224-409, 224-443, 224-447, 224-487, 290-303, 290-324, 290-363, 290-409, 290-443, 290-447, 290-487, 305-324, 305-363, 305-409, 305-443, 305-447, 305-487, 343-363, 343-409, 343-443, 343-447, 343-487, 364-409, 364-443, 364-447, 364-487, 394-409, 394-443, 394-447, 394-487, 422-443, 422-447, 422-487, 459-487, 18-487, 224-487 of PRAME.
The first sequence can be a fragment of SSX-2. The fragment consists of a polypeptide having a length, wherein the length of the polypeptide is less than about 90%, 80%, 60%, 50%, 25%, or 10% of the length of SSX-2.
Further embodiments of the invention include a second sequence encoding essentially a housekeeping epitope. In one aspect of this embodiment the first and second sequences constitute a single reading frame. In aspects of the invention the reading frame is operably linked to a promoter. Other embodiments of the invention include the polypeptides encoded by the nucleic acid embodiments of the invention and immunogenic compositions containing the nucleic acids or polypeptides of the invention.
Other embodiments of the invention relate to isolated epitopes, and antigens or polypeptides that comprise the epitopes. Preferred embodiments include an epitope or antigen having the sequence as disclosed in Table 1. Other embodiments can include an epitope cluster comprising a polypeptide from Table 1. Further, embodiments include a polypeptide having substantial similarity to the already mentioned epitopes, polypeptides, antigens, or clusters. Other preferred embodiments include a polypeptide having functional similarity to any of the above. Still further embodiments relate to a nucleic acid encoding the polypeptide of any of the epitopes, clusters, antigens, and polypeptides from Table 1 and mentioned herein. For purposes of the following summary, discussions of other embodiments of the invention, when making reference to “the epitope,” or “the epitopes” may refer without limitation to all of the foregoing forms of the epitope.
The epitope can be immunologically active. The polypeptide comprising the epitope can be less than about 30 amino acids in length, more preferably, the polypeptide is 8 to 10 amino acids in length, for example. Substantial or functional similarity can include addition of at least one amino acid, for example, and the at least one additional amino acid can be at an N-terminus of the polypeptide. The substantial or functional similarity can include a substitution of at least one amino acid.
The epitope, cluster, or polypeptide comprising the same can have affinity to an HLA-A2 molecule. The affinity can be determined by an assay of binding, by an assay of restriction of epitope recognition, by a prediction algorithm, and the like. The epitope, cluster, or polypeptide comprising the same can have affinity to an HLA-B7, HLA-B51 molecule, and the like.
In preferred embodiments the polypeptide can be a housekeeping epitope. The epitope or polypeptide can correspond to an epitope displayed on a tumor cell, to an epitope displayed on a neovasculature cell, and the like. The epitope or polypeptide can be an immune epitope. The epitope, cluster and/or polypeptide can be a nucleic acid.
Other embodiments relate to pharmaceutical compositions comprising the polypeptides, including an epitope from Table 1, a cluster, or a polypeptide comprising the same, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like. The adjuvant can be a polynucleotide. The polynucleotide can include a dinucleotide, which can be CpG, for example. The adjuvant can be encoded by a polynucleotide. The adjuvant can be a cytokine and the cytokine can be, for example, GM-CSF.
The pharmaceutical compositions can further include a professional antigen-presenting cell (pAPC). The pAPC can be a dendritic cell, for example. The pharmaceutical composition can further include a second epitope. The second epitope can be a polypeptide, a nucleic acid, a housekeeping epitope, an immune epitope, and the like.
Still further embodiments relate to pharmaceutical compositions that include any of the nucleic acids discussed herein, including those that encode polypeptides that comprise epitopes or antigens from Table 1. Such compositions can include a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
Other embodiments relate to recombinant constructs that include such a nucleic acid as described herein, including those that encode polypeptides that comprise epitopes or antigens from Table 1. The constructs can further include a plasmid, a viral vector, an artificial chromosome, and the like. The construct can further include a sequence encoding at least one feature, such as for example, a second epitope, an IRES, an ISS, an NIS, a ubiquitin, and the like.
Further embodiments relate to purified antibodies that specifically bind to at least one of the epitopes in Table 1. Other embodiments relate to purified antibodies that specifically bind to a peptide-MHC protein complex comprising an epitope disclosed in Table 1 or any other suitable epitope. The antibody from any embodiment can be a monoclonal antibody or a polyclonal antibody.
Still other embodiments relate to multimeric MHC-peptide complexes that include an epitope, such as, for example, an epitope disclosed in Table 1. Also, contemplated are antibodies specific for the complexes.
Embodiments relate to isolated T cells expressing a T cell receptor specific for an MHC-peptide complex. The complex can include an epitope, such as, for example, an epitope disclosed in Table 1. The T cell can be produced by an in vitro immunization and can be isolated from an immunized animal. Embodiments relate to T cell clones, including cloned T cells, such as those discussed above. Embodiments also relate to polyclonal population of T cells. Such populations can include a T cell, as described above, for example.
Still further embodiments relate to pharmaceutical compositions that include a T cell, such as those described above, for example, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
Embodiments of the invention relate to isolated protein molecules comprising the binding domain of a T cell receptor specific for an MHC-peptide complex. The complex can include an epitope as disclosed in Table 1. The protein can be multivalent. Other embodiments relate to isolated nucleic acids encoding such proteins. Still further embodiments relate to recombinant constructs that include such nucleic acids.
Other embodiments of the invention relate to host cells expressing a recombinant construct as described herein, including constructs encoding an epitope, cluster or polypeptide comprising the same, disclosed in Table 1, for example. The host cell can be a dendritic cell, macrophage, tumor cell, tumor-derived cell, a bacterium, fungus, protozoan, and the like. Embodiments also relate to pharmaceutical compositions that include a host cell, such as those discussed herein, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
Still other embodiments relate to vaccines or immunotherapeutic compositions that include at least one component, such as, for example, an epitope disclosed in Table 1 or otherwise described herein; a cluster that includes such an epitope, an antigen or polypeptide that includes such an epitope; a composition as described above and herein; a construct as described above and herein, a T cell, or a host cell as described above and herein.
Further embodiments relate to methods of treating an animal. The methods can include administering to an animal a pharmaceutical composition, such as, a vaccine or immunotherapeutic composition, including those disclosed above and herein. The administering step can include a mode of delivery, such as, for example, transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, mucosal, aerosol inhalation, instillation, and the like. The method can further include a step of assaying to determine a characteristic indicative of a state of a target cell or target cells. The method can include a first assaying step and a second assaying step, wherein the first assaying step precedes the administering step, and wherein the second assaying step follows the administering step. The method can further include a step of comparing the characteristic determined in the first assaying step with the characteristic determined in the second assaying step to obtain a result. The result can be for example, evidence of an immune response, a diminution in number of target cells, a loss of mass or size of a tumor comprising target cells, a decrease in number or concentration of an intracellular parasite infecting target cells, and the like.
Embodiments relate to methods of evaluating immunogenicity of a vaccine or immunotherapeutic composition. The methods can include administering to an animal a vaccine or immunotherapeutic, such as those described above and elsewhere herein, and evaluating immunogenicity based on a characteristic of the animal. The animal can be HLA-transgenic.
Other embodiments relate to methods of evaluating immunogenicity that include in vitro stimulation of a T cell with the vaccine or immunotherapeutic composition, such as those described above and elsewhere herein, and evaluating immunogenicity based on a characteristic of the T cell. The stimulation can be a primary stimulation.
Still further embodiments relate to methods of making a passive/adoptive immunotherapeutic. The methods can include combining a T cell or a host cell, such as those described above and elsewhere herein, with a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
Other embodiments relate to methods of determining specific T cell frequency, and can include the step of contacting T cells with a MHC-peptide complex comprising an epitope disclosed in Table 1, or a complex comprising a cluster or antigen comprising such an epitope. The contacting step can include at least one feature, such as, for example, immunization, restimulation, detection, enumeration, and the like. The method can further include ELISPOT analysis, limitirig dilution analysis, flow cytometry, in situ hybridization, the polymerase chain reaction, any combination thereof, and the like.
Embodiments relate to methods of evaluating immunologic response. The methods can include the above-described methods of determining specific T cell frequency carried out prior to and subsequent to an immunization step.
Other embodiments relate to methods of evaluating immunologic response. The methods can include determining frequency, cytokine production, or cytolytic activity of T cells, prior to and subsequent to a step of stimulation with MHC-peptide complexes comprising an epitope, such as, for example an epitope from Table 1, a cluster or a polypeptide comprising such an epitope.
Further embodiments relate to methods of diagnosing a disease. The methods can include contacting a subject tissue with at least one component, including, for example, a T cell, a host cell, an antibody, a protein, including those described above and elsewhere herein; and diagnosing the disease based on a characteristic of the tissue or of the component. The contacting step can take place in vivo or in vitro, for example.
Still other embodiments relate to methods of making a vaccine. The methods can include combining at least one component, an epitope, a composition, a construct, a T cell, a host cell; including any of those described above and elsewhere herein, with a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
Embodiments relate to computer readable media having recorded thereon the sequence of any one of SEQ ID NOS: 1-602, in a machine having a hardware or software that calculates the physical, biochemical, immunologic, molecular genetic properties of a molecule embodying said sequence, and the like.
Still other embodiments relate to methods of treating an animal. The methods can include combining the method of treating an animal that includes administering to the animal a vaccine or immunotherapeutic composition, such as described above and elsewhere herein, combined with at least one mode of treatment, including, for example, radiation therapy, chemotherapy, biochemotherapy, surgery, and the like.
Further embodiments relate to isolated polypeptides that include an epitope cluster. In preferred embodiments the cluster can be from a target-associated antigen having the sequence as disclosed in any one of Tables 25-44, wherein the amino acid sequence includes not more than about 80% of the amino acid sequence of the antigen.
Other embodiments relate to vaccines or immunotherapeutic products that include an isolated peptide as described above and elsewhere herein. Still other embodiments relate to isolated polynucleotides encoding a polypeptide as described above and elsewhere herein. Other embodiments relate vaccines or immunotherapeutic products that include these polynucleotides. The polynucleotide can be DNA, RNA, and the like.
Still further embodiments relate to kits comprising a delivery device and any of the embodiments mentioned above and elsewhere herein. The delivery device can be a catheter, a syringe, an internal or external pump, a reservoir, an inhaler, microinjector, a patch, and any other like device suitable for any route of delivery. As mentioned, the kit, in addition to the delivery device also includes any of the embodiments disclosed herein. For example, without limitations, the kit can include an isolated epitope, a polypeptide, a cluster, a nucleic acid, an antigen, a pharmaceutical composition that includes any of the foregoing, an antibody, a T cell, a T cell receptor, an epitope-MHC complex, a vaccine, an immunotherapeutic, and the like. The kit can also include items such as detailed instructions for use and any other like item.
Definitions
Unless otherwise clear from the context of the use of a term herein, the following listed terms shall generally have the indicated meanings for purposes of this description.
PROFESSIONAL ANTIGEN-PRESENTING CELL (pAPC)—a cell that possesses T cell costimulatory molecules and is able to induce a T cell response. Well characterized pAPCs include dendritic cells, B cells, and macrophages.
PERIPHERAL CELL—a cell that is not a pAPC.
HOUSEKEEPING PROTEASOME—a proteasome normally active in peripheral cells, and generally not present or not strongly active in pAPCs.
IMMUNE PROTEASOME—a proteasome normally active in pAPCs; the immune proteasome is also active in some peripheral cells in infected tissues.
EPITOPE—a molecule or substance capable of stimulating an immune response. In preferred embodiments, epitopes according to this definition include but are not necessarily limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein the polypeptide is capable of stimulating an immune response. In other preferred embodiments, epitopes according to this definition include but are not necessarily limited to peptides presented on the surface of cells, the peptides being non-covalently bound to the binding cleft of class I MHC, such that they can interact with T cell receptors.
MHC EPITOPE—a polypeptide having a known or predicted binding affinity for a mammalian class I or class II major histocompatibility complex (MHC) molecule.
HOUSEKEEPING EPITOPE—In a preferred embodiment, a housekeeping epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which housekeeping proteasomes are predominantly active. In another preferred embodiment, a housekeeping epitope is defined as a polypeptide containing a housekeeping epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, a housekeeping epitope is defined as a nucleic acid that encodes a housekeeping epitope according to the foregoing definitions.
IMMUNE EPITOPE—In a preferred embodiment, an immune epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which immune proteasomes are predominantly active. In another preferred embodiment, an immune epitope is defined as a polypeptide containing an immune epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, an immune epitope is defined as a polypeptide including an epitope cluster sequence, having at least two polypeptide sequences having a known or predicted affinity for a class I MHC. In yet another preferred embodiment, an immune epitope is defined as a nucleic acid that encodes an immune epitope according to any of the foregoing definitions.
TARGET CELL—a cell to be targeted by the vaccines and methods of the invention. Examples of target cells according to this definition include but are not necessarily limited to: a neoplastic cell and a cell harboring an intracellular parasite, such as, for example, a virus, a bacterium, or a protozoan.
TARGET-ASSOCIATED ANTIGEN (TAA)—a protein or polypeptide present in a target cell.
TUMOR-ASSOCIATED ANTIGENS (TuAA)—a TAA, wherein the target cell is a neoplastic cell.
HLA EPITOPE—a polypeptide having a known or predicted binding affinity for a human class I or class II HLA complex molecule.
ANTIBODY—a natural immunoglobulin (Ig), poly- or monoclonal, or any molecule composed in whole or in part of an Ig binding domain, whether derived biochemically or by use of recombinant DNA. Examples include inter alia, F(ab), single chain Fv, and Ig variable region-phage coat protein fusions.
ENCODE—an open-ended term such that a nucleic acid encoding a particular amino acid sequence can consist of codons specifying that (poly)peptide, but can also comprise additional sequences either translatable, or for the control of transcription, translation, or replication, or to facilitate manipulation of some host nucleic acid construct.
SUBSTANTIAL SIMILARITY—this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of the sequence. Nucleic acid sequences encoding the same amino acid sequence are substantially similar despite differences in degenerate positions or modest differences in length or composition of any non-coding regions. Amino acid sequences differing only by conservative substitution or minor length variations are substantially similar. Additionally, amino acid sequences comprising housekeeping epitopes that differ in the number of N-terminal flanking residues, or immune epitopes and epitope clusters that differ in the number of flanking residues at either terminus, are substantially similar. Nucleic acids that encode substantially similar amino acid sequences are themselves also substantially similar.
FUNCTIONAL SIMILARITY—this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of a biological or biochemical property, although the sequences may not be substantially similar. For example, two nucleic acids can be useful as hybridization probes for the same sequence but encode differing amino acid sequences. Two peptides that induce cross-reactive CTL responses are functionally similar even if they differ by non-conservative amino acid substitutions (and thus do not meet the substantial similarity definition). Pairs of antibodies, or TCRs, that recognize the same epitope can be functionally similar to each other despite whatever structural differences exist. In testing for functional similarity of immunogenicity one would generally immunize with the “altered” antigen and test the ability of the elicited response (Ab, CTL, cytokine production, etc.) to recognize the target antigen. Accordingly, two sequences may be designed to differ in certain respects while retaining the same function. Such designed sequence variants are among the embodiments of the present invention.
Epitope Clusters
Embodiments of the invention disclosed herein provide epitope cluster regions (ECRs) for use in vaccines and in vaccine design and epitope discovery. Specifically, embodiments of the invention relate to identifying epitope clusters for use in generating immunologically active compositions directed against target cell populations, and for use in the discovery of discrete housekeeping epitopes and immune epitopes. In many cases, numerous putative class I MHC epitopes may exist in a single target-associated antigen (TAA). Such putative epitopes are often found in clusters (ECRs), MHC epitopes distributed at a relatively high density within certain regions in the amino acid sequence of the parent TAA. Since these ECRs include multiple putative epitopes with potential useful biological activity in inducing an immune response, they represent an excellent material for in vitro or in vivo analysis to identify particularly useful epitopes for vaccine design. And, since the epitope clusters can themselves be processed inside a cell to produce active MHC epitopes, the clusters can be used directly in vaccines, with one or more putative epitopes in the cluster actually being processed into an active MHC epitope.
