This application is a U.S. national stage application of international app. No. PCT/FI2004/050018, filed Feb. 19, 2004, the disclosure of which is incorporated by reference herein, and claims priority on Finnish Application No. 20035024, filed Feb. 27, 2003.
Not applicable.
The present invention relates to equipment for changing a blade in a coating device, in which the blade is intended to be used in connection with coating, in a blade holder fitted to a blade beam, and in which the blade is formed as an elongated flexible band, the coating device including
Blades intended for coating are used in on-line coating stations in connection with paper and board machines, and in so-called off-line coating devices, which in terms of production are separate from the actual paper machine. Both of these will be referred to in the following by the general term coating device. In blade coating, the blade is used to regulate, among other things, the amount of coating remaining on the paper and to smooth the coated surface.
In coating, the blade wears in a very short time, causing it to lose the properties required for a successful coating result. Due to this, the blade must be changed for a new one on average at intervals of 4 to 8 hours running time. In addition, the blade is changed, for example, during web breaks and shutdowns, whether it is worn or not. Traditionally, blades in coating devices have been changed manually by the operators. However, it is difficult and even dangerous to change long blades. In addition, the regular changing of blades takes up a great deal of useful production time, leading to production losses. Further, during blade changing, uncoated broke is created, especially in situations in which coating takes place as an on-line operation in connection with the paper machine. In that case, the paper machine is run at the running speed set for it, even while the blade is being changed. Besides reducing effective production time, blade changes also tie up labor.
Finnish patent number 103596 discloses a changing equipment for a doctor blade. In the equipment, a band-like blade is fed to a blade holder from a reel and is then pulled from the blade holder onto a second reel. During changing, a band containing several blades can then be simply fed with the aid of operating devices.
However, in known types of coating devices, structural factors make the equipment described above unsuitable for changing coating blades. In a coating device, the blade holder is, as is known, arranged in a blade beam, the width of which corresponds at least to that of the backing roll. In the coating situation, the blade is loaded against the backing roll, the paper web, to which coating paste has been applied, running between the edge line of the blade and the backing roll. The blade beam is suspended on bearings from both sides of the coating device, in a so-called rotating frame. There is an opening in the upper part of the frames, in which there is a hollow shaft that acts as the bearing point for the blade beam. During running, the blade angle is adjusted by rotating the blade beam.
When the blade is changed, it can be brought into contact with the opened blade holder, for example, through the hollow shaft. The imaginary center-line of the hollow shaft in the running position is essentially at the line of the edge of the blade. This means that the lower edge of the gap formed by the locking jaws of the blade holder, against which the side of the blade opposite to the edge line is set when the blade is in the holder, is radially outside an imagined extension of the hollow shaft. Due to this, among other factors, known types of blade-changing equipment are in no way suitable for use in coating devices.
In addition, it would also be difficult to feed the band using known types of equipment, as in reality there is generally little installation space in connection with coating devices. Thus the reels would have to be located far from the coating device, in which case the band would have to be guided using complicated guide devices.
The present invention is intended to create equipment for changing the blade in a coating device, which equipment has a simple and operationally reliable construction and by means of which blade changing can even be carried out entirely automatically. The invention is also intended to create a method for blade changing in a coating device and a blade band for use in a coating device.
The use of the equipment and blade band according to the invention solves many of the problems caused by the structural factors of the coating device. This is achieved through simple shaping arranged in the blade and by the movement of the blade band carried out using the equipment. The equipment has a clear and reliable construction and preferably comprises only a few operating components.
The equipment according to the invention can be applied to different kinds of coating stations and different kinds of blades and blade holders. In the method according to the invention, shaping arranged in the blade holder is also used, so that the blade band can be brought to the blade holder and set in place rapidly and certainly. The use of the method achieves faster blade changes than previously, these being performed advantageously, without long interruptions in the coating process and even entirely without any work being required by the machine operation personnel.
According to yet another preferred embodiment, the changing of the blade-band reels can be arranged to take place smoothly using jointing devices arranged in connection with the equipment. Problems will then not arise, for example, even from the jointing seam formed between the end of the old band and the start of the new band.
In the following, the invention is examined in detail with reference to the accompanying drawings, which show some embodiments
a is a cross-sectional view of the rotating frame of the coating device in the running situation.
b is a cross-sectional view of the rotating frame of the coating device in the blade-changing situation.
a is a partial cross-sectional side view of the coating device in the running position, seen from the side of the installation of the equipment according to the invention.
b is a partial cross-sectional side view of the coating device in the blade-changing position, seen from the side of the installation of the equipment according to the invention.
a shows one blade holder in the running position.
b shows one blade holder in the blade-changing position.
