The present invention concerns an apparatus for processing particles. More particularly, the invention concerns a tandem filtration system for processing particles suspended in supercritical fluid. Methods for processing the particles to remove contaminants or to classify them are also provided.
Particles can be prepared by adding a solubilized compound, i.e. a compound dissolved in one or more solvents, to an anti-solvent. Such a process can be used to prepare particles in many different size distributions. A key drawback of such a process, however, is the entrapment of solvent and/or anti-solvent within and/or on the surface of the particles.
Removal of solvent from the particles typically involves washing of the particles with additional amounts of anti-solvent, which unfortunately results in saturation of the particles with anti-solvent, unless the anti-solvent is very volatile. For this reason, supercritical fluid (SCF) is often employed as the anti-solvent. SCF, in particular supercritical carbon dioxide, is very volatile and easily removed from the particles. Solvents, however, are less volatile than the SCF and thus are more difficult to remove.
Due to the extreme volatility of supercritical carbon dioxide, it is a challenge to effectively harvest particles from it unless the particles are first physically separated from it. Filtration is the most common approach used for affecting separation of particles from SCF while still permitting repeated wash cycles. When microparticles or nanoparticles are being processed, however, it is more difficult to separate the particles from the SCF due to fouling of filters, and it is difficult to unfoul filters when a process is running. Moreover, typical filters used to separate the particles are flat dead-end filters, which must be opened to harvest the particles. These challenges make continuous processing and harvesting of particles extremely difficult to achieve.
Numerous such processes and apparatuses for the processing of drug, mineral, metal or toner particles in supercritical fluid have been disclosed: U.S. Pat. No. 6,270,732, U.S. Pat. No. 5,584,913, U.S. Pat. No. 5,571,299, U.S. Pat. No. 5,460,701, U.S. Pat. No. 4,881,722, U.S. Pat. No. 5,874,029, U.S. Pat. No. 5,874,684, U.S. Pat. No. 6,113,795, U.S. Pat. No. 5,961,835, U.S. Pat. No. 5,527,466, U.S. Pat. No. 7,740,775, U.S. Pat. No. 7,635,442, U.S. Pat. No. 7,175,886, U.S. Pat. No. 7,250,152, U.S. Pat. No. 7,279,181, U.S. Pat. No. 7,449,136, U.S. Pat. No. 6,916,389, U.S. Pat. No. 7,291,296, U.S. Pat. No. 7,332,111, U.S. Pat. No. 7,150,766, U.S. Pat. No. 6,860,907, U.S. Pat. No. 6,440,337, U.S. Pat. No. 6,830,714, U.S. Pat. No. 6,620,351, U.S. Pat. No. 5,981,474, U.S. Pat. No. 8,323,685, U.S. Pat. No. 8,323,615, U.S. Pat. No. 8,215,489, U.S. Pat. No. 6,998,051, U.S. Pat. No. 5,864,923, U.S. Pat. No. 7,455,797, U.S. 20020010982, and U.S. 20010051118. These systems typically employ dead-end filters, cyclones, bag filters, depth filters or other such types. Many of these systems cannot be operated continually since they require halting of operations and opening of components in the process stream in order to remove particles. An important aspect of supercritical fluid based processes is that supercritical pressure and temperature must be maintained throughout the filtration step to avoid phase separation of solvent from the SCF and avoid redissolution of the solute back into the solvent. This is particularly difficult to achieve when particle formation is conducted continuously.
A need remains for improved equipment and processes for the preparation, harvesting and collection of small particles, especially those prepared in SCF. In particular, there remains a need for a higher throughput system that can be operated continuously or semi-continuously and that permits particle collection with minimal or no cessation of the particle formation step.
The present invention seeks to overcome some or all of the disadvantages inherent in the art. The present invention provides an equipment assembly suitable for the preparation, harvesting and collection of particles. The invention is particularly suitable for processes employing solvent/anti-solvent formation of particles, especially of microparticles and nanoparticles. The invention employs a tandem filtration system comprising at least one high-pressure filter, at least one low pressure filter and at least one collection vessel. The tandem filtration system is placed downstream of a precipitation chamber in which particles are formed.