The use of ECRs in vaccines offers important technological advances in the manufacture of recombinant vaccines, and further offers crucial advantages in safety over existing nucleic acid vaccines that encode whole protein sequences. Recombinant vaccines generally rely on expensive and technically challenging production of whole proteins in microbial fermentors. ECRs offer the option of using chemically synthesized polypeptides, greatly simplifying development and manufacture, and obviating a variety of safety concerns. Similarly, the ability to use nucleic acid sequences encoding ECRs, which are typically relatively short regions of an entire sequence, allows the use of synthetic oligonucleotide chemistry processes in the development and manipulation of nucleic acid based vaccines, rather than the more expensive, time consuming, and potentially difficult molecular biology procedures involved with using whole gene sequences.
Since an ECR is encoded by a nucleic acid sequence that is relatively short compared to that which encodes the whole protein from which the ECR is found, this can greatly improve the safety of nucleic acid vaccines. An important issue in the field of nucleic acid vaccines is the fact that the extent of sequence homology of the vaccine with sequences in the animal to which it is administered determines the probability of integration of the vaccine sequence into the genome of the animal. A fundamental safety concern of nucleic acid vaccines is their potential to integrate into genomic sequences, which can cause deregulation of gene expression and tumor transformation. The Food and Drug Administration has advised that nucleic acid and recombinant vaccines should contain as little sequence homology with human sequences as possible. In the case of vaccines delivering tumor-associated antigens, it is inevitable that the vaccines contain nucleic acid sequences that are homologous to those which encode proteins that are expressed in the tumor cells of patients. It is, however, highly desirable to limit the extent of those sequences to that which is minimally essential to facilitate the expression of epitopes for inducing therapeutic immune responses. The use of ECRs thus offers the dual benefit of providing a minimal region of homology, while incorporating multiple epitopes that have potential therapeutic value.
ECRs are Processed into MHC-Binding Epitopes in pAPCs
The immune system constantly surveys the body for the presence of foreign antigens, in part through the activity of pAPCs. The pAPCs endocytose matter found in the extracellular milieu, process that matter from a polypeptide form into shorter oligopeptides of about 3 to 23 amino acids in length, and display some of the resulting peptides to T cells via the MHC complex of the pAPCs. For example, a tumor cell upon lysis releases its cellular contents, including various proteins, into the extracellular milieu. Those released proteins can be endocytosed by pAPCs and processed into discrete peptides that are then displayed on the surface of the pAPCs via the MHC. By this mechanism, it is not the entire target protein that is presented on the surface of the pAPCs, but rather only one or more discrete fragments of that protein that are presented as MHC-binding epitopes. If a presented epitope is recognized by a T cell, that T cell is activated and an immune response results.
Similarly, the scavenger receptors on pAPC can take-up naked nucleic acid sequences or recombinant organisms containing target nucleic acid sequences. Uptake of the nucleic acid sequences into the pAPC subsequently results in the expression of the encoded products. As above, when an ECR can be processed into one or more useful epitopes, these products can be presented as MHC epitopes for recognition by T cells.
MHC-binding epitopes are often distributed unevenly throughout a protein sequence in clusters. Embodiments of the invention are directed to identifying epitope cluster regions (ECRs) in a particular region of a target protein. Candidate ECRs are likely to be natural substrates for various proteolytic enzymes and are likely to be processed into one or more epitopes for MHC display on the surface of an pAPC. In contrast to more traditional vaccines that deliver whole proteins or biological agents, ECRs can be administered as vaccines, resulting in a high probability that at least one epitope will be presented on MHC without requiring the use of a full length sequence.
The Use of ECRs in Identifying Discrete MHC-Binding Epitopes
Identifying putative MHC epitopes for use in vaccines often includes the use of available predictive algorithms that analyze the sequences of proteins or genes to predict binding affinity of peptide fragments for MHC. These algorithms rank putative epitopes according to predicted affinity or other characteristics associated with MHC binding. Exemplary algorithms for this kind of analysis include the Rammensee and NIH (Parker) algorithms. However, identifying epitopes that are naturally present on the surface of cells from among putative epitopes predicted using these algorithms has proven to be a difficult and laborious process. The use of ECRs in an epitope identification process can enormously simplify the task of identifying discrete MHC binding epitopes.
In a preferred embodiment, ECR polypeptides are synthesized on an automated peptide synthesizer and these ECRs are then subjected to in vitro digests using proteolytic enzymes involved in processing proteins for presentation of the epitopes. Mass spectrometry and/or analytical HPLC are then used to identify the digest products and in vitro MHC binding studies are used to assess the ability of these products to actually bind to MHC. Once epitopes contained in ECRs have been shown to bind MHC, they can be incorporated into vaccines or used as diagnostics, either as discrete epitopes or in the context of ECRs.
The use of an ECR (which because of its relatively short sequence can be produced through chemical synthesis) in this preferred embodiment is a significant improvement over what otherwise would require the use of whole protein. This is because whole proteins have to be produced using recombinant expression vector systems and/or complex purification procedures. The simplicity of using chemically synthesized ECRs enables the analysis and identification of large numbers of epitopes, while greatly reducing the time and expense of the process as compared to other currently used methods. The use of a defined ECR also greatly simplifies mass spectrum analysis of the digest, since the products of an ECR digest are a small fraction of the digest products of a whole protein.
In another embodiment, nucleic acid sequences encoding ECRs are used to express the polypeptides in cells or cell lines to assess which epitopes are presented on the surface. A variety of means can be used to detect the epitope on the surface. Preferred embodiments involve the lysis of the cells and affinity purification of the MHC, and subsequent elution and analysis of peptides from the MHC; or elution of epitopes from intact cells; (Falk, K. et al. Nature 351:290, 1991, and U.S. Pat. No. 5,989,565, respectively, both of which references are incorporated herein by reference in their entirety). A sensitive method for analyzing peptides eluted in this way from the MHC employs capillary or nanocapillary HPLC ESI mass spectrometry and on-line sequencing.
Target-Associated Antizens that Contain ECRs
TAAs from which ECRs may be defined include those from TuAAs, including oncofetal, cancer-testis, deregulated genes, fusion genes from errant translocations, differentiation antigens, embryonic antigens, cell cycle proteins, mutated tumor suppressor genes, and overexpressed gene products, including oncogenes. In addition, ECRs may be derived from virus gene products, particularly those associated with viruses that cause chronic diseases or are oncogenic, such as the herpes viruses, human papilloma viruses, human immunodeficiency virus, and human T cell leukemia virus. Also ECRs may be derived from gene products of parasitic organisms, such as Trypanosoma, Leishmania, and other intracellular or parasitic organisms.
Some of these TuAA include α-fetoprotein, carcinoembryonic antigen (CEA), esophageal cancer derived NY-ESO-1, and SSX genes, SCP-1, PRAME, MART-1/MelanA (MART-1), gp100 (Pmel 17), tyrosinase, TRP-1, TRP-2, MAGE-1, MAGE-2, MAGE-3, BAGE, GAGE-1, GAGE-2, p15; overexpressed oncogenes and mutated tumor-suppressor genes such as p53, Ras, HER-2/neu; unique tumor antigens resulting from chromosomal translocations such as BCR-ABL, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR1 and viral antigens, EBNA1, EBNA2, HPV-E6, -E7; prostate specific antigen (PSA), prostate stem cell antigen (PSCA), MAAT-1, GP-100, TSP-180, MAGE-4, MAGE-5, MAGE-6, RAGE, p185erbB-2, p185erbB-3, c-met, nm-23H1, TAG-72, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, β-Catenin, CDK4, Mum-1, p15, and p16.
Numerous other TAAs are also contemplated for both pathogens and tumors. In terms of TuAAs, a variety of methods are available and well known in the art to identify genes and gene products that are differentially expressed in neoplastic cells as compared to normal cells. Examples of these techniques include differential hybridization, including the use of microarrays; subtractive hybridization cloning; differential display, either at the level of mRNA or protein expression; EST sequencing; and SAGE (sequential analysis of gene expression). These nucleic acid techniques have been reviewed by Carulli, J. P. et al., J. Cellular Biochem Suppl. 30/31:286-296, 1998 (hereby incorporated by reference). Differential display of proteins involves, for example, comparison of two-dimensional poly-acrylamide gel electrophoresis of cell lysates from tumor and normal tissue, location of protein spots unique or overexpressed in the tumor, recovery of the protein from the gel, and identification of the protein using traditional biochemical- or mass spectrometry-based sequencing. An additional technique for identification of TAAs is the Serex technique, discussed in Türeci, Ö., Sahin, U., and Pfreundschuh, M., “Serological analysis of human tumor antigens: molecular definition and implications”, Molecular Medicine Today, 3:342, 1997, and hereby incorporated by reference.
Use of these and other methods provides one of skill in the art the techniques necessary to identify genes and gene products contained within a target cell that may be used as potential candidate proteins for generating the epitopes of the invention disclosed. However, it is not necessary, in practicing the invention, to identify a novel TuAA or TAA. Rather, embodiments of the invention make it possible to identify ECRs from any relevant protein sequence, whether the sequence is already known or is new. Protein Sequence Analysis to Identify Epitope Clusters
In preferred embodiments of the invention, identification of ECRs involves two main steps: (1) identifying good putative epitopes; and (2) defining the limits of any clusters in which these putative epitopes are located. There are various preferred embodiments of each of these two steps, and a selected embodiment for the first step can be freely combined with a selected embodiment for the second step. The methods and embodiments that are disclosed herein for each of these steps are merely exemplary, and are not intended to limit the scope of the invention in any way. Persons of skill in the art will appreciate the specific tools that can be applied to the analysis of a specific TAA, and such analysis can be conducted in numerous ways in accordance with the invention.
Preferred embodiments for identifying good putative epitopes include the use of any available predictive algorithm that analyzes the sequences of proteins or genes to predict binding affinity of peptide fragments for MHC, or to rank putative epitopes according to predicted affinity or other characteristics associated with MHC binding. As described above, available exemplary algorithms for this kind of analysis include the Rammensee and NIH (Parker) algorithms. Likewise, good putative epitopes can be identified by direct or indirect assays of MHC binding. To choose “good” putative epitopes, it is necessary to set a cutoff point in terms of the score reported by the prediction software or in terms of the assayed binding affinity. In some embodiments, such a cutoff is absolute. For example, the cutoff can be based on the measured or predicted half time of dissociation between an epitope and a selected MHC allele. In such cases, embodiments of the cutoff can be any half time of dissociation longer than, for example, 0.5 minutes; in a preferred embodiment longer than 2.5 minutes; in a more preferred embodiment longer than 5 minutes; and in a highly stringent embodiment can be longer than 10, or 20, or 25 minutes. In these embodiments, the good putative epitopes are those that are predicted or identified to have good MHC binding characteristics, defined as being on the desirable side of the designated cutoff point. Likewise, the cutoff can be based on the measured or predicted binding affinity between an epitope and a selected MHC allele. Additionally, the absolute cutoff can be simply a selected number of putative epitopes.
In other embodiments, the cutoff is relative. For example, a selected percentage of the total number of putative epitopes can be used to establish the cutoff for defining a candidate sequence as a good putative epitope. Again the properties for ranking the epitopes are derived from measured or predicted MHC binding; the property used for such a determination can be any that is relevant to or indicative of binding. In preferred embodiments, identification of good putative epitopes can combine multiple methods of ranking candidate sequences. In such embodiments, the good epitopes are typically those that either represent a consensus of the good epitopes based on different methods and parameters, or that are particularly highly ranked by at least one of the methods.
When several good putative epitopes have been identified, their positions relative to each other can be analyzed to determine the optimal clusters for use in vaccines or in vaccine design. This analysis is based on the density of a selected epitope characteristic within the sequence of the TAA. The regions with the highest density of the characteristic, or with a density above a certain selected cutoff, are designated as ECRs. Various embodiments of the invention employ different characteristics for the density analysis. For example, one preferred characteristic is simply the presence of any good putative epitope (as defined by any appropriate method). In this embodiment, all putative epitopes above the cutoff are treated equally in the density analysis, and the best clusters are those with the highest density of good putative epitopes per amino acid residue. In another embodiment, the preferred characteristic is based on the parameter(s) previously used to score or rank the putative epitopes. In this embodiment, a putative epitope with a score that is twice as high as another putative epitope is doubly weighted in the density analysis, relative to the other putative epitope. Still other embodiments take the score or rank into account, but on a diminished scale, such as, for example, by using the log or the square root of the score to give more weight to some putative epitopes than to others in the density analysis.
Depending on the length of the TAA to be analyzed, the number of possible candidate epitopes, the number of good putative epitopes, the variability of the scoring of the good putative epitopes, and other factors that become evident in any given analysis, the various embodiments of the invention can be used alone or in combination to identify those ECRs that are most useful for a given application. Iterative or parallel analyses employing multiple approaches can be beneficial in many cases. ECRs are tools for increased efficiency of identifying true MHC epitopes, and for efficient “packaging” of MHC epitopes into vaccines. Accordingly, any of the embodiments described herein, or other embodiments that are evident to those of skill in the art based on this disclosure, are useful in enhancing the efficiency of these efforts by using ECRs instead of using complete TAAs in vaccines and vaccine design.
Since many or most TAAs have regions with low density of predicted MHC epitopes, using ECRs provides a valuable methodology that avoids the inefficiencies of including regions of low epitope density in vaccines and in epitope identification protocols. Thus, useful ECRs can also be defined as any portion of a TAA that is not the whole TAA, wherein the portion has a higher density of putative epitopes than the whole TAA, or than any regions of the TAA that have a particularly low density of putative epitopes. In this aspect of the invention, therefore, an ECR can be any fragment of a TAA with elevated epitope density. In some embodiments, an ECR can include a region up to about 80% of the length of the TAA. In a preferred embodiment, an ECR can include a region up to about 50% of the length of the TAA. In a more preferred embodiment, an ECR can include a region up to about 30% of the length of the TAA. And in a most preferred embodiment, an ECR can include a region of between 5 and 15% of the length of the TAA.
In another aspect of the invention, the ECR can be defined in terms of its absolute length. Accordingly, by this definition, the minimal cluster for 9-mer epitopes includes 10 amino acid residues and has two overlapping 9-mers with 8 amino acids in common. In a preferred embodiment, the cluster is between about 15 and 75 amino acids in length. In a more preferred embodiment, the cluster is between about 20 and 60 amino acids in length. In a most preferred embodiment, the cluster is between about 30 and 40 amino acids in length.
In practice, as described above, ECR identification can employ a simple density function such as the number of epitopes divided by the number of amino acids spanned by the those epitopes. It is not necessarily required that the epitopes overlap, but the value for a single epitope is not significant. If only a single value for a percentage cutoff is used and an absolute cutoff in the epitope prediction is not used, it is possible to set a single threshold at this step to define a cluster. However, using both an absolute cutoff and carrying out the first step using different percentage cutoffs, can produce variations in the global density of candidate epitopes. Such variations can require further accounting or manipulation. For example, an overlap of 2 epitopes is more significant if only 3 candidate epitopes were considered, than if 30 candidates were considered for any particular length protein. To take this feature into consideration, the weight given to a particular cluster can further be divided by the fraction of possible peptides actually being considered, in order to increase the significance of the calculation. This scales the result to the average density of predicted epitopes in the parent protein.
Similarly, some embodiments base the scoring of good putative epitopes on the average number of peptides considered per amino acid in the protein. The resulting ratio represents the factor by which the density of predicted epitopes in the putative cluster differs from the average density in the protein. Accordingly, an ECR is defined in one embodiment as any region containing two or more predicted epitopes for which this ratio exceeds 2, that is, any region with twice the average density of epitopes. In other embodiments, the region is defined as an ECR if the ratio exceeds 1.5, 3, 4, or 5, or more.