Using the coating device 51 of the type shown, the paper web 42.1, 42.2 (
The doctoring angle of the blade 43, which is thus attached in, for example, a manner that is as such known, to the blade holder 45 (
The unused blade band 43 feed devices of the blade-changing equipment 10 according to the invention are attached in connection with the feed-through opening 27 of the hollow shaft 52 outside the second rotating frame 28.1. At the side of the coating device 51 opposite to the equipment 10, there are devices 40 correspondingly arranged outside the rotating frame 28.2, at least for reeling the used blade band 43.
When the blade box 11 is stationary in the equipment 10, the opening is followed by a jointing device 12 arranged preferably tangentially relative to the feed-out opening of the band 43. The jointing device 12 is used to attach the end of the blade band 43 that is ending in the box 11 to the starting end of a band on a new full reel. The joint made by the jointing device 12 is based, for example, on an end-to-end joint made by riveting or in some similar manner. The jointing device 12 is also used to create smooth blade changing when changing the boxes 11, because then too no special manual blade threading operations are needed. The joint between the ending and the starting blade band can thus be moved smoothly from the first reel 11 connected to one end of the blade holder 45 to the second reel 40 connected to the second end of the blade holder 45.
The jointing device 12, the drive device 21 of which can be pneumatically or hydraulically operated, is followed by guide devices. The guide devices include a nip 24 or similar guide, which is formed, for example, of two rollers set vertically against each other. The nip 24, the drive device 22 of which can also be pneumatically or hydraulically operated, holds the blade band 43 in a suitable position while it is being fed to the blade holder 45. Furthermore, the blade band 43 is also moved forward by the aid of the nip 24. The location of the nip 24 in the equipment 10 must be aligned quite precisely relative to the blade holder 45, because the nip 24 is used to guide the lowering of the blade band 43 to the narrow opening of the blade holder 45, as will later be described in the description. The pneumatic or hydraulic lines of the drive device 21, 22 of the jointing device 12 and the guide devices 13 are not shown in the figures.
The equipment 10 is bounded underneath by a lower frame 14. Above the lower frame 14 is an upper frame 15 at the locations of the blade box 11, the guide devices 13, and the jointing devices 12, on top of which the blade box 11 and the guide and jointing devices 13, 12 are attached. In the upper frame 15 and the blade box 11 there can be members (for example, protrusions and openings) fitted into each other, to firm and stable attachment of the blade box 11 to the upper frame 15 (not shown). Also, the jointing device 12 and the guide devices can also form a single totality, which has a foot 26 fitted to the upper frame 15.
Further, between the lower frame 14 and the upper frame 15 there are lifting devices, such as a lifting cylinder 17. The lifting cylinder 17, which is, for example, pneumatically or hydraulically operated with line 31, is attached to the lower frame 14. The lifting cylinder 17 is used to lift and lower the blade band 43 when it is changed in the coating device 51. In connection with blade changing, the blade box 11, jointing devices 12, and guide devices 13, arranged on top of the upper frame 15, also rise and fall.
Between the lower frame 14 and the upper frame 15 there are also guides, such as vertical bar elements 16.1. The bar elements 16.1, of which there are three in the device 10 according to the embodiment, are fixed in connection with the upper frame 15. In the lower frame 14, there are holes 25 for the guides 16.1, in which Holes the guides can be moved by the lifting cylinder 17 when lifting or lowering the components 11, 12, 13 in the upper frame 15.
In the lower frame 14, there is also a vertically oriented shaft 20 (
A flange 18, in the upper part of which there is an opening 19 (
A cased blade-band reeling equipment 40 (
As can be seen in
a and 4b show a cross-section of the upper part of the rotating frame 28.1, 28.2. In the frame 28.1, 28.2, there is thus a through opening 27 in its upper part, which acts as a suspension point for the blade beam 39. In the through opening 27, there is a hollow shaft 52, by means of which the blade beam 39 and the equipment 10, 40 according to the invention suspended on the opposite side of the rotating frame 28.1, 28.2 to it, are mounted in bearings connected to the frame 28.1, 28.2.