During operation, a precipitation fluid (comprising an anti-solvent for at least one solute) is charged into a precipitation chamber. A process fluid (comprising at least one solute dissolved in at least one solvent) is dispersed as droplets into the precipitation fluid, such that solvent diffuses away from droplets of process fluid and into the precipitation fluid, whereby the solute precipitates in the anti-solvent. The particle-containing precipitation milieu is conducted from the precipitation chamber to a high pressure harvesting filter, whereby the solvent/anti-solvent mixture is separated from the particles that accumulate at the surface of a porous element in the harvesting filter. A charge of clean anti-solvent is then flowed through the harvesting filter in the same direction as the precipitation milieu in order to remove residual solvent from the particles. The internal pressure of the harvesting filter is thereafter reduced and a low pressure gas is passed through the filter in the reverse direction of the precipitation milieu, thereby dislodging particles from the surface of the porous element. The gas conducts the particles to a low pressure collection filter, whereby the gas is separated from the particles at the surface of a porous element in the collection filter. The particles then fall due to (are assisted or forced by) gravity into a collection vessel.
The tandem filter system of the invention can be used to collect particles and even to wash/rinse particles, if desired to remove unwanted component(s) from the particles. A harvesting filter can be used to extract compounds from particles by extraction, to remove contaminants from particles by repeated washing, or to remove solvent from the particles. The filter can be used for, among other things, washing particles with and harvesting particles from anti-solvent, especially supercritical anti-solvent. Accordingly, the unwanted component(s) in the particles will be soluble in the anti-solvent.
An aspect of the invention provides a high pressure particle harvesting filter system comprising:
Some embodiments of the invention include those wherein: 1) the harvesting filter system further comprises a collection vessel; 2) the collection vessel is vented; 3) the process cavity is vertically oriented along its lengthwise axis; 3) vertical orientation is perpendicular to the ground or parallel to the linear axis of a plumb bob line; 4) at least one inlet port is configured to serve as an outlet port for a gaseous particle suspension; 5) the porous element and the housing are cylindrical; 6) the temperature controller comprises a heating and/or cooling jacket surrounding the housing; 7) the geometry of the conical portion is such that the upper wider end has a diameter of about 25 to about 125 mm, the lower narrower end has a diameter of about 5 to about 50 mm and the conical portion is about 50 to about 250 mm in length; 8) the process cavity further comprises a linear cylindrical portion in which the porous element is disposed; 9) the spacing between the outer surface of the porous element and the inner surface of the process cavity is in the range of about 5 to about 100 mm, about 20 to about 100 mm, about 40 to about 100 mm, about 60 to 80 mm, about 70 mm; 10) the outlet port is configured as reversible-flow port, e.g. to serve as an outlet for liquid and an inlet for gas; 11) the diameter of the inner conduit is in the range of about 5 to about 60 mm, about 10 to about 50 mm, about 15 to about 35 mm, about 20 to 30 mm, about 25 mm; 12) the outer diameter of the porous element is in the range of about 10 to about 60 mm, about 15 to about 35 mm, about 20 to 30 mm, about 25 mm; 13) the liquid particle suspension comprises particles, antisolvent and solvent; and/or 14) the system further comprises one or more valves that direct flow of a liquid particle suspension to the harvesting filter and direct flow of a gaseous particle suspension from the harvesting filter.
Another aspect of the invention provides a low pressure particle collection filter system comprising:
Some embodiments of the invention include those wherein: 1) the system further comprises a particle collection vessel; 2) the collection vessel is vented; 3) the inner conduit is vertically oriented along its lengthwise axis; 4) vertical orientation is perpendicular to the ground or parallel to the linear axis of a plumb bob line; 5) at least one inlet port is configured to receive a gaseous particle suspension; 6) the porous element is cylindrical; 7) the inner conduit of the porous element has an inner diameter in the range of about 5 to about 60 mm, about 10 to about 50 mm, about 15 to about 35 mm, about 20 to 30 mm, about 25 mm; 8) the system further comprises a gas pulsing system configured to pulse gas (in a reverse operations direction) from the gas outlet of the housing to the porous element; 9) the collection vessel is disposed beneath the porous element or at a level below the porous element; 10) the vent of the collection vessel comprises filtration medium; 11) the system further comprises one or more valves upstream of the inlet port to direct the flow of a gaseous particle suspension into the collection filter; and/or 12) the system further comprises one or more valves downstream of the outlet port.