Considering the average number of peptides per amino acid in a target protein to calculate the presence of an ECR highlights densely populated ECRs without regard to the score/affinity of the individual constituents. This is most appropriate for use of score-based cutoffs. However, an ECR with only a small number of highly ranked candidates can be of more biological significance than a cluster with several densely packed but lower ranking candidates, particularly if only a small percentage of the total number of candidate peptides were designated as good putative epitopes. Thus in some embodiments it is appropriate to take into consideration the scores of the individual peptides. This is most readily accomplished by substituting the sum of the scores of the peptides in the putative cluster for the number of peptides in the putative cluster in the calculation described above.
This sum of scores method is more sensitive to sparsely populated clusters containing high scoring epitopes. Because the wide range of scores (i.e. half times of dissociation) produced by the BIMAS-NIH/Parker algorithm can lead to a single high scoring peptide dwarfing the contribution of other potential epitopes, the log of the score rather than the score itself is preferably used in this procedure.
Various other calculations can be devised under one or another condition. Generally speaking, the epitope density function is constructed so that it is proportional to the number of predicted epitopes, their scores, their ranks, and the like, within the putative cluster, and inversely proportional to the number of amino acids or fraction of protein contained within that putative cluster. Alternatively, the function can be evaluated for a window of a selected number of contiguous amino acids. In either case the function is also evaluated for all predicted epitopes in the whole protein. If the ratio of values for the putative cluster (or window) and the whole protein is greater than, for example, 1.5, 2, 3, 4, 5, or more, an ECR is defined.
Analysis of Target Gene Products For MHC Binding
Once a TAA has been identified, the protein sequence can be used to identify putative epitopes with known or predicted affinity to the MHC peptide binding cleft. Tests of peptide fragments can be conducted in vitro, or using the sequence can be computer analyzed to determine MHC receptor binding of the peptide fragments. In one embodiment of the invention, peptide fragments based on the amino acid sequence of the target protein are analyzed for their predicted ability to bind to the MHC peptide binding cleft. Examples of suitable computer algorithms for this purpose include that found at the world wide web page of Hans-Georg Rammensee, Jutta Bachmann, Niels Emmerich, Stefan Stevanovic: SYFPEITHI: An Internet Database for MHC Ligands and Peptide Motifs (access via http://134.2.96.221/scripts/hlaserver.dll/EpPredict.htm). Results obtained from this method are discussed in Rammensee, et al., “MHC Ligands and Peptide Motifs,” Landes Bioscience Austin, Tex., 224-227, 1997, which is hereby incorporated by reference in its entirety. Another site of interest is http://bimas.dcrt.nih.gov/molbio/hla_bind, which also contains a suitable algorithm. The methods of this web site are discussed in Parker, et al., “Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains,” J. Immunol. 152:163-175, which is hereby incorporated by reference in its entirety.
As an alternative to predictive algorithms, a number of standard in vitro receptor binding affinity assays are available to identify peptides having an affinity for a particular allele of MHC. Accordingly, by the method of this aspect of the invention, the initial population of peptide fragments can be narrowed to include only putative epitopes having an actual or predicted affinity for the selected allele of MHC. Selected common alleles of MHC I, and their approximate frequencies, are reported in the tables below.
aGene frequency.
bStandard error.
aGene frequency.
bStandard error.
cThe observed gene count was zero.
aGene frequency.
bStandard error.
It has been observed that predicted epitopes often cluster at one or more particular regions within the amino acid sequence of a TAA. The identification of such ECRs offers a simple and practicable solution to the problem of designing effective vaccines for stimulating cellular immunity. For vaccines in which immune epitopes are desired, an ECR is directly useful as a vaccine. This is because the immune proteasomes of the pAPCs can correctly process the cluster, liberating one or more of the contained MHC-binding peptides, in the same way a cell having immune proteasomes activity processes and presents peptides derived from the complete TAA. The cluster is also a useful a starting material for identification of housekeeping epitopes produced by the housekeeping proteasomes active in peripheral cells.
Identification of housekeeping epitopes using ECRs as a starting material is described in copending U.S. patent application Ser. No. 09/561,074 entitled “METHOD OF EPITOPE DISCOVERY,” filed Apr. 28, 2000, which is incorporated herein by reference in its entirety. Epitope synchronization technology and vaccines for use in connection with this invention are disclosed in copending U.S. patent application Ser. No. 09/560,465 entitled “EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS,” filed Apr. 28, 2000, which is incorporated herein by reference in its entirety. Nucleic acid constructs useful as vaccines in accordance with the present invention are disclosed in copending U.S. patent application Ser. No. 09/561,572 entitled “EXPRESSION VECTORS ENCODING EPITOPES ASSOClATED ANTIGENS,” filed Apr. 28, 2000, which is incorporated herein by reference in its entirety.
1This H was reported as Y in the SWISSPROT database.
2The amino acid at position 274 may be Pro or Leu depending upon the database. The particular analysis presented herein used the Pro.
*Any of SEQ ID NOS. 1, 8, 9, 11-23, 26-29, 32-44, 47-54, 56-63, 66-68 88-253, and 256-588 can be useful as epitopes in any of the various embodiments of the invention. Any of SEQ ID NOS. 10, 30, 31, 45, 46, 55, 64, 65, 69, 254, and 255 can be useful as sequences containing epitopes or epitope clusters, as described in various embodiments of the invention.
**All accession numbers used here and throughout can be accessed through the NCBI databases, for example, through the Entrez seek and retrieval system on the world wide web.
Note that the following discussion sets forth the inventors' understanding of the operation of the invention. However, it is not intended that this discussion limit the patent to any particular theory of operation not set forth in the claims.
In pursuing the development of epitope vaccines others have generated lists of predicted epitopes based on MHC binding motifs. Such peptides can be immunogenic, but may not correspond to any naturally produced antigenic fragment. Therefore, whole antigen will not elicit a similar response or sensitize a target cell to cytolysis by CTL. Therefore such lists do not differentiate between those sequences that can be useful as vaccines and those that cannot. Efforts to determine which of these predicted epitopes are in fact naturally produced have often relied on screening their reactivity with tumor infiltrating lymphocytes (TIL). However, TIL are strongly biased to recognize immune epitopes whereas tumors (and chronically infected cells) will generally present housekeeping epitopes. Thus, unless the epitope is produced by both the housekeeping and immuno-proteasomes, the target cell will generally not be recognized by CTL induced with TIL-identified epitopes. The epitopes of the present invention, in contrast, are generated by the action of a specified proteasome, indicating that they can be naturally produced, and enabling their appropriate use. The importance of the distinction between housekeeping and immune epitopes to vaccine design is more fully set forth in PCT publication WO 01/82963A2, which is hereby incorporated by reference in its entirety.
The epitopes of the invention include or encode polypeptide fragments of TAAs that are precursors or products of proteasomal cleavage by a housekeeping or immune proteasome, and that contain or consist of a sequence having a known or predicted affinity for at least one allele of MHC I. In some embodiments, the epitopes include or encode a polypeptide of about 6 to 25 amino acids in length, preferably about 7 to 20 amino acids in length; more preferably about 8 to 15 amino acids in length, and still more preferably 9 or 10 amino acids in length. However, it is understood that the polypeptides can be larger as long as N-terminal trimming can produce the MHC epitope or that they do not contain sequences that cause the polypeptides to be directed away from the proteasome or to be destroyed by the proteasome. For immune epitopes, if the larger peptides do not contain such sequences, they can be processed in the pAPC by the immune proteasome. Housekeeping epitopes may also be embedded in longer sequences provided that the sequence is adapted to facilitate liberation of the epitope's C-terminus by action of the immunoproteasome. The foregoing discussion has assumed that processing of longer epitopes proceeds through action of the immunoproteasome of the pAPC. However, processing can also be accomplished through the contrivance of some other mechanism, such as providing an exogenous protease activity and a sequence adapted so that action of the protease liberates the MHC epitope. The sequences of these epitopes can be subjected to computer analysis in order to calculate physical, biochemical, immunologic, or molecular genetic properties such as mass, isoelectric point, predicted mobility in electrophoresis, predicted binding to other MHC molecules, melting temperature of nucleic acid probes, reverse translations, similarity or homology to other sequences, and the like.
In constructing the polynucleotides encoding the polypeptide epitopes of the invention, the gene sequence of the associated TAA can be used, or the polynucleotide can be assembled from any of the corresponding codons. For a 10 amino acid epitope this can constitute on the order of 106 different sequences, depending on the particular amino acid composition. While large, this is a distinct and readily definable set representing a miniscule fraction of the >1018 possible polynucleotides of this length, and thus in some embodiments, equivalents of a particular sequence disclosed herein encompass such distinct and readily definable variations on the listed sequence. In choosing a particular one of these sequences to use in a vaccine, considerations such as codon usage, self-complementarity, restriction sites, chemical stability, etc. can be used as will be apparent to one skilled in the art.
The invention contemplates producing peptide epitopes. Specifically these epitopes are derived from the sequence of a TAA, and have known or predicted affinity for at least one allele of MHC I. Such epitopes are typically identical to those produced on target cells or pAPCs.
Compositions Containing Active Epitopes
Embodiments of the present invention provide polypeptide compositions, including vaccines, therapeutics, diagnostics, pharmacological and pharmaceutical compositions. The various compositions include newly identified epitopes of TAAs, as well as variants of these epitopes. Other embodiments of the invention provide polynucleotides encoding the polypeptide epitopes of the invention. The invention further provides vectors for expression of the polypeptide epitopes for purification. In addition, the invention provides vectors for the expression of the polypeptide epitopes in an APC for use as an anti-tumor vaccine. Any of the epitopes or antigens, or nucleic acids encoding the same, from Table 1 can be used. Other embodiments relate to methods of making and using the various compositions.
A general architecture for a class I MHC-binding epitope can be described, and has been reviewed more extensively in Madden, D. R. Annu. Rev. Immunol. 13:587-622, 1995, which is hereby incorporated by reference in its entirety. Much of the binding energy arises from main chain contacts between conserved residues in the MHC molecule and the N- and C-termini of the peptide. Additional main chain contacts are made but vary among MHC alleles. Sequence specificity is conferred by side chain contacts of so-called anchor residues with pockets that, again, vary among MHC alleles. Anchor residues can be divided into primary and secondary. Primary anchor positions exhibit strong preferences for relatively well-defined sets of amino acid residues. Secondary positions show weaker and/or less well-defined preferences that can often be better described in terms of less favored, rather than more favored, residues. Additionally, residues in some secondary anchor positions are not always positioned to contact the pocket on the MHC molecule at all. Thus, a subset of peptides exists that bind to a particular MHC molecule and have a side chain-pocket contact at the position in question and another subset exists that show binding to the same MHC molecule that does not depend on the conformation the peptide assumes in the peptide-binding groove of the MHC molecule. The C-terminal residue (PΩ; omega) is preferably a primary anchor residue. For many of the better studied HLA molecules (e.g. A2, A68, B27, B7, B35, and B53) the second position (P2) is also an anchor residue. However, central anchor residues have also been observed including P3 and P5 in HLA-B8, as well as P5 and PΩ(omega)-3 in the murine MHC molecules H-2 Db and H-2 Kb, respectively. Since more stable binding will generally improve immunogenicity, anchor residues are preferably conserved or optimized in the design of variants, regardless of their position.
Because the anchor residues are generally located near the ends of the epitope, the peptide can buckle upward out of the peptide-binding groove allowing some variation in length. Epitopes ranging from 8-11 amino acids have been found for HLA-A68, and up to 13 amino acids for HLA-A2. In addition to length variation between the anchor positions, single residue truncations and extensions have been reported and the N- and C-termini, respectively. Of the non-anchor residues, some point up out of the groove, making no contact with the MHC molecule but being available to contact the TCR, very often P1, P4, and PΩ(omega)-1 for HLA-A2. Others of the non-anchor residues can become interposed between the upper edges of the peptide-binding groove and the TCR, contacting both. The exact positioning of these side chain residues, and thus their effects on binding, MHC fine conformation, and ultimately immunogenicity, are highly sequence dependent. For an epitope to be highly immunogenic it must not only promote stable enough TCR binding for activation to occur, but the TCR must also have a high enough off-rate that multiple TCR molecules can interact sequentially with the same peptide-MHC complex (Kalergis, A. M. et al., Nature Immunol. 2:229-234, 2001, which is hereby incorporated by reference in its entirety). Thus, without further information about the ternary complex, both conservative and non-conservative substitutions at these positions merit consideration when designing variants.
The polypeptide epitope variants can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations. Variants can be derived from substitution, deletion or insertion of one or more amino acids as compared with the native sequence. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a threonine with a serine, for example. Such replacements are referred to as conservative amino acid replacements, and all appropriate conservative amino acid replacements are considered to be embodiments of one invention. Insertions or deletions can optionally be in the range of about 1 to 4, preferably 1 to 2, amino acids. It is generally preferable to maintain the “anchor positions” of the peptide which are responsible for binding to the MHC molecule in question. Indeed, immunogenicity of peptides can be improved in many cases by substituting more preferred residues at the anchor positions (Franco, et al., Nature Immunology, 1(2):145-150, 2000, which is hereby incorporated by reference in its entirety). Immunogenicity of a peptide can also often be improved by substituting bulkier amino acids for small amino acids found in non-anchor positions while maintaining sufficient cross-reactivity with the original epitope to constitute a useful vaccine. The variation allowed can be determined by routine insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the polypeptide epitope. Because the polypeptide epitope is often 9 amino acids, the substitutions preferably are made to the shortest active epitope, for example, an epitope of 9 amino acids.
Variants can also be made by adding any sequence onto the N-terminus of the polypeptide epitope variant. Such N-terminal additions can be from 1 amino acid up to at least 25 amino acids. Because peptide epitopes are often trimmed by N-terminal exopeptidases active in the pAPC, it is understood that variations in the added sequence can have no effect on the activity of the epitope. In preferred embodiments, the amino acid residues between the last upstream proteasomal cleavage site and the N-terminus of the MHC epitope do not include a proline residue. Serwold, T. at al., Nature Immunol. 2:644-651, 2001, which is hereby incorporated by reference in its entirety. Accordingly, effective epitopes can be generated from precursors larger than the preferred 9-mer class I motif.
Generally, peptides are useful to the extent that they correspond to epitopes actually displayed by MHC I on the surface of a target cell or a pACP. A single peptide can have varying affinities for different MHC molecules, binding some well, others adequately, and still others not appreciably (Table 2). MHC alleles have traditionally been grouped according to serologic reactivity which does not reflect the structure of the peptide-binding groove, which can differ among different alleles of the same type. Similarly, binding properties can be shared across types; groups based on shared binding properties have been termed supertypes. There are numerous alleles of MHC I in the human population; epitopes specific to certain alleles can be selected based on the genotype of the patient.
*HLA Peptide Binding Predictions (world wide web hypertext transfer protocol “access at bimas.dcrt.nih.gov/molbio/hla_bin”).
In further embodiments of the invention, the epitope, as peptide or encoding polynucleotide, can be administered as a pharmaceutical composition, such as, for example, a vaccine or an immunogenic composition, alone or in combination with various adjuvants, carriers, or excipients. It should be noted that although the term vaccine may be used throughout the discussion herein, the concepts can be applied and used with any other pharmaceutical composition, including those mentioned herein. Particularly advantageous adjuvants include various cytokines and oligonucleotides containing immunostimulatory sequences (as set forth in greater detail in the co-pending applications referenced herein). Additionally the polynucleotide encoded epitope can be contained in a virus (e.g. vaccinia or adenovirus) or in a microbial host cell (e.g. Salmonella or Listeria monocytogenes) which is then used as a vector for the polynucleotide (Dietrich, G. et al. Nat. Biotech. 16:181-185, 1998, which is hereby incorporated by reference in its entirety). Alternatively a pAPC can be transformed, ex vivo, to express the epitope, or pulsed with peptide epitope, to be itself administered as a vaccine. To increase efficiency of these processes, the encoded epitope can be carried by a viral or bacterial vector, or complexed with a ligand of a receptor found on pAPC. Similarly the peptide epitope can be complexed with or conjugated to a pAPC ligand. A vaccine can be composed of more than a single epitope.
