The present invention relates to a method for creating a uniform epoxy lining on the end surface of liquid-cooling stator bar clip-to-strand braze joints.
Water-cooled stator bars for electrical generators are comprised of a plurality of small rectangular solid and hollow copper strands which are brazed to one another and to an end fitting in which the strands are received. The end fitting serves as both an electrical and a hydraulic connection for the stator bar. The end fitting typically includes an enclosed chamber for ingress or egress of stator bar cooling liquid, typically deionized water. Another opening of the end fitting receives the ends of the strands of the stator bar, with the fitting and peripherally outermost copper strands of the stator bar being brazed to one another. Over time, leaks have developed about the connection between the stator bar ends and the stator bar fitting (or clip) as well as between adjacent strands. It is believed, based on leak analysis results, that the leak mechanism is due to corrosion which initiates in the braze alloy at the interior surface of the braze joint, oftentimes where stagnant water contacts the interface of the braze alloy and the copper strands.
Currently, an epoxy injection technique has been employed as a leak repair method as disclosed, for example, in commonly owned U.S. Pat. No. 5,605,590. The epoxy barrier coating has been injected manually to provide protection against water initiated corrosion mechanisms along the brazed length of the strand package. Based on the experience of this technology, it was incorporated into the manufacturing process for liquid-cooled stator bars. This is a proactive solution intended to extend the life of the product, and to insure the highest reliability of the liquid-cooled generator fleet. When the injection volume was significantly increased, however, it became obvious that this manually implemented technique not only is labor-intensive, but also produces high rates of human related defects. Specific areas of concern in connection with the above process include difficult access, both visual and for injection purposes; uneven coating; creation of voids and pinholes; and visual inspection limitations.
In an exemplary embodiment of this invention, a single or two-part epoxy resin is uniformly sprayed or dispensed over the end surface of the liquid-cooled stator bar clip-to-strand braze joints, as well as on at least part of the inside surfaces of the fitting or clip. The coating may be cured either at room temperature or at an elevated temperature, depending on the specific resin materials used. The spray may also be applied to a preheated surface, producing quick gelling of the resin.
Accordingly, in one aspect, the present invention relates to a method of coating a stator bar end inserted through an opening within a stator bar end fitting, the fitting having a chamber and the stator bar end having free ends of solid and hollow strands exposed within the chamber, the method comprising inserting a spray head nozzle through another opening in the fitting and in proximity to the free ends of the solid and hollow strands; spraying an epoxy resin composition so as to form a coating over the free ends of the solid and hollow strands and over at least a portion of adjoining wall surfaces of the fitting within the chamber; and curing the coating.
In another aspect, the invention relates to a method of coating a stator bar end inserted within a stator bar end fitting, the fitting having a chamber for receiving a liquid through an opening in the fitting, and the stator bar end including solid and hollow strands wherein, in use, the liquid flows through the chamber and through the hollow strands, the method comprising inserting a spray head nozzle through the opening and in proximity to the stator bar end; and spraying an epoxy resin composition so as to form a coating having a thickness of from 2-40 mil over the stator bar end and over at least a portion of adjoining surfaces of the fitting within the chamber and wherein the portion of the adjoining surfaces extends beyond an interface of the stator bar end and interior surfaces of the fitting; and curing the coating.
In still another aspect, the invention relates to a method of coating a stator bar end inserted through an opening within a stator bar end fitting, the fitting having a chamber and the stator bar end having free ends of solid and hollow strands exposed within the chamber, the method comprising inserting a spray head nozzle through another opening in the fitting and in proximity to the free ends of the solid and hollow strands; spraying a hydraphobic epoxy resin composition so as to form a coating over the free ends of the solid and hollow strands and over at least a portion of adjoining wall surfaces of the fitting within the chamber wherein the coating is applied to a thickness of from 2 to 40 mil; and wherein the portion of the adjoining surfaces includes at least ¼ to ½ inch beyond an interface of the stator bar end and interior surfaces of the fitting; and curing the coating.
The invention will now be described in detail in connection with the drawings identified below.
Referring now to the drawings, particularly to
According to the prior technique mentioned above, a boroscope 40 is inserted through the opening 36 and the first part of the epoxy, which is of low viscosity, is mixed and manually injected by way of an applicator syringe 42. Specifically, the syringe 42 is inserted through the same opening 36, and while viewing the joints between the fitting and the outermost strands of the stator bars, as well as between the strands themselves, the low viscosity epoxy is injected so as to overlie the brazing alloy, as well as any other exposed portions of the joints. After the low viscosity epoxy has been applied manually over all of the joints, the second part of the epoxy, which is of higher viscosity, is applied in the same manner to the same joints, overlying the low viscosity epoxy. After the application of both the low and high viscosity epoxy material, the epoxy is cured by heating. As noted above, this manual application is labor-intensive and prone to error.
In
In an alternative arrangement, the spray head could be “fished” through the inlet or outlet hoses 22, 26, thus avoiding disassembly and reassembly of the hoses and associated re-brazing of the plumbing connections.
The epoxy may be of any suitable number of available resins, so long as the resin is hydrophobic. Since the stator bar ends are brazed to each other and to the clip, the epoxy resin must also be one that bonds well to both copper and typical brazing alloys.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.