a shows a side view of the coating device 51 in the running position. In that case, the rotating frame 28.1 is turned close to the backing roll 41. The rotation of the frame 28.1 is limited by a constant-angle device 49 in a fixed frame 50, against which the upper part of the rotating frame 28.1 rests. In the running position, the edge line 43′ of the blade 43 (
a and 4b show one embodiment of the blade band 43 according to the invention, which is used in the equipment 10, 40 according to the invention and which for its part permits the blade band 43 of the method according to the invention to be changed on the coating device 51. There are indentations 44 made at regular intervals on the opposite side of the blade band 43 to the edge line 43′ , with which the coating is doctored from the surface of the web 43.1. The distance between the indentations 44 preferably corresponds to the distance between the rotating frames 28.1, 28.2. In the indentations 44, there is a curved rise to the level of the side 43* of the holder 45 of the blade band 43, which prevents the band 43 from tearing. The length of the indentations 44 is dimensioned so that it corresponds at least to the axial length of the hollow shaft 52. The depth of the indentations 44 is dimensioned so that when the indentation 44 lies against the internal circumference of the hollow shaft 52, the side opposite to the edge line 43′ of the blade 43 is in the bottom of the gap between the jaws 46.1, 46.2 of the blade holder 45. The holder side 43* of the blade band 43 is then, in the radial direction, partly outside the imagined continuation of the hollow shaft 52. Correspondingly, the edge line 43′ of the blade 43 is then at the center line of the hollow shaft 52.
a shows the blade holder 45 in the running position, and
The opening and closing to the jaws 46.1, 46.2 of the blade holder 45 is done in a manner that is, as such, known, for example, by loading the hoses 48.1, 48.2. If the gap formed by the jaws 46.1, 46.2 is kept closed, hose 48.1 is loaded and hose 48.2 is not loaded, or at least is loaded substantially less than hose 48.1.
The following is a description of the method according to the invention, for changing the blade 43, using the equipment 10, 40, with reference to
The paper web 42.1, 42.2 being run through the coating device 51 can be taken down before the coating device 51 and led to a pulper or similar. On the other hand, the web 42.1, 42.2 can also be run through the coating device 51 at the time of the blade change too, in which case uncoated broke will be created. Such a through run has, however, the advantages that in such a case tail-threading need not be carried out after the blade change, in order to take up the web 42.1, 42.2 again.
The blade change is started by ending the application of coating and turning the blade beam 39 and the rotating frame 28.1, 28.2 from the position shown in
Next, the jaws 46.1, 46.2 of the blade holder 45, which have been in the running position shown in
After the opening of the blade holder 45, the blade band 43 is in the hollow shaft 52 in the running position, which is shown in
Next, the blade band 43 is moved transversely relatively to the coating device 51 (the arrow in
Once the indentations 44 have been brought to positions corresponding to the frame 28.1, 28.2, the blade band 43 is lowered using the lifting devices 17 belonging to the equipment 10, 40. The indentation 44 of the blade band 43 then once again settles onto the internal circumference of the hollow shaft 52 (
Once the blade band 43 has been lowered to its lower position, it is guided between the jaws 46.1, 46.2 of the blade holder 45. It should be noted, that the blade band 43 does not, during the transfer, necessarily need to be lifted entirely out of the holder 45, instead the lifting required is determined rather by the depth of the gap formed between the indentation 44 and the jaws 46.1, 46.2 of the blade holder 45. The jaws 46.1, 46.2 of the blade holder 45 are closed (
Preferably, the first reel 11 is located on the front side and the second reel 40 on the back side. It is therefore easy to bring a reel 11 containing a new band 43 to the equipment 10. The used band can be removed from the back side, by changing the filled reel 40. The location and changing of the reels 11, 40 are made to suit each operating situation. In
It must be understood that the above description and the related figures are only intended to illustrate the equipment, method, and blade band according to the present invention. For example, the blade change can include numerous other stages that are not referred to, which are, however fairly irrelevant when describing the method according to the invention. The invention is thus in no way restricted to only the embodiments disclosed or stated in the Claims, but many different variations and adaptations of the invention, which are possible within the scope of the inventive idea will be obvious to one versed in the art.
Number | Date | Country | Kind |
---|---|---|---|
20035024 | Feb 2003 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2004/050018 | 2/19/2004 | WO | 00 | 9/14/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/081283 | 9/23/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3529305 | Dunlap et al. | Sep 1970 | A |
4802928 | Dunlap | Feb 1989 | A |
4895071 | Benton | Jan 1990 | A |
5138740 | Goodnow et al. | Aug 1992 | A |
5536312 | Madrzak et al. | Jul 1996 | A |
5782976 | Marziale et al. | Jul 1998 | A |
5974966 | Bruni | Nov 1999 | A |
6651303 | Toivanen et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
103596 | Jul 1999 | FI |
WO 9960207 | Nov 1999 | WO |
WO 02099189 | Dec 2002 | WO |
WO 2004081263 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060117541 A1 | Jun 2006 | US |