Particularly advantageous strategies for incorporating epitopes and/or epitope clusters, into a vaccine or pharmaceutical composition are disclosed in U.S. patent application Ser. No. 09/560,465 entitled “EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS,” filed on Apr. 28, 2000, which is hereby incorporated by reference in its entirety. Epitope clusters for use in connection with this invention are disclosed in U.S. patent application Ser. No. 09/561,571 entitled “EPITOPE CLUSTERS,” filed on Apr. 28, 2000, which is hereby incorporated by reference in its entirety.
Preferred embodiments of the present invention are directed to vaccines and methods for causing a pAPC or population of pAPCs to present housekeeping epitopes that correspond to the epitopes displayed on a particular target cell. Any of the epitopes or antigens in Table 1, can be used for example. In one embodiment, the housekeeping epitope is a TuAA epitope processed by the housekeeping proteasome of a particular tumor type. In another embodiment, the housekeeping epitope is a virus-associated epitope processed by the housekeeping proteasome of a cell infected with a virus. This facilitates a specific T cell response to the target cells. Concurrent expression by the pAPCs of multiple epitopes, corresponding to different induction states (pre- and post-attack), can drive a CTL response effective against target cells as they display either housekeeping epitopes or immune epitopes.
By having both housekeeping and immune epitopes present on the pAPC, this embodiment can optimize the cytotoxic T cell response to a target cell. With dual epitope expression, the pAPCs can continue to sustain a CTL response to the immune-type epitope when the tumor cell switches from the housekeeping proteasome to the immune proteasome with induction by IFN, which, for example, may be produced by tumor-infiltrating CTLs.
In a preferred embodiment, immunization of a patient is with a vaccine that includes a housekeeping epitope. Many preferred TAAs are associated exclusively with a target cell, particularly in the case of infected cells. In another embodiment, many preferred TAAs are the result of deregulated gene expression in transformed cells, but are found also in tissues of the testis, ovaries and fetus. In another embodiment, useful TAAs are expressed at higher levels in the target cell than in other cells. In still other embodiments, TAAs are not differentially expressed in the target cell compare to other cells, but are still useful since they are involved in a particular function of the cell and differentiate the target cell from most other peripheral cells; in such embodiments, healthy cells also displaying the TAA may be collaterally attacked by the induced T cell response, but such collateral damage is considered to be far preferable to the condition caused by the target cell.
The vaccine contains a housekeeping epitope in a concentration effective to cause a pAPC or populations of pAPCs to display housekeeping epitopes. Advantageously, the vaccine can include a plurality of housekeeping epitopes or one or more housekeeping epitopes optionally in combination with one or more immune epitopes. Formulations of the vaccine contain peptides and/or nucleic acids in a concentration sufficient to cause pAPCs to present the epitopes. The formulations preferably contain epitopes in a total concentration of about 1 μg-1 mg/100 μl of vaccine preparation. Conventional dosages and dosing for peptide vaccines and/or nucleic acid vaccines can be used with the present invention, and such dosing regimens are well understood in the art. In one embodiment, a single dosage for an adult human may advantageously be from about 1 to about 5000 μl of such a composition, administered one time or multiple times, e.g., in 2, 3, 4 or more dosages separated by 1 week, 2 weeks, 1 month, or more. insulin pump delivers 1 ul per hour (lowest frequency) ref intranodal method patent.
The compositions and methods of the invention disclosed herein further contemplate incorporating adjuvants into the formulations in order to enhance the performance of the vaccines. Specifically, the addition of adjuvants to the formulations is designed to enhance the delivery or uptake of the epitopes by the pAPCs. The adjuvants contemplated by the present invention are known by those of skill in the art and include, for example, GMCSF, GCSF, IL-2, IL-12, BCG, tetanus toxoid, osteopontin, and ETA-1.
In some embodiments of the invention, the vaccines can include a recombinant organism, such as a virus, bacterium or parasite, genetically engineered to express an epitope in a host. For example, Listeria monocytogenes, a gram-positive, facultative intracellular bacterium, is a potent vector for targeting TuAAs to the immune system. In a preferred embodiment, this vector can be engineered to express a housekeeping epitope to induce therapeutic responses. The normal route of infection of this organism is through the gut and can be delivered orally. In another embodiment, an adenovirus (Ad) vector encoding a housekeeping epitope for a TuAA can be used to induce anti-virus or anti-tumor responses. Bone marrow-derived dendritic cells can be transduced with the virus construct and then injected, or the virus can be delivered directly via subcutaneous injection into an animal to induce potent T-cell responses. Another embodiment employs a recombinant vaccinia virus engineered to encode amino acid sequences corresponding to a housekeeping epitope for a TAA. Vaccinia viruses carrying constructs with the appropriate nucleotide substitutions in the form of a minigene construct can direct the expression of a housekeeping epitope, leading to a therapeutic T cell response against the epitope.
The immunization with DNA requires that APCs take up the DNA and express the encoded proteins or peptides. It is possible to encode a discrete class I peptide on the DNA. By immunizing with this construct, APCs can be caused to express a housekeeping epitope, which is then displayed on class I MHC on the surface of the cell for stimulating an appropriate CTL response. Constructs generally relying on termination of translation or non-proteasomal proteases for generation of proper termini of housekeeping epitopes have been described in U.S. patent application Ser. No. 09/561,572 entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS, filed on Apr. 28, 2000.
As mentioned, it can be desirable to express housekeeping peptides in the context of a larger protein. Processing can be detected even when a small number of amino acids are present beyond the terminus of an epitope. Small peptide hormones are usually proteolytically processed from longer translation products, often in the size range of approximately 60-120 amino acids. This fact has led some to assume that this is the minimum size that can be efficiently translated. In some embodiments, the housekeeping peptide can be embedded in a translation product of at least about 60 amino acids. In other embodiments the housekeeping peptide can be embedded in a translation product of at least about 50, 30, or 15 amino acids.
Due to differential proteasomal processing, the immune proteasome of the pAPC produces peptides that are different from those produced by the housekeeping proteasome in peripheral body cells. Thus, in expressing a housekeeping peptide in the context of a larger protein, it is preferably expressed in the APC in a context other than its full length native sequence, because, as a housekeeping epitope, it is generally only efficiently processed from the native protein by the housekeeping proteasome, which is not active in the APC. In order to encode the housekeeping epitope in a DNA sequence encoding a larger protein, it is useful to find flanking areas on either side of the sequence encoding the epitope that permit appropriate cleavage by the immune proteasome in order to liberate that housekeeping epitope. Altering flanking amino acid residues at the N-terminus and C-terminus of the desired housekeeping epitope can facilitate appropriate cleavage and generation of the housekeeping epitope in the APC. Sequences embedding housekeeping epitopes can be designed de novo and screened to determine which can be successfully processed by immune proteasomes to liberate housekeeping epitopes.
Alternatively, another strategy is very effective for identifying sequences allowing production of housekeeping epitopes in APC. A contiguous sequence of amino acids can be generated from head to tail arrangement of one or more housekeeping epitopes. A construct expressing this sequence is used to immunize an animal, and the resulting T cell response is evaluated to determine its specificity to one or more of the epitopes in the array. By definition, these immune responses indicate housekeeping epitopes that are processed in the pAPC effectively. The necessary flanking areas around this epitope are thereby defined. The use of flanking regions of about 4-6 amino acids on either side of the desired peptide can provide the necessary information to facilitate proteasome processing of the housekeeping epitope by the immune proteasome. Therefore, a sequence ensuring epitope synchronization of approximately 16-22 amino acids can be inserted into, or fused to, any protein sequence effectively to result in that housekeeping epitope being produced in an APC. In alternate embodiments the whole head-to-tail array of epitopes, or just the epitopes immediately adjacent to the correctly processed housekeeping epitope can be similarly transferred from a test construct to a vaccine vector.
In a preferred embodiment, the housekeeping epitopes can be embedded between known immune epitopes, or segments of such, thereby providing an appropriate context for processing. The abutment of housekeeping and immune epitopes can generate the necessary context to enable the immune proteasome to liberate the housekeeping epitope, or a larger fragment, preferably including a correct C-terminus. It can be useful to screen constructs to verify that the desired epitope is produced. The abutment of housekeeping epitopes can generate a site cleavable by the immune proteasome. Some embodiments of the invention employ known epitopes to flank housekeeping epitopes in test substrates; in others, screening as described below are used whether the flanking regions are arbitrary sequences or mutants of the natural flanking sequence, and whether or not knowledge of proteasomal cleavage preferences are used in designing the substrates.
Cleavage at the mature N-terminus of the epitope, while advantageous, is not required, since a variety of N-terminal trimming activities exist in the cell that can generate the mature N-terminus of the epitope subsequent to proteasomal processing. It is preferred that such N-terminal extension be less than about 25 amino acids in length and it is further preferred that the extension have few or no proline residues. Preferably, in screening, consideration is given not only to cleavage at the ends of the epitope (or at least at its C-terminus), but consideration also can be given to ensure limited cleavage within the epitope.
Shotgun approaches can be used in designing test substrates and can increase the efficiency of screening. In one embodiment multiple epitopes can be assembled one after the other, with individual epitopes possibly appearing more than once. The substrate can be screened to determine which epitopes can be produced. In the case where a particular epitope is of concern a substrate can be designed in which it appears in multiple different contexts. When a single epitope appearing in more than one context is liberated from the substrate additional secondary test substrates, in which individual instances of the epitope are removed, disabled, or are unique, can be used to determine which are being liberated and truly constitute sequences ensuring epitope synchronization.
Several readily practicable screens exist. A preferred in vitro screen utilizes proteasomal digestion analysis, using purified immune proteasomes, to determine if the desired housekeeping epitope can be liberated from a synthetic peptide embodying the sequence in question. The position of the cleavages obtained can be determined by techniques such as mass spectrometry, HPLC, and N-terminal pool sequencing; as described in greater detail in U.S. Patent Applications entitled METHOD OF EPITOPE DISCOVERY, EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS, two Provisional U.S. Patent Applications entitled EPITOPE SEQUENCES, which are all cited and incorporated by reference above.
Alternatively, in vivo screens such as immunization or target sensitization can be employed. For immunization a nucleic acid construct capable of expressing the sequence in question is used. Harvested CTL can be tested for their ability to recognize target cells presenting the housekeeping epitope in question. Such targets cells are most readily obtained by pulsing cells expressing the appropriate MHC molecule with synthetic peptide embodying the mature housekeeping epitope. Alternatively, cells known to express housekeeping proteasome and the antigen from which the housekeeping epitope is derived, either endogenously or through genetic engineering, can be used. To use target sensitization as a screen, CTL, or preferably a CTL clone, that recognizes the housekeeping epitope can be used. In this case it is the target cell that expresses the embedded housekeeping epitope (instead of the pAPC during immunization) and it must express immune proteasome. Generally, the target cell can be transformed with an appropriate nucleic acid construct to confer expression of the embedded housekeeping epitope. Loading with a synthetic peptide embodying the embedded epitope using peptide loaded liposomes or a protein transfer reagent such as BIOPORTER™ (Gene Therapy Systems, San Diego, Calif.) represents an alternative.
Additional guidance on nucleic acid constructs useful as vaccines in accordance with the present invention are disclosed in U.S. patent application Ser. No. 09/561,572 entitled “EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS,” filed on Apr. 28, 2000. Further, expression vectors and methods for their design, which are useful in accordance with the present invention are disclosed in U.S. Patent Application No. 60/336,968 (attorney docket number CTLIMM.022PR) entitled “EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN,” filed on Nov. 7, 2001, which is incorporated by reference in its entirety.
A preferred embodiment of the present invention includes a method of administering a vaccine including an epitope (or epitopes) to induce a therapeutic immune response. The vaccine is administered to a patient in a manner consistent with the standard vaccine delivery protocols that are known in the art. Methods of administering epitopes of TAAs including, without limitation, transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, and mucosal administration, including delivery by injection, instillation or inhalation. A particularly useful method of vaccine delivery to elicit a CTL response is disclosed in Australian Patent No. 739189 issued Jan. 17, 2002; U.S. patent application Ser. No. 09/380,534, filed on Sep. 1, 1999; and a Continuation-in-Part thereof U.S. patent application Ser. No. 09/776,232 both entitled “A METHOD OF INDUCING A CTL RESPONSE,” filed on Feb. 2, 2001.
Reagents Recognizing Epitopes
In another aspect of the invention, proteins with binding specificity for the epitope and/or the epitope-MHC molecule complex are contemplated, as well as the isolated cells by which they can be expressed. In one set of embodiments these reagents take the form of immunoglobulins: polyclonal sera or monoclonal antibodies (mAb), methods for the generation of which are well know in the art. Generation of mAb with specificity for peptide-MHC molecule complexes is known in the art. See, for example, Aharoni et al. Nature 351:147-150, 1991; Andersen et al. Proc. Natl. Acad. Sci. USA 93:1820-1824, 1996; Dadaglio et al. Immunity 6:727-738, 1997; Duc et al. Int. Immunol. 5:427-431,1993; Eastman et al. Eur. J. Immunol. 26:385-393, 1996; Engberg et al. Immunotechnology 4:273-278, 1999; Porgdor et al. Immunity 6:715-726, 1997; Puri et al. J. Immunol. 158:2471-2476, 1997; and Polakova, K., et al. J. Immunol. 165 342-348, 2000; all of which are hereby incorporated by reference in their entirety.
In other embodiments the compositions can be used to induce and generate, in vivo and in vitro, T-cells specific for the any of the epitopes and/or epitope-MHC complexes. In preferred embodiments the epitope can be any one or more of those listed in TABLE 1, for example. Thus, embodiments also relate to and include isolated T cells, T cell clones, T cell hybridomas, or a protein containing the T cell receptor (TCR) binding domain derived from the cloned gene, as well as a recombinant cell expressing such a protein. Such TCR derived proteins can be simply the extra-cellular domains of the TCR, or a fusion with portions of another protein to confer a desired property or function. One example of such a fusion is the attachment of TCR binding domains to the constant regions of an antibody molecule so as to create a divalent molecule. The construction and activity of molecules following this general pattern have been reported, for example, Plaksin, D. et al. J. Immunol. 158:2218-2227, 1997 and Lebowitz, M. S. et al. Cell Immunol. 192:175-184, 1999, which are hereby incorporated by reference in their entirety. The more general construction and use of such molecules is also treated in U.S. Pat. No. 5,830,755 entitled T CELL RECEPTORS AND THEIR USE IN THERAPEUTIC AND DIAGNOSTIC METHODS, which is hereby incorporated by reference in its entirety.
The generation of such T cells can be readily accomplished by standard immunization of laboratory animals, and reactivity to human target cells can be obtained by immunizing with human target cells or by immunizing HLA-transgenic animals with the antigen/epitope. For some therapeutic approaches T cells derived from the same species are desirable. While such a cell can be created by cloning, for example, a murine TCR into a human T cell as contemplated above, in vitro immunization of human cells offers a potentially faster option. Techniques for in vitro immunization, even using naive donors, are know in the field, for example, Stauss et al., Proc. Natl. Acad. Sci. USA 89:7871-7875, 1992; Salgaller et al. Cancer Res. 55:4972-4979, 1995; Tsai et al., J. Immunol. 158:1796-1802, 1997; and Chung et al., J Immunother. 22:279-287, 1999; which are hereby incorporated by reference in their entirety.
Any of these molecules can be conjugated to enzymes, radiochemicals, fluorescent tags, and toxins, so as to be used in the diagnosis (imaging or other detection), monitoring, and treatment of the pathogenic condition associated with the epitope. Thus a toxin conjugate can be administered to kill tumor cells, radiolabeling can facilitate imaging of epitope positive tumor, an enzyme conjugate can be used in an ELISA-like assay to diagnose cancer and confirm epitope expression in biopsied tissue. In a further embodiment, such T cells as set forth above, following expansion accomplished through stimulation with the epitope and/or cytokines, can be administered to a patient as an adoptive immunotherapy.
Reagents Comprising Epitopes
A further aspect of the invention provides isolated epitope-MHC complexes. In a particularly advantageous embodiment of this aspect of the invention, the complexes can be soluble, multimeric proteins such as those described in U.S. Pat. No. 5,635,363 (tetramers) or U.S. Pat. No. 6,015,884 (Ig-dimers), both of which are hereby incorporated by reference in their entirety. Such reagents are useful in detecting and monitoring specific T cell responses, and in purifying such T cells.
Isolated MHC molecules complexed with epitopic peptides can also be incorporated into planar lipid bilayers or liposomes. Such compositions can be used to stimulate T cells in vitro or, in the case of liposomes, in vivo. Co-stimulatory molecules (e.g. B7, CD40, LFA-3) can be incorporated into the same compositions or, especially for in vitro work, co-stimulation can be provided by anti-co-receptor antibodies (e.g. anti-CD28, anti-CD154, anti-CD2) or cytokines (e.g. IL-2, IL-12). Such stimulation of T cells can constitute vaccination, drive expansion of T cells in vitro for subsequent infusion in an immuotherapy, or constitute a step in an assay of T cell function.
The epitope, or more directly its complex with an MHC molecule, can be an important constituent of functional assays of antigen-specific T cells at either an activation or readout step or both. Of the many assays of T cell function current in the art (detailed procedures can be found in standard immunological references such as Current Protocols in Immunology 1999 John Wiley & Sons Inc., N.Y., which is hereby incorporated by reference in its entirety) two broad classes can be defined, those that measure the response of a pool of cells and those that measure the response of individual cells. Whereas the former conveys a global measure of the strength of a response, the latter allows determination of the relative frequency of responding cells. Examples of assays measuring global response are cytotoxicity assays, ELISA, and proliferation assays detecting cytokine secretion. Assays measuring the responses of individual cells (or small clones derived from them) include limiting dilution analysis (LDA), ELISPOT, flow cytometric detection of unsecreted cytokine (described in U.S. Pat. No. 5,445,939, entitled “METHOD FOR ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM” and U.S. Pat. Nos. 5,656,446; and 5,843,689, both entitled “METHOD FOR THE ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM,” reagents for which are sold by Becton, Dickinson & Company under the tradename ‘FASTIMMUNE’, which patents are hereby incorporated by reference in their entirety) and detection of specific TCR with tetramers or Ig-dimers as stated and referenced above. The comparative virtues of these techniques have been reviewed in Yee, C. et al. Current Opinion in Immunology, 13:141-146, 2001, which is hereby incorporated by reference in its entirety. Additionally detection of a specific TCR rearrangement or expression can be accomplished through a variety of established nucleic acid based techniques, particularly in situ and single-cell PCR techniques, as will be apparent to one of skill in the art.
These functional assays are used to assess endogenous levels of immunity, response to an immunologic stimulus (e.g. a vaccine), and to monitor immune status through the course of a disease and treatment. Except when measuring endogenous levels of immunity, any of these assays presume a preliminary step of immunization, whether in vivo or in vitro depending on the nature of the issue being addressed. Such immunization can be carried out with the various embodiments of the invention described above or with other forms of immunogen (e.g., pAPC-tumor cell fusions) that can provoke similar immunity. With the exception of PCR and tetramer/Ig-dimer type analyses which can detect expression of the cognate TCR, these assays generally benefit from a step of in vitro antigenic stimulation which can advantageously use various embodiments of the invention as described above in order to detect the particular functional activity (highly cytolytic responses can sometimes be detected directly). Finally, detection of cytolytic activity requires epitope-displaying target cells, which can be generated using various embodiments of the invention. The particular embodiment chosen for any particular step depends on the question to be addressed, ease of use, cost, and the like, but the advantages of one embodiment over another for any particular set of circumstances will be apparent to one of skill in the art.
The peptide MHC complexes described in this section have traditionally been understood to be non-covalent associations. However it is possible, and can be advantageous, to create a covalent linkages, for example by encoding the epitope and MHC heavy chain or the epitope, β2-microglobulin, and MHC heavy chain as a single protein (Yu, Y. L. Y., et al., J. Immunol. 168:3145-3149, 2002; Mottez, E., et at., J. Exp. Med. 181:493,1995; Dela Cruz, C. S., et al., Int. Immunol. 12:1293, 2000; Mage, M. G., et al., Proc. Natl. Acad. Sci. USA 89:10658,1992; Toshitani, K., et al., Proc. Natl. Acad. Sci. USA 93:236,1996; Lee, L., et al., Eur. J. Immunol. 24:2633,1994; Chung, D. H., et al., J. Immunol. 163:3699,1999; Uger, R. A. and B. H. Barber, J. Immunol. 160:1598, 1998; Uger, R. A., et al., J. Immunol. 162:6024,1999; and White, J., et al., J. Immunol. 162:2671, 1999; which are incorporated herein by reference in their entirety). Such constructs can have superior stability and overcome roadblocks in the processing-presentation pathway. They can be used in the already described vaccines, reagents, and assays in similar fashion.
Tumor Associated Antigens
Epitopes of the present invention are derived from the TuAAs tyrosinase (SEQ ID NO. 2), SSX-2, (SEQ ID NO. 3), PSMA (prostate-specific membrane antigen) (SEQ ID NO. 4), GP100, (SEQ ID NO. 70), MAGE-1, (SEQ ID NO. 71), MAGE-2, (SEQ ID NO. 72), MAGE-3, (SEQ ID NO. 73), NY-ESO-1, (SEQ ID NO. 74), PRAME, (SEQ ID NO. 77), PSA, (SEQ ID NO. 78), PSCA, (SEQ ID NO. 79), the ED-B domain of fibronectin (SEQ ID NOS 589 and 590), CEA (carcinoembryonic antigen) (SEQ ID NO. 592), Her2/Neu (SEQ ID NO. 594), SCP-1 (SEQ ID NO. 596) and SSX-4 (SEQ ID NO. 598). The natural coding sequences for these eleven proteins, or any segments within them, can be determined from their cDNA or complete coding (cds) sequences, SEQ ID NOS. 5-7, 80-87, 591, 593, 595, 597, and 599, respectively.
Tyrosinase is a melanin biosynthetic enzyme that is considered one of the most specific markers of melanocytic differentiation. Tyrosinase is expressed in few cell types, primarily in melanocytes, and high levels are often found in melanomas. The usefulness of tyrosinase as a TuAA is taught in U.S. Pat. No. 5,747,271 entitled “METHOD FOR IDENTIFYING INDIVIDUALS SUFFERING FROM A CELLULAR ABNORMALITY SOME OF WHOSE ABNORMAL CELLS PRESENT COMPLEXES OF HLA-A2/TYROSINASE DERIVED PEPTIDES, AND METHODS FOR TREATING SAID INDIVIDUALS” which is hereby incorporated by reference in its entirety.
GP100, also known as PMel17, also is a melanin biosynthetic protein expressed at high levels in melanomas. GP100 as a TuAA is disclosed in U.S. Pat. No. 5,844,075 entitled “MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC AND THERAPEUTIC METHODS,” which is hereby incorporated by reference in its entirety.
SSX-2, also know as Hom-Mel-40, is a member of a family of highly conserved cancer-testis antigens (Gure, A. O. et al. Int. J. Cancer 72:965-971, 1997, which is hereby incorporated by reference in its entirety). Its identification as a TuAA is taught in U.S. Pat. No. 6,025,191 entitled “ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE A MELANOMA SPECIFIC ANTIGEN AND USES THEREOF,” which is hereby incorporated by reference in its entirety. Cancer-testis antigens are found in a variety of tumors, but are generally absent from normal adult tissues except testis. Expression of different members of the SSX family have been found variously in tumor cell lines. Due to the high degree of sequence identity among SSX family members, similar epitopes from more than one member of the family will be generated and able to bind to an MHC molecule, so that some vaccines directed against one member of this family can cross-react and be effective against other members of this family (see example 3 below).
MAGE-1, MAGE-2, and MAGE-3 are members of another family of cancer-testis antigens originally discovered in melanoma (MAGE is a contraction of melanoma-associated antigen) but found in a variety of tumors. The identification of MAGE proteins as TuAAs is taught in U.S. Pat. No. 5,342,774 entitled NUCLEOTIDE SEQUENCE ENCODING THE TUMOR REJECTION ANTIGEN PRECURSOR, MAGE-1, which is hereby incorporated by reference in its entirety, and in numerous subsequent patents. Currently there are 17 entries for (human) MAGE in the SWISS Protein database. There is extensive similarity among these proteins so in many cases, an epitope from one can induce a cross-reactive response to other members of the family. A few of these have not been observed in tumors, most notably MAGE-H1 and MAGE-D1, which are expressed in testes and brain, and bone marrow stromal cells, respectively. The possibility of cross-reactivity on normal tissue is ameliorated by the fact that they are among the least similar to the other MAGE proteins.
NY-ESO-1, is a cancer-testis antigen found in a wide variety of tumors, also known as CTAG-1 (Cancer-Testis Antigen-1) and CAG-3 (Cancer Antigen-3). NY-ESO-1 as a TuAA is disclosed in U.S. Pat. No. 5,804,381 entitled ISOLATED NUCLEIC ACID MOLECULE ENCODING AN ESOPHAGEAL CANCER ASSOCIATED ANTIGEN, THE ANTIGEN ITSELF, AND USES THEREOF which is hereby incorporated by reference in its entirety. A paralogous locus encoding antigens with extensive sequence identity, LAGE-1a/s (SEQ ID NO. 75) and LAGE-1b/L (SEQ ID NO. 76), have been disclosed in publicly available assemblies of the human genome, and have been concluded to arise through alternate splicing. Additionally, CT-2 (or CTAG-2, Cancer-Testis Antigen-2) appears to be either an allele, a mutant, or a sequencing discrepancy of LAGE-1b/L. Due to the extensive sequence identity, many epitopes from NY-ESO-1 can also induce immunity to tumors expressing these other antigens. See
PSMA (prostate-specific membranes antigen), a TuAA described in U.S. Pat. No. 5,538,866 entitled “PROSTATE-SPECIFIC MEMBRANES ANTIGEN” which is hereby incorporated by reference in its entirety, is expressed by normal prostate epithelium and, at a higher level, in prostatic cancer. It has also been found in the neovasculature of non-prostatic tumors. PSMA can thus form the basis for vaccines directed to both prostate cancer and to the neovasculature of other tumors. This later concept is more fully described in a provisional U.S. Patent application No. 60/274,063 entitled ANTI-NEOVASCULAR VACCINES FOR CANCER, filed Mar. 7, 2001, and U.S. application Ser. No. 10/094,699, attorney docket number CTLIMM.015A, filed on Mar. 7, 2002, entitled “ANTI-NEOVASCULAR PREPARATIONS FOR CANCER,” both of which are hereby incorporated by reference in their entirety. Briefly, as tumors grow they recruit ingrowth of new blood vessels. This is understood to be necessary to sustain growth as the centers of unvascularized tumors are generally necrotic and angiogenesis inhibitors have been reported to cause tumor regression. Such new blood vessels, or neovasculature, express antigens not found in established vessels, and thus can be specifically targeted. By inducing CTL against neovascular antigens the vessels can be disrupted, interrupting the flow of nutrients to (and removal of wastes from) tumors, leading to regression.
Alternate splicing of the PSMA mRNA also leads to a protein with an apparent start at Met58, thereby deleting the putative membrane anchor region of PSMA as described in U.S. Pat. No. 5,935,818 entitled “ISOLATED NUCLEIC ACID MOLECULE ENCODING ALTERNATIVELY SPLICED PROSTATE-SPECIFIC MEMBRANES ANTIGEN AND USES THEREOF” which is hereby incorporated by reference in its entirety. A protein termed PSMA-like protein, Genbank accession number AF261715, is nearly identical to amino acids 309-750 of PSMA and has a different expression profile. Thus the most preferred epitopes are those with an N-terminus located from amino acid 58 to 308.
PRAME, also know as MAPE, DAGE, and OIP4, was originally observed as a melanoma antigen. Subsequently, it has been recognized as a CT antigen, but unlike many CT antigens (e.g., MAGE, GAGE, and BAGE) it is expressed in acute myeloid leukemias. PRAME is a member of the MAPE family which consists largely of hypothetical proteins with which it shares limited sequence similarity. The usefulness of PRAME as a TuAA is taught in U.S. Pat. No. 5,830,753 entitled “ISOLATED NUCLEIC ACID MOLECULES CODING FOR TUMOR REJECTION ANTIGEN PRECURSOR DAGE AND USES THEREOF” which is hereby incorporated by reference in its entirety.
PSA, prostate specific antigen, is a peptidase of the kallikrein family and a differentiation antigen of the prostate. Expression in breast tissue has also been reported. Alternate names include gamma-seminoprotein, kallikrein 3, seminogelase, seminin, and P-30 antigen. PSA has a high degree of sequence identity with the various alternate splicing products prostatic/glandular kallikrein-1 and -2, as well as kalikrein 4, which is also expressed in prostate and breast tissue. Other kallikreins generally share less sequence identity and have different expression profiles. Nonetheless, cross-reactivity that might be provoked by any particular epitope, along with the likelihood that that epitope would be liberated by processing in non-target tissues (most generally by the housekeeping proteasome), should be considered in designing a vaccine.
PSCA, prostate stem cell antigen, and also known as SCAH-2, is a differentiation antigen preferentially expressed in prostate epithelial cells, and overexpresssed in prostate cancers. Lower level expression is seen in some normal tissues including neuroendocrine cells of the digestive tract and collecting ducts of the kidney. PSCA is described in U.S. Pat. No. 5,856,136 entitled “HUMAN STEM CELL ANTIGENS” which is hereby incorporated by reference in its entirety.
Synaptonemal complex protein 1 (SCP-1), also known as HOM-TES-14, is a meiosis-associated protein and also a cancer-testis antigen (Tureci, O., et al. Proc. Natl. Acad. Sci. USA 95:5211-5216, 1998). As a cancer antigen its expression is not cell-cycle regulated and it is found frequently in gliomas, breast, renal cell, and ovarian carcinomas. It has some similarity to myosins, but with few enough identities that cross-reactive epitopes are not an immediate prospect.
The ED-B domain of fibronectin is also a potential target. Fibronectin is subject to developmentally regulated alternative splicing, with the ED-B domain being encoded by a single exon that is used primarily in oncofetal tissues (Matsuura, H. and S. Hakomori Proc. Natl. Acad. Sci. USA 82:6517-6521, 1985; Carnemolla, B. et al. J. Cell Biol. 108:1139-1148, 1989; Loridon-Rosa, B. et al. Cancer Res.50:1608-1612, 1990; Nicolo, G. et al. Cell Differ. Dev. 32:401-408, 1990; Borsi, L. et al. Exp. Cell Res. 199:98-105, 1992; Oyama, F. et al. Cancer Res. 53:2005-2011, 1993; Mandel, U. et al. APMIS 102:695-702, 1994; Farnoud, M. R. et al. Int. J. Cancer 61:27-34, 1995; Pujuguet, P. et al. Am. J. Pathol. 148:579-592, 1996; Gabler, U. et al. Heart 75:358-362, 1996;Chevalier, X. Br. J. Rheumatol. 35:407-415, 1996; Midulla, M. Cancer Res. 60:164-169, 2000).
The ED-B domain is also expressed in fibronectin of the neovasculature (Kaczmarek, J. et al. Int. J. Cancer 59:11-16, 1994; Castellani, P. et al. Int. J. Cancer 59:612-618, 1994; Neri, D. et al. Nat. Biotech. 15:1271-1275, 1997; Karelina, T. V. and A. Z. Eisen Cancer Detect. Prev. 22:438-444, 1998; Tarli, L. et al. Blood 94:192-198, 1999; Castellani, P. et al. Acta Neurochir. (Wien) 142:277-282, 2000). As an oncofetal domain, the ED-B domain is commonly found in the fibronectin expressed by neoplastic cells in addition to being expressed by the neovasculature. Thus, CTL-inducing vaccines targeting the ED-B domain can exhibit two mechanisms of action: direct lysis of tumor cells, and disruption of the tumor's blood supply through destruction of the tumor-associated neovasculature. As CTL activity can decay rapidly after withdrawal of vaccine, interference with normal angiogenesis can be minimal. The design and testing of vaccines targeted to neovasculature is described in Provisional U.S. Patent Application No. 60/274,063 entitled “ANTI-NEOVASCULATURE VACCINES FOR CANCER” and in U.S. patent application Ser. No. 10/094,699, attorney docket number CTLIMM.015A, entitled “ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER, filed on date even with this application (Mar. 7, 2002). A tumor cell line is disclosed in Provisional U.S. Application No. 60/363,131, filed on Mar. 7, 2002, attorney docket number CTLIMM.028PR, entitled “HLA-TRANSGENIC MURINE TUMOR CELL LINE,” which is hereby incorporated by reference in its entirety.
Carcinoembryonic antigen (CEA) is a paradigmatic oncofetal protein first described in 1965 (Gold and Freedman, J. Exp. Med. 121: 439-462, 1965. Fuller references can be found in the Online Medelian Inheritance in Man; record *114890). It has officially been renamed carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). Its expression is most strongly associated with adenocarcinomas of the epithelial lining of the digestive tract and in fetal colon. CEA is a member of the immunoglobulin supergene family and the defining member of the CEA subfamily.
HER2/NEU is an oncogene related to the epidermal growth factor receptor (van de Vijver, et al., New Eng. J. Med. 319:1239-1245, 1988), and apparently identical to the c-ERBB2 oncogene (Di Fiore, et al., Science 237: 178-182, 1987). The over-expression of ERBB2 has been implicated in the neoplastic transformation of prostate cancer. As HER2 it is amplified and over-expressed in 25-30% of breast cancers among other tumors where expression level is correlated with the aggressiveness of the tumor (Slamon, et al., New Eng. J. Med. 344:783-792, 2001). A more detailed description is available in the Online Medelian Inheritance in Man; record *164870.
All references mentioned herein are hereby incorporated by reference in their entirety. Further, incorporated by reference in its entirety is U.S. patent application Ser. No. 10/005,905 (attorney docket number CTLIMM.021CP1) entitled “EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS,” filed on Nov. 7, 2001 and a continuation thereof, U.S. application Ser. No. 10/026,066, filed on Dec. 7, 2001, attorney docket number MANNK.021 CP1C, also entitled “EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS.”
Useful epitopes were identified and tested as described in the following examples. However, these examples are intended for illustration purposes only, and should not be construed as limiting the scope of the invention in any way.
Sequences of Specific Preferred Epitopes
Manufacture of Epitopes.
A. Synthetic Production of Epitopes
Peptides having an amino acid sequence of any of SEQ ID NO: 1, 8, 9, 11-23, 26-29, 32-44, 47-54, 56-63, 66-68 88-253, or 256-588 are synthesized using either FMOC or tBOC solid phase synthesis methodologies. After synthesis, the peptides are cleaved from their supports with either trifluoroacetic acid or hydrogen fluoride, respectively, in the presence of appropriate protective scavengers. After removing the acid by evaporation, the peptides are extracted with ether to remove the scavengers and the crude, precipitated peptide is then lyophilized. Purity of the crude peptides is determined by HPLC, sequence analysis, amino acid analysis, counterion content analysis and other suitable means. If the crude peptides are pure enough (greater than or equal to about 90% pure), they can be used as is. If purification is required to meet drug substance specifications, the peptides are purified using one or a combination of the following: re-precipitation; reverse-phase, ion exchange, size exclusion or hydrophobic interaction chromatography; or counter-current distribution.
Drug Product Formulation
GMP-grade peptides are formulated in a parenterally acceptable aqueous, organic, or aqueous-organic buffer or solvent system in which they remain both physically and chemically stable and biologically potent. Generally, buffers or combinations of buffers or combinations of buffers and organic solvents are appropriate. The pH range is typically between 6 and 9. Organic modifiers or other excipients can be added to help solubilize and stabilize the peptides. These include detergents, lipids, co-solvents, antioxidants, chelators and reducing agents. In the case of a lyophilized product, sucrose or mannitol or other lyophilization aids can be added. Peptide solutions are sterilized by membrane filtration into their final container-closure system and either lyophilized for dissolution in the clinic, or stored until use.
B. Construction of expression vectors for use as nucleic acid vaccines
The construction of three generic epitope expression vectors is presented below. The particular advantages of these designs are set forth in U.S. patent application Ser. No. 09/561,572 entitled “EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS,” which has been incorporated by reference in its entirety above.
A suitable E. coli strain was then transfected with the plasmid and plated out onto a selective medium. Several colonies were grown up in suspension culture and positive clones were identified by restriction mapping. The positive clone was then grown up and aliquotted into storage vials and stored at −70° C.
A mini-prep (QIAprep Spin Mini-prep: Qiagen, Valencia, Calif.) of the plasmid was then made from a sample of these cells and automated fluorescent dideoxy sequence analysis was used to confirm that the construct had the desired sequence.
B.1 Construction of pVAX-EP1-IRES-EP2
Overview:
The starting plasmid for this construct is pVAX1 purchased from Invitrogen (Carlsbad, Calif.). Epitopes EP1 and EP2 were synthesized by GIBCO BRL (Rockville, Md.). The IRES was excised from pIRES purchased from Clontech (Palo Alto, Calif.).
Procedure:
B 2. Construction of pVAX-EP1-IRES-EP2-ISS-NIS
Overview:
The starting plasmid for this construct was pVAX-EP1-IRES-EP2 (Example 1). The ISS (immunostimulatory sequence) introduced into this construct is AACGTT, and the NIS (standing for nuclear import sequence) used is the SV40 72 bp repeat sequence. ISS-NIS was synthesized by GIBCO BRL. See
Procedure:
B3. Construction of pVAX-EP2-UB-EP1
Overview:
The starting plasmid for this construct was pVAX1 (Invitrogen). EP2 and EP1 were synthesized by GIBCO BRL. Wild type Ubiquitin cDNA encoding the 76 amino acids in the construct was cloned from yeast.
Procedure:
Identification of Useful Epitope Variants.
The 10-mer FLPWHRLFLL (SEQ ID NO. 1) is identified as a useful epitope. Based on this sequence, numerous variants are made. Variants exhibiting activity in HLA binding assays (see Example 3, section 6) are identified as useful, and are subsequently incorporated into vaccines.
The HLA-A2 binding of length variants of FLPWHRLFLL have been evaluated. Proteasomal digestion analysis indicates that the C-terminus of the 9-mer FLPWHRLFL (SEQ ID NO. 8) is also produced. Additionally the 9-mer LPWHRLFLL (SEQ ID NO. 9) can result from N-terminal trimming of the 10-mer. Both are predicted to bind to the HLA-A*0201 molecule, however of these two 9-mers, FLPWHRLFL displayed more significant binding and is preferred (see
In vitro proteasome digestion and N-terminal pool sequencing indicates that tyrosinase207-216 (SEQ ID NO. 1) is produced more commonly than tyrosinase207-215 (SEQ ID NO. 8), however the latter peptide displays superior immunogenicity, a potential concern in arriving at an optimal vaccine design. FLPWHRLFL, tyrosinase207-215 (SEQ ID NO. 8) was used in an in vitro immunization of HLA-A2+blood to generate CTL (see CTL Induction Cultures below). Using peptide pulsed T2 cells as targets in a standard chromium release assay it was found that the CTL induced by tyrosinase207-215 (SEQ ID NO. 8) recognize tyrosinase207-216 (SEQ ID NO. 1) targets equally well (see
CTL Induction Cultures
PBMCs from normal donors were purified by centrifugation in Ficoll-Hypaque from buffy coats. All cultures were carried out using the autologous plasma (AP) to avoid exposure to potential xenogeneic pathogens and recognition of FBS peptides. To favor the in vitro generation of peptide-specific CTL, we employed autologous dendritic cells (DC) as APCs. DC were generated and CTL were induced with DC and peptide from PBMCs as described (Keogh et al., 2001). Briefly, monocyte-enriched cell fractions were cultured for 5 days with GM-CSF and IL-4 and were cultured for 2 additional days in culture media with 2 μg/ml CD40 ligand to induce maturation. 2×106 CD8+-enriched T lymphocytes/well and 2×105 peptide-pulsed DC/well were co-cultured in 24-well plates in 2 ml RPMI supplemented with 10% AP, 10 ng/ml IL-7 and 20 IU/ml IL-2. Cultures were restimulated on days 7 and 14 with autologous irradiated peptide-pulsed DC.
Sequence variants of FLPWHRLFL are constructed as follow. Consistent with the binding coefficient table (see Table 3) from the NIH/BIMAS MHC binding prediction program (see reference in example 3 below), binding can be improved by changing the L at position 9, an anchor position, to V. Binding can also be altered, though generally to a lesser extent, by changes at non-anchor positions. Referring generally to Table 3, binding can be increased by employing residues with relatively larger coefficients. Changes in sequence can also alter immunogenicity independently of their effect on binding to MHC. Thus binding and/or immunogenicity can be improved as follows:
By substituting F,L,M,W, or Y for P at position 3; these are all bulkier residues that can also improve immunogenicity independent of the effect on binding. The amine and hydroxyl-bearing residues, Q and N; and S and T; respectively, can also provoke a stronger, cross-reactive response.
By substituting D or E for W at position 4 to improve binding; this addition of a negative charge can also make the epitope more immunogenic, while in some cases reducing cross-reactivity with the natural epitope. Alternatively the conservative substitutions of F or Y can provoke a cross-reactive response.
By substituting F for H at position 5 to improve binding. H can be viewed as partially charged, thus in some cases the loss of charge can hinder cross-reactivity. Substitution of the fully charged residues R or K at this position can enhance immunogenicity without disrupting charge-dependent cross-reactivity.
By substituting I, L, M, V, F, W, or Y for R at position 6. The same caveats and alternatives apply here as at position 5.
By substituting W or F for L at position 7 to improve binding. Substitution of V, I, S, T, Q, or N at this position are not generally predicted to reduce binding affinity by this model (the NIH algorithm), yet can be advantageous as discussed above.
Y and W, which are equally preferred as the Fs at positions 1 and 8, can provoke a useful cross-reactivity. Finally, while substitutions in the direction of bulkiness are generally favored to improve immunogenicity, the substitution of smaller residues such as A, S, and C, at positions 3-7 can be useful according to the theory that contrast in size, rather than bulkiness per se, is an important factor in immunogenicity. The reactivity of the thiol group in C can introduce other properties as discussed in Chen, J.-L., et al. J. Immunol. 165:948-955, 2000.
*This table and other comparable data that are publicly available are useful in designing epitope variants and in determining whether a particular variant is substantially similar, or is functionally similar.
Cluster Analysis (SSX-231-68).
1. Epitope cluster region Prediction:
The computer algorithms: SYFPEITHI (internet http:// access at syfpeithi.bmi-heidelberg.com/Scripts/MHCServer.dll/EpPredict.htm), based on the book “MHC Ligands and Peptide Motifs” by H. G. Rammensee, J. Bachmann and S. Stevanovic; and HLA Peptide Binding Predictions (NIH) (internet http:// access at bimas.dcrt.nih.gov/molbio/hla_bin), described in Parker, K. C., et al., J. Immunol. 152:163, 1994; were used to analyze the protein sequence of SSX-2 (GI:10337583). Epitope clusters (regions with higher than average density of peptide fragments with high predicted MHC affinity) were defined as described fully in U.S. patent application Ser. No. 09/561,571 entitled “EPITOPE CLUSTERS,” filed on Apr. 28, 2000. Using a epitope density ratio cutoff of 2, five and two clusters were defined using the SYFPETHI and NIH algorithms, respectively, and peptides score cutoffs of 16 (SYFPETHI) and 5 (NIH). The highest scoring peptide with the NIH algorithm, SSX-241-49, with an estimated halftime of dissociation of >1000 min., does not overlap any other predicted epitope but does cluster with SSX-257-65 in the NIH analysis.
2. Peptide Synthesis and Characterization:
SSX-231-68, YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLGFKATLP (SEQ ID NO. 10) was synthesized by MPS (Multiple Peptide Systems, San Diego, Calif. 92121) using standard solid phase chemistry. According to the provided ‘Certificate of Analysis’, the purity of this peptide was 95%.
3. Proteasome Digestion:
Proteasome was isolated from human red blood cells using the proteasome isolation protocol described in U.S. patent application Ser. No. 09/561,074 entitled “METHOD OF EPITOPE DISCOVERY,” filed on Apr. 28, 2000. SDS-PAGE, western-blotting, and ELISA were used as quality control assays. The final concentration of proteasome was 4 mg/ml, which was determined by non-interfering protein assay (Geno Technologies Inc.). Proteasomes were stored at −70° C. in 25 μl aliquots.
SSX-231-68 was dissolved in Milli-Q water, and a 2 mM stock solution prepared and 20 μL aliquots stored at −20° C.
1 tube of proteasome (25 μL) was removed from storage at −70° C. and thawed on ice. It was then mixed thoroughly with 12.5 μL of 2 mM peptide by repipetting (samples were kept on ice). A 5 μL sample was immediately removed after mixing and transferred to a tube containing 1.25 μL 10% TFA (final concentration of TFA was 2%); the T=0 min sample. The proteasome digestion reaction was then started and carried out at 37° C. in a programmable thermal controller. Additional 5 μL samples were taken out at 15, 30, 60, 120, 180 and 240 min respectively, the reaction was stopped by adding the sample to 1.25 μL 10% TFA as before. Samples were kept on ice or frozen until being analyzed by MALDI-MS. All samples were saved and stored at −20° C. for HPLC analysis and N-terminal sequencing. Peptide alone (without proteasome) was used as a blank control: 2 μL peptide+4 μL Tris buffer (20 mM, pH 7.6)+1.5 μL TFA.
4. MALDI-TOF MS Measurements:
For each time point 0.3 μL of matrix solution (10 mg/ml α-cyano-4-hydroxycinnamic acid in AcCN/H2O (70:30)) was first applied on a sample slide, and then an equal volume of digested sample was mixed gently with matrix solution on the slide. The slide was allowed to dry at ambient air for 3-5 min. before acquiring the mass spectra. MS was performed on a Lasermat 2000 MALDI-TOF mass spectrometer that was calibrated with peptide/protein standards. To improve the accuracy of measurement, the molecular ion weight (MH+) of the peptide substrate was used as an internal calibration standard. The mass spectrum of the T=120 min. digested sample is shown in
5. MS Data Analysis and Epitope Identification:
To assign the measured mass peaks, the computer program MS-Product, a tool from the UCSF Mass Spectrometry Facility (http:// accessible at prospector.ucsf.edu/ucsfhtml3.4/msprod.htm), was used to generate all possible fragments (N- and C-terminal ions, and internal fragments) and their corresponding molecular weights. Due to the sensitivity of the mass spectrometer, average molecular weight was used. The mass peaks observed over the course of the digestion were identified as summarized in Table 4.
Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 5.
Boldface sequence correspond to peptides predicted to bind to MHC.
*On the basis of mass alone this peak could also have been assigned to the peptide 32-50, however proteasomal removal of just the N-terminal amino acid is unlikely. N-terminal sequencing (below) verifies the assignment to 31-49.
**On the basis of mass this fragment might also represent 33-68. N-terminal sequencing below is consistent with the assignment to 31-65.
†No prediction
As seen in Table 5, N-terminal addition of authentic sequence to epitopes can generate epitopes for the same or different MHC restriction elements. Note in particular the pairing of (K)RKYEAMTKL (SEQ ID NOS 19 and (20)) with HLA-B14, where the 10-mer has a longer predicted halftime of dissociation than the co-C-terminal 9-mer. Also note the case of the 10-mer KYEAMTKLGF (SEQ ID NO. 21) which can be used as a vaccine useful with several MHC types by relying on N-terminal trimming to create the epitopes for HLA-B*4403 and -B*08.
6. HLA-A0201 Binding Assay:
Binding of the candidate epitope KASEKIFYV, SSX-241-49, (SEQ ID NO. 15) to HLA-A2.1 was assayed using a modification of the method of Stauss et al., (Proc Natl Acad Sci USA 89(17):7871-5 (1992)). Specifically, T2 cells, which express empty or unstable MHC molecules on their surface, were washed twice with Iscove's modified Dulbecco's medium (IMDM) and cultured overnight in serum-free AIM-V medium (Life Technologies, Inc., Rockville, Md.) supplemented with human β2-microglobulin at 3 μg/ml (Sigma, St. Louis, Mo.) and added peptide, at 800, 400, 200, 100, 50, 25, 12.5, and 6.25 μg/ml.in a 96-well flat-bottom plate at 3×105 cells/200 μl/well. Peptide was mixed with the cells by repipeting before distributing to the plate (alternatively peptide can be added to individual wells), and the plate was rocked gently for 2 minutes. Incubation was in a 5% CO2 incubator at 37° C. The next day the unbound peptide was removed by washing twice with serum free RPMI medium and a saturating amount of anti-class I HLA monoclonal antibody, fluorescein isothiocyanate (FITC)-conjugated anti-HLA A2, A28 (One Lambda, Canoga Park, Calif.) was added. After incubation for 30 minutes at 4° C., cells were washed 3 times with PBS supplemented with 0.5% BSA, 0.05% (w/v) sodium azide, pH 7.4-7.6 (staining buffer). (Alternatively W6/32 (Sigma) can be used as the anti-class I HLA monoclonal antibody the cells washed with staining buffer and then incubated with fluorescein isothiocyanate (FITC)-conjugated goat F(ab′) antimouse-IgG (Sigma) for 30 min at 4° C. and washed 3 times as before.) The cells were resuspended in 0.5 ml staining buffer. The analysis of surface HLA-A2.1 molecules stabilized by peptide binding was performed by flow cytometry using a FACScan (Becton Dickinson, San Jose, Calif.). If flow cytometry is not to be performed immediately the cells can be fixed by adding a quarter volume of 2% paraformaldehyde and storing in the dark at 4° C.
The results of the experiment are shown in
7. Immunogenicity:
A. In Vivo Immunization of Mice.
HHD1 transgenic A*0201 mice (Pascolo, S., et al. J. Exp. Med. 185:2043-2051, 1997) were anesthetized and injected subcutaneously at the base of the tail, avoiding lateral tail veins, using 100 μl containing 100 nmol of SSX-241-49 (SEQ ID NO. 15) and 20 μg of HTL epitope peptide in PBS emulsified with 50 μl of IFA (incomplete Freund's adjuvant).
B. Preparation of Stimulating Cells (LPS Blasts).
Using spleens from 2 naive mice for each group of immunized mice, un-immunized mice were sacrificed and the carcasses were placed in alcohol. Using sterile instruments, the top dermal layer of skin on the mouse's left side (lower mid-section) was cut through, exposing the peritoneum. The peritoneum was saturated with alcohol, and the spleen was aseptically extracted. The spleen was placed in a petri dish with serum-free media. Splenocytes were isolated by using sterile plungers from 3 ml syringes to mash the spleens. Cells were collected in a 50 ml conical tubes in serum-free media, rinsing dish well. Cells were centrifuged (12000 rpm, 7 min) and washed one time with RPMI. Fresh spleen cells were resuspended to a concentration of 1×106 cells per ml in RPMI-10% FCS (fetal calf serum). 25 g/ml lipopolysaccharide and 7 μg/ml Dextran Sulfate were added. Cell were incubated for 3 days in T-75 flasks at 37° C., with 5% CO2. Splenic blasts were collected in 50 ml tubes pelleted (12000 rpm, 7 min) and resuspended to 3×107/ml in RPMI. The blasts were pulsed with the priming peptide at 50 μg/ml, RT 4 hr. mitomycin C-treated at 25 μg/ml, 37° C., 20 min and washed three times with DMEM.
C. In Vitro Stimulation.
3 days after LPS stimulation of the blast cells and the same day as peptide loading, the primed mice were sacrificed (at 14 days post immunization) to remove spleens as above. 3×106 splenocytes were co-cultured with 1×106 LPS blasts/well in 24-well plates at 37° C., with 5% CO2 in DMEM media supplemented with 10% FCS, 5×10−5 M β-mercaptoethanol, 100 μg/ml streptomycin and 100 IU/ml penicillin. Cultures were fed 5% (vol/vol) ConA supernatant on day 3 and assayed for cytolytic activity on day 7 in a 51Cr-release assay.
D. Chromium-Release Assay Measuring CTL Activity.
To assess peptide specific lysis, 2×106 T2 cells were incubated with 100 μCi sodium chromate together with 50 μg/ml peptide at 37° C. for 1 hour. During incubation they were gently shaken every 15 minutes. After labeling and loading, cells were washed three times with 10 ml of DMEM-10% FCS, wiping each tube with a fresh Kimwipe after pouring off the supernatant. Target cells were resuspended in DMEM-10% FBS 1×105/ml. Effector cells were adjusted to 1×107/ml in DMEM-10% FCS and 100 μl serial 3-fold dilutions of effectors were prepared in U-bottom 96-well plates. 100 μl of target cells were added per well. In order to determine spontaneous release and maximum release, six additional wells containing 100 μl of target cells were prepared for each target. Spontaneous release was revealed by incubating the target cells with 100 μl medium; maximum release was revealed by incubating the target cells with 100 μl of 2% SDS. Plates were then centrifuged for 5 min at 600 rpm and incubated for 4 hours at 37° C. in 5% CO2 and 80% humidity. After the incubation, plates were then centrifuged for 5 min at 1200 rpm. Supernatants were harvested and counted using a gamma counter. Specific lysis was determined as follows: % specific release=[(experimental release−spontaneous release)/(maximum release−spontaneous release)]×100.
Results of the chromium release assay demonstrating specific lysis of peptide pulsed target cells are shown in
8. Cross-Reactivity with Other SSX Proteins:
SSX-241-49 (SEQ ID NO. 15) shares a high degree of sequence identity with the same region of the other SSX proteins. The surrounding regions have also been generally well conserved. Thus the housekeeping proteasome can cleave following V49 in all five sequences. Moreover, SSX41-49 is predicted to bind HLA-A*0201 (see Table 6). CTL generated by immunization with SSX-241-49 cross-react with tumor cells expressing other SSX proteins.
Cluster Analysis (PSMA163-192).
A peptide, AFSPQGMPEGDLVYVNYARTEDFFKLERDM, PSMA163-192, (SEQ ID NO. 30), containing an A1 epitope cluster from prostate specific membrane antigen, PSMA168-190 (SEQ ID NO. 31) was synthesized using standard solid-phase F-moc chemistry on a 433A ABI Peptide synthesizer. After side chain deprotection and cleavage from the resin, peptide first dissolved in formic acid and then diluted into 30% Acetic acid, was run on a reverse-phase preparative HPLC C4 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min, where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 16.642 min containing the expected peptide, as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 7.
Boldface sequences correspond to peptides predicted to bind to MHC, see Table 8.
N-Terminal Pool Sequence Analysis
One aliquot at one hour of the proteasomal digestion (see Example 3 part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, Calif.). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n−1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.
For PSMA163-192 (SEQ ID NO. 30) this pool sequencing supports a single major cleavage site after V177 and several minor cleavage sites, particularly one after Y179. Reviewing the results presented in FIGS. 7A-C reveals the following:
Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further analysis. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-A1 binding sequence, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 8.
†No prediction
HLA-A*0201 Binding Assay:
HLA-A*0201 binding studies were preformed with PSMA168-177, GMPEGDLVYV, (SEQ ID NO. 33) essentially as described in Example 3 above. As seen in
Cluster Analysis (PSMA281-310).
Another peptide, RGIAEAVGLPSIPVHPIGYYDAQKLLEKMG, PSMA281-310, (SEQ ID NO. 45), containing an A1 epitope cluster from prostate specific membrane antigen, PSMA283-307 (SEQ ID NO. 46), was synthesized using standard solid-phase F-moc chemistry on a 433A ABI Peptide synthesizer. After side chain deprotection and cleavage from the resin, peptide in ddH2O was run on a reverse-phase preparative HPLC C18 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min, where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 17.061 min containing the expected peptide as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 9.
Boldface sequences correspond to peptides predicted to bind to MHC, see Table 10.
*By mass alone this peak could also have been 296-310 or 288-303.
**By mass alone this peak could also have been 298-307. Combination of HPLC and mass spectrometry show that at some later time points this peak is a mixture of both species.
†By mass alone this peak could also have been 289-298.
‡By mass alone this peak could also have been 281-295 or 294-306.
§By mass alone this peak could also have been 297-303.
¶By mass alone this peak could also have been 285-306.
#By mass alone this peak could also have been 288-303.
None of these alternate assignments are supported N-terminal pool sequence analysis.
N-Terminal Pool Sequence Analysis
One aliquot at one hour of the proteasomal digestion (see Example 3 part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, Calif.). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n−1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.
For PSMA281-310 (SEQ ID NO. 45) this pool sequencing supports two major cleavage sites after V287 and I297 among other minor cleavage sites. Reviewing the results presented in
Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-A1 binding sequence, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 10.
†No prediction
As seen in Table 10, N-terminal addition of authentic sequence to epitopes can often generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (G)LPSIPVHPI with HLA-A*0201, where the 10-mer can be used as a vaccine useful with several MHC types by relying on N-terminal trimming to create the epitopes for HLA-B7, -B*5101, and Cw*0401.
HLA-A*0201 Binding Assay:
HLA-A*0201 binding studies were preformed with PSMA288-297, GLPSIPVHPI, (SEQ ID NO. 48) essentially as described in Examples 3 and 4 above. As seen in
Cluster Analysis (PSMA454-481).
Another peptide, SSIEGNYTLRVDCTPLMYSLVHLTKEL, PSMA454-481, (SEQ ID NO. 55) containing an epitope cluster from prostate specific membrane antigen, was synthesized by MPS (purity >95%) and subjected to proteasome digestion and mass spectrum analysis as described above. Prominent peaks from the mass spectra are summarized in Table 11.
Boldface sequence correspond to peptides predicted to bind to MHC, see Table 12.
*On the basis of mass alone this peak could equally well be assigned to the peptide 455-472 however proteasomal removal of just the N-terminal amino acid is considered unlikely. If the issue were important it could be resolved by N-terminal sequencing.
**On the basis of mass this fragment might also represent 455-464.
Epitope Identification
Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designated to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 12.
†No prediction
As seen in Table 12, N-terminal addition of authentic sequence to epitopes can often generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (L)RVDCTPLMY (SEQ ID NOS 62 and (63)) with HLA-B*2702/5, where the 10-mer has substantial predicted halftimes of dissociation and the co-C-terminal 9-mer does not. Also note the case of SIEGNYTLRV (SEQ ID NO 57) a predicted HLA-A*0201 epitope which can be used as a vaccine useful with HLA-B*5101 by relying on N-terminal trimming to create the epitope.
HLA-A*0201 Binding Assay
HLA-A*0201 binding studies were preformed, essentially as described in Example 3 above, with PSMA460-469, TLRVDCTPL, (SEQ ID NO. 60). As seen in
ELISPOT Analysis: PSM 463-471 (SEQ ID NO. 62)
The wells of a nitrocellulose-backed microtiter plate were coated with capture antibody by incubating overnight at 4° C. using 50 μl/well of 4 μg/ml murine anti-human γ-IFN monoclonal antibody in coating buffer (35 mM sodium bicarbonate, 15 mM sodium carbonate, pH 9.5). Unbound antibody was removed by washing 4 times 5 min. with PBS. Unbound sites on the membrane then were blocked by adding 200 μl/well of RPMI medium with 10% serum and incubating 1 hr. at room temperature. Antigen stimulated CD8+ T cells, in 1:3 serial dilutions, were seeded into the wells of the microtiter plate using 10011/well, starting at 2×105 cells/well. (Prior antigen stimulation was essentially as described in Scheibenbogen, C. et al. Int. J. Cancer 71:932-936, 1997. PSMA462-471 (SEQ ID NO. 62) was added to a final concentration of 10 μg/ml and IL-2 to 100 U/ml and the cells cultured at 37° C. in a 5% CO2, water-saturated atmosphere for 40 hrs. Following this incubation the plates were washed with 6 times 200 μl/well of PBS containing 0.05% Tween-20 (PBS-Tween). Detection antibody, 50 μl/well of 2 g/ml biotinylated murine anti-human γ-IFN monoclonal antibody in PBS+10% fetal calf serum, was added and the plate incubated at room temperature for 2 hrs. Unbound detection antibody was removed by washing with 4 times 200 μl of PBS-Tween. 100 μl of avidin-conjugated horseradish peroxidase (Pharmingen, San Diego, Calif.) was added to each well and incubated at room temperature for 1 hr. Unbound enzyme was removed by washing with 6 times 200 μl of PBS-Tween. Substrate was prepared by dissolving a 20 mg tablet of 3-amino 9-ethylcoarbasole in 2.5 ml of N,N-dimethylformamide and adding that solution to 47,5 ml of 0.05 M phosphate-citrate buffer (pH 5.0). 25 μl of 30% H2O2 was added to the substrate solution immediately before distributing substrate at 100 μl/well and incubating the plate at room temperature. After color development (generally 15-30 min.), the reaction was stopped by washing the plate with water. The plate was air dried and the spots counted using a stereomicroscope.
Cluster Analysis (PSMA653-687).
Another peptide, FDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFY PSMA653-687, (SEQ ID NO. 64) containing an A2 epitope cluster from prostate specific membrane antigen, PSMA660-681 (SEQ ID NO 65), was synthesized by MPS (purity >95%) and subjected to proteasome digestion and mass spectrum analysis as described above. Prominent peaks from the mass spectra are summarized in Table 13.
Boldface sequence correspond to peptides predicted to bind to MHC, see Table 13.
*On the basis of mass alone this peak could equally well be assigned to a peptide beginning at 654, however proteasomal removal of just the N-terminal amino acid is considered unlikely. If the issue were important it could be resolved by N-terminal sequencing.
**On the basis of mass alone these peaks could have been assigned to internal fragments, but given the overall pattern of digestion it was considered unlikely.
Epitope Identification
Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 14.
†No prediction
As seen in Table 14, N-terminal addition of authentic sequence to epitopes can generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (R)MMNDQLMFL (SEQ ID NOS. 66 and (67)) with HLA-A*02, where the 10-mer retains substantial predicted binding potential.
HLA-A*0201 Binding Assay
HLA-A*0201 binding studies were preformed, essentially as described in Example 3 above, with PSMA663-671, (SEQ ID NO. 66) and PSMA662-671, RMMNDQLMFL (SEQ NO. 67). As seen in
Vaccinating with Epitope Vaccines.
1. Vaccination with Peptide Vaccines:
A. Intranodal Delivery
A formulation containing peptide in aqueous buffer with an antimicrobial agent, an antioxidant, and an immunomodulating cytokine, was injected continuously over several days into the inguinal lymph node using a miniature pumping system developed for insulin delivery (MiniMed; Northridge, Calif.). This infusion cycle was selected in order to mimic the kinetics of antigen presentation during a natural infection.
B. Controlled Release
A peptide formulation is delivered using controlled PLGA microspheres as is known in the art, which alter the pharmacokinetics of the peptide and improve immunogenicity. This formulation is injected or taken orally.
C. Gene Gun Delivery
A peptide formulation is prepared wherein the peptide is adhered to gold microparticles as is known in the art. The particles are delivered in a gene gun, being accelerated at high speed so as to penetrate the skin, carrying the particles into dermal tissues that contain pAPCs.
D. Aerosol Delivery
A peptide formulation is inhaled as an aerosol as is known in the art, for uptake into appropriate vascular or lymphatic tissue in the lungs.
2. Vaccination with Nucleic Acid Vaccines:
A nucleic acid vaccine is injected into a lymph node using a miniature pumping system, such as the MiniMed insulin pump. A nucleic acid construct formulated in an aqueous buffered solution containing an antimicrobial agent, an antioxidant, and an immunomodulating cytokine, is delivered over a several day infusion cycle in order to mimic the kinetics of antigen presentation during a natural infection.
Optionally, the nucleic acid construct is delivered using controlled release substances, such as PLGA microspheres or other biodegradable substances. These substances are injected or taken orally. Nucleic acid vaccines are given using oral delivery, priming the immune response through uptake into GALT tissues. Alternatively, the nucleic acid vaccines are delivered using a gene gun, wherein the nucleic acid vaccine is adhered to minute gold particles. Nucleic acid constructs can also be inhaled as an aerosol, for uptake into appropriate vascular or lymphatic tissue in the lungs.
Assays for the Effectiveness of Epitope Vaccines.
1. Tetramer Analysis:
Class I tetramer analysis is used to determine T cell frequency in an animal before and after administration of a housekeeping epitope. Clonal expansion of T cells in response to an epitope indicates that the epitope is presented to T cells by pAPCs. The specific T cell frequency is measured against the housekeeping epitope before and after administration of the epitope to an animal, to determine if the epitope is present on pAPCs. An increase in frequency of T cells specific to the epitope after administration indicates that the epitope was presented on pAPC.
2. Proliferation Assay:
Approximately 24 hours after vaccination of an animal with housekeeping epitope, pAPCs are harvested from PBMCs, splenocytes, or lymph node cells, using monoclonal antibodies against specific markers present on pAPCs, fixed to magnetic beads for affinity purification. Crude blood or splenoctye preparation is enriched for pAPCs using this technique. The enriched pAPCs are then used in a proliferation assay against a T cell clone that has been generated and is specific for the housekeeping epitope of interest. The pAPCs are coincubated with the T cell clone and the T cells are monitored for proliferation activity by measuring the incorporation of radiolabeled thymidine by T cells. Proliferation indicates that T cells specific for the housekeeping epitope are being stimulated by that epitope on the pAPCs.
3. Chromium Release Assay:
A human patient, or non-human animal genetically engineered to express human class I MHC, is immunized using a housekeeping epitope. T cells from the immunized subject are used in a standard chromium release assay using human tumor targets or targets engineered to express the same class I MHC. T cell killing of the targets indicates that stimulation of T cells in a patient would be effective at killing a tumor expressing a similar TuAA.
Induction of CTL Response with Naked DNA is Efficient by Intra-Lymph Node Immunization.
In order to quantitatively compare the CD8+ CTL responses induced by different routes of immunization a plasmid DNA vaccine (pEGFPL33A) containing a well-characterized immunodominant CTL epitope from the LCMV-glycoprotein (G) (gp33; amino acids 33-41) (Oehen, S., et al. Immunology 99, 163-169 2000) was used, as this system allows a comprehensive assessment of antiviral CTL responses. Groups of 2 C57BL/6 mice were immunized once with titrated doses (200-0.02 μg) of pEGFPL33A DNA or of control plasmid pEGFP-N3, administered i.m. (intramuscular), i.d. (intradermal), i.spl. (intrasplenic), or i.ln. (intra-lymph node). Positive control mice received 500 pfu LCMV i.v. (intravenous). Ten days after immunization spleen cells were isolated and gp33-specific CTL activity was determined after secondary in vitro restimulation. As shown in
Intra-Lymph Node DNA Immunization Elicits Anti-Tumor Immunity.
To examine whether the potent CTL responses elicited following i.ln. immunization were able to confer protection against peripheral tumors, groups of 6 C57BL/6mice were immunized three times at 6-day intervals with 10 μg of pEFGPL33A DNA or control pEGFP-N3 DNA. Five days after the last immunization small pieces of solid tumors expressing the gp33 epitope (EL4-33) were transplanted s.c. into both flanks and tumor growth was measured every 3-4 d. Although the EL4-33 tumors grew well in mice that had been repetitively immunized with control pEGFP-N3 DNA (
Differences in Lymph Node DNA Content Mirrors Differences in CTL Response following Intra-Lymph Node and Intramuscular Injection.
Administration of a DNA Plasmid Formulation of a Therapeutic Vaccine for Melanoma to Humans.
SYNCHROTOPE TA2M, a melanoma vaccine, encoding the HLA-A2-restricted tyrosinase epitope SEQ ID NO. 1 and epitope cluster SEQ ID NO. 69, was formulated in 1% Benzyl alcohol, 1% ethyl alcohol, 0.5 mM EDTA, citrate-phosphate, pH 7.6. Aliquots of 80, 160, and 320 μg DNA/ml were prepared for loading into MINIMED 407C infusion pumps. The catheter of a SILHOUETTE infusion set was placed into an inguinal lymph node visualized by ultrasound imaging. The assembly of pump and infusion set was originally designed for the delivery of insulin to diabetics and the usual 17 mm catheter was substituted with a 31 mm catheter for this application. The infusion set was kept patent for 4 days (approximately 96 hours) with an infusion rate of about 25 μl/hour resulting in a total infused volume of approximately 2.4 ml. Thus the total administered dose per infusion was approximately 200, and 400 μg; and can be 800 μg, respectively, for the three concentrations described above. Following an infusion subjects were given a 10 day rest period before starting a subsequent infusion. Given the continued residency of plasmid DNA in the lymph node after administration (as in example 12) and the usual kinetics of CTL response following disappearance of antigen, this schedule will be sufficient to maintain the immunologic CTL response.
Additional Epitopes.
The methodologies described above, and in particular in examples 3-7, have been applied to additional synthetic peptide substrates, leading to the identification of further epitopes as set for the in tables 15-36 below. The substrates used here were designed to identify products of housekeeping proteasomal processing that give rise to HLA-A*0201 binding epitopes, but additional MHC-binding reactivities can be predicted, as discussed above. Many such reactivities are disclosed, however, these listings are meant to be exemplary, not exhaustive or limiting. As also discussed above, individual components of the analyses can be used in varying combinations and orders. The digests of the NY-ESO-1 substrates 136-163 and 150-177 (SEQ ID NOS. 254 and 255, respectively) yielded fragments that did not fly well in MALDI-TOF mass spectrometry. However, they were quite amenable to N-terminal peptide pool sequencing, thereby allowing identification of cleavage sites. Not all of the substrates necessarily meet the formal definition of an epitope cluster as referenced in example 3. Some clusters are so large, e.g. NY-ESO-186-171, that it was more convenient to use substrates spanning only a portion of this cluster. In other cases, substrates were extended beyond clusters meeting the formal definition to include neighboring predicted epitopes. In some instances, actual binding activity may have dictated what substrate was made, as with for example the MAGE epitopes reported here, where HLA binding activity was determined for a selection of peptides with predicted affinity, before synthetic substrates were designed.
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.
†Scores are given from the two binding prediction programs referenced above (see example 3).
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.
†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.
*L123 is the C-terminus of the natural protein.
†Scores are given from the two binding prediction programs referenced above (see example 3).
†tScores are given from the two binding prediction programs referenced above (see example 3).
1This H was reported as Y in the SWISSPROT database.
†Scores are given from the two binding prediction programs referenced above (see example 3).
TIIPEVPQL†
DTIIPEVPQL†
*This substrate contains the 14 amino acids from fibronectin flanking ED-B to the N-terminal side.
**These peptides span the junction between the N-terminus of the ED-B domain and the rest of fibronectin.
†The italicized lettering indicates sequence outside the ED-B domain.
Evaluating Likelihood of Epitope Cross-reactivity on Non-target Tissues.
As noted above PSA is a member of the kallikrein family of proteases, which is itself a subset of the serine protease family. While the members of this family sharing the greatest degree of sequence identity with PSA also share similar expression profiles, it remains possible that individual epitope sequences might be shared with proteins having distinctly different expression profiles. A first step in evaluating the likelihood of undesirable cross-reactivity is the identification of shared sequences. One way to accomplish this is to conduct a BLAST search of an epitope sequence against the SWISSPROT or Entrez non-redundant peptide sequence databases using the “Search for short nearly exact matches” option; hypertext transfer protocol accessible on the world wide web (http://www) at “ncbi.nlm.nih.gov/blast/index.html”. Thus searching SEQ ID NO. 214, WVLTAAHCI, against SWISSPROT (limited to entries for homo sapiens) one finds four exact matches, including PSA. The other three are from kallikrein 1 (tissue kallikrein), and elastase 2A and 2B. While these nine amino acid segments are identical, the flanking sequences are quite distinct, particularly on the C-terminal side, suggesting that processing may proceed differently and that thus the same epitope may not be liberated from these other proteins. (Please note that kallikrein naming is confused. Thus the kallikrein 1 [accession number P06870] is a different protein than the one [accession number AAD13817] mentioned in the paragraph on PSA above in the section on tumor-associated antigens).
It is possible to test this possibility in several ways. Synthetic peptides containing the epitope sequence embedded in the context of each of these proteins can be subjected to in vitro proteasomal digestion and analysis as described above. Alternatively, cells expressing these other proteins, whether by natural or recombinant expression, can be used as targets in a cytotoxicity (or similar) assay using CD8+ T cells that recognize the epitope, in order to determine if the epitope is processed and presented.
Epitope Clusters.
Known and predicted epitopes are generally not evenly distributed across the sequences of protein antigens. As referred to above, we have defined segments of sequence containing a higher than average density of (known or predicted) epitopes as epitope clusters. Among the uses of epitope clusters is the incorporation of their sequence into substrate peptides used in proteasomal digestion analysis as described herein. Epitope clusters can also be useful as vaccine components. A fuller discussion of the definition and uses of epitope clusters is found in U.S. patent application Ser. No. 09/561,571 entitled EPITOPE CLUSTERS, previously incorporated by reference in its entirety.
Melan-A/MART-1
This melanoma tumor-associated antigen (TAA) is 118 amino acids in length. Of the 110 possible 9-mers, 16 are given a score >16 by the SYFPEITHI/Rammensee algorithm. (See Table 37). These represent 14.5% of the possible peptides and an average epitope density on the protein of 0.136 per amino acid. Twelve of these overlap, covering amino acids 22-49 resulting in epitope density for the cluster of 0.428, giving a ratio, as described above, of 3.15. Another two predicted epitopes overlap amino acids 56-69, giving an epitope denisty for the cluster of 0.143, which is not appreciably different than the average, with a ratio of just 1.05. See
Restricting the analysis to the 9-mers predicted to have a half time of dissociation of ≧5 minutes by the BIMAS-NIH/Parker algorithm leaves only 5. (See Table 38). The average density of epitopes in the protein is now only 0.042 per amino acid. Three overlapping peptides cover amino acids 31-48 and the other two cover 56-69, as before, giving ratios of 3.93 and 3.40, respectively. (See Table 39).
SSX-2/HOM-MEL-40
This melanoma tumor-associated antigen (TAA) is 188 amino acids in length. Of the 180 possible 9-mers, 11 are given a score ≧16 by the SYFPEITHI/Rammensee algorithm. These represent 6.1% of the possible peptides and an average epitope density on the protein of 0.059 per amino acid. Three of these overlap, covering amino acids 99-114 resulting in an epitope density for the cluster of 0.188, giving a ratio, as described above, of 3.18. There are also overlapping pairs of predicted epitopes at amino acids 16-28, 57-67, and 167-183, giving ratios of 2.63, 3.11, and 2.01, respectively. There is an additional predicted epitope covering amino acids 5-28. Evaluating the region 5-28 containing three epitopes gives an epitope density of 0.125 and a ratio 2.14.
Restricting the analysis to the 9-mers predicted to have a half time of dissociation of >5 minutes by the BIMAS-NIH/Parker algorithm leaves only 6. The average density of epitopes in the protein is now only 0.032 per amino acid. Only a single pair overlap, at 167-180, with a ratio of 4.48. However the top ranked peptide is close to another single predicted epitope if that region, amino acids 41-65, is evaluated the ratio is 2.51, representing a substantial difference from the average. See
NY-ESO
This tumor-associated antigen (TAA) is 180 amino acids in length. Of the 172 possible 9-mers, 25 are given a score ≧16 by the SYFPEITHI/Rammensee algorithm. Like Melan-A above, these represent 14.5% of the possible peptides and an average epitope density on the protein of 0.136 per amino acid. However the distribution is quite different. Nearly half the protein is empty with just one predicted epitope in the first 78 amino acids. Unlike Melan-A where there was a very tight cluster of highly overlapping peptides, in NY-ESO the overlaps are smaller and extend over most of the rest of the protein. One set of 19 overlapping peptides covers amino acids 108-174, resulting in a ratio of 2.04. Another 5 predicted epitopes cover 79-104, for a ratio of just 1.38.
If instead one takes the approach of considering only the top 5% of predicted epitopes, in this case 9 peptides, one can examine whether good clusters are being obscured by peptides predicted to be less likely to bind to MHC. When just these predicted epitopes are considered we see that the region 108-140 contains 6 overlapping peptides with a ratio of 3.64. There are also 2 nearby peptides in the region 148-167 with a ratio of 2.00. Thus the large cluster 108-174 can be broken into two smaller clusters covering much of the same sequence.
Restricting the analysis to the 9-mers predicted to have a half time of dissociation of ≧5 minutes by the BIMAS-NIH/Parker algorithm brings 14 peptides into consideration. The average density of epitopes in the protein is now 0.078 per amino acid. A single set of 10 overlapping peptides is observed, covering amino acids 144-171, with a ratio of 4.59. All 14 peptides fall in the region 86-171 which is still 2.09 times the average density of epitopes in the protein. While such a large cluster is larger than we consider ideal it still offers a significant advantage over working with the whole protein. See
Tyrosinase
This melanoma tumor-associated antigen (TAA) is 529 amino acids in length. Of the 521 possible 9-mers, 52 are given a score >16 by the SYFPEITHI/Rammensee algorithm. These represent 10% of the possible peptides and an average epitope density on the protein of 0.098 per amino acid. There are 5 groups of overlapping peptides containing 2 to 13 predicted epitopes each, with ratios ranging from 2.03 to 4.41, respectively. There are an additional 7 groups of overlapping peptides, containing 2 to 4 predicted epitopes each, with ratios ranging from 1.20 to 1.85, respectively. The 17 peptides in the region 444-506, including the 13 overlapping peptides above, constitutes a cluster with a ratio of 2.20.
Restricting the analysis to the 9-mers predicted to have a half time of dissociation of ≧5 minutes by the BIMAS-NIH/Parker algorithm brings 28 peptides into consideration. The average density of epitopes in the protein under this condition is 0.053 per amino acid. At this density any overlap represents more than twice the average density of epitopes. There are 5 groups of overlapping peptides containing 2 to 7 predicted epitopes each, with ratios ranging from 2.22 to 4.9, respectively. Only three of these clusters are common to the two algorithms. Several, but not all, of these clusters could be enlarged by evaluating a region containing them and nearby predicted epitopes.
The following tables (52-75) present 9-mer epitopes predicted for HLA-A2 binding using both the SYFPEITHI and NIH algorithms and the epitope density of regions of overlapping epitopes, and of epitopes in the whole protein, and the ratio of these two densities. (The ratio must exceed one for there to be a cluster by the above definition; requiring higher values of this ratio reflect preferred embodiments). Individual 9-mers are ranked by score and identified by the position of their first amino in the complete protein sequence. Each potential cluster from a protein is numbered. The range of amino acid positions within the complete sequence that the cluster covers is indicated as are the rankings of the individual predicted epitopes it is made up of.
*Nearby but not overlapping epitopes
*Nearby but not overlapping epitopes
*These clusters are internal to the less preferred cluster #4.
**Includes a nearby but not overlapping epitope.
*This cluster is internal to the less preferred cluster #3.
In tables 49-60 epitope prediction and cluster analysis data for each algorithm are presented together in a single table.
The embodiments of the invention are applicable to and contemplate variations in the sequences of the target antigens provided herein, including those disclosed in the various databases that are accessible by the world wide web. Specifically for the specific sequences disclosed herein, variation in sequences can be found by using the provided accession numbers to access information for each antigen.
All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. The entire contents of all patents and publications discussed herein are incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference in its entirety.
The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as the terms of description and not of limitation, and there is no intention that in the use of such terms and expressions indicates the exclusion of equivalents of the features shown and described or portions thereof. It is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 10/117,937, filed Apr. 4, 2002, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/282,211, filed on Apr. 6, 2001; U.S. Provisional Patent Application Ser. No. 60/337,017, filed on Nov. 7, 2001; and U.S. Provisional Patent Application Ser. No. 60/363,210, filed on Mar. 7, 2002; all entitled “EPITOPE SEQUENCES,” and all of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60282211 | Apr 2001 | US | |
60337017 | Nov 2001 | US | |
60363210 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10117937 | Apr 2002 | US |
Child | 11067159 | Feb 2005 | US |