Another aspect of the invention comprises a particle formation and collection equipment assembly comprising:
Another aspect of the invention comprises a particle formation and collection equipment assembly comprising:
Some embodiments of the invention include those wherein: 1) the disperser comprises a vibratable member; 2) the vibratable member is a nozzle, plate or mesh; 3) the disperser comprises a vibrator comprising at least one piezoelectric component; 4) the disperser comprises a conduit for process fluid and a conduit for SCF; 5) the disperser comprises a vibrator and a vibratable member; 6) the disperser comprises a vibrator and a nozzle, plate or mesh; 7) the equipment assembly comprises at least two tandem filter particle filtration systems; 8) the at least two tandem filter particle filtration systems are arranged in parallel and are configured to operate alternately; 9) the at least two tandem filter particle filtration systems are arranged in parallel and are configured to operate simultaneously; 10) the equipment assembly comprises at least two collection systems; 11) the disperser comprises a converging or diverging nozzle that generates a standing ultrasonic wave during operation; 12) the system further comprises one or more valves, one or more actuators, one or more back pressure regulators and/or one or more flow controllers; 13) the system further comprises software or logic to control operation of one or more valves, one or more actuators, one or more back pressure regulators and/or one or more flow controllers; 14) the disperser comprises a capillary nozzle; and/or 15) the system further comprises one or more computers having a memory storage medium containing software or logic adapted to control operation of one or more components of the system.
Another aspect of the invention provides a method of processing a suspension of particles, the method comprising:
In some aspects, the invention provides a powder made according to a process of the invention or a powder made with a system of the invention.
Some embodiments of the invention include those wherein: 1) the harvesting filter is a high pressure filter; 2) the process further comprises charging clean (not containing solvent or particles) SCF liquid into the harvesting filter in a forward direction; 3) the process further comprises reducing the internal pressure of the harvesting filter; 4) the process comprises forcing the particles by gravity to the collection vessel; 5) the high pressure filter and precipitation chamber are adapted to operate at about 800 to about 3000 psi, about 1000 to about 2000 psi, or about 1,110 to about 1,400 psi; and/or 6) a combination thereof.
The equipment assembly can further comprise: a) one or more particle harvesting filters; b) one or more particle collection filters; c) one or more vented collection vessels; d) one or more pressure sensors; e) one or more temperature sensors; f) one or more temperature controllers at least partially surrounding one or more of the precipitation chamber, collection filter, emptying filter and collection vessel; g) one or more heaters for scCO2; h) one or more pumps for pumping process fluid and/or scCO2; i) one or more solvent separation vessels; j) one or more solvent collection vessels; k) the system comprises one or more in-line sensors; l) an in-line sensor can be selected from the group consisting of a spectrophotometric sensor, particle size sensor, pressure sensor, temperature sensor, infrared sensor, near-infrared sensor, and ultraviolet sensor; or k) any combination thereof.
Some embodiments of the invention include those wherein: a) the equipment assembly comprises two particle harvesting filters, two particle collection filters and two collection vessels; b) the equipment assembly comprises two particle harvesting filters, one particle collection filter and one or more collection vessels; c) the equipment assembly comprises two particle harvesting filters, two particle collection filters and one or more collection vessels; d) the equipment assembly comprises two particle harvesting filters, one particle collection filter and one or more collection vessels; e) the equipment assembly comprises two tandem filter particle harvesting and collection systems arranged in parallel; f) the equipment assembly comprises two or more particle harvesting filters arranged in parallel, one particle collection filter and two or more collection vessels arranged in parallel; g) the equipment assembly comprises two or more precipitation chambers; or h) any combination thereof.
The invention includes all combinations of the aspects and embodiments disclosed herein.
The following figures form part of the present description and describe exemplary embodiments of the claimed invention. The skilled artisan will be able to practice the invention without undue experimentation in light of these figures and the description herein.
Aspects and embodiments of the invention include a particle formation, separation and collection system, a tandem filter particle separation and collection system, a high pressure harvesting filter, a low pressure collection filter, a method of forming, separating and collecting particles, and a method of treating particles.
The equipment assembly (1, schematic in
Following formation of the particles in the precipitation chamber, the precipitation fluid milieu (a liquid particle suspension comprising scCO2, solvent and particles) is conducted through an outlet (24) to at least one particle harvesting filter (6a) comprising a housing, an inlet, an outlet and an interior porous element engaged to the outlet, wherein the fluid scCO2 and solvent are separated from the particles at the surface of the porous element. The scCO2 and solvent pass through the porous element and are conducted to a solvent separation vessel (7a). From there, the separated solvent is conducted to a solvent collection vessel (8a). Placement of the outlet (24) is such that it will minimize accumulation of the precipitation fluid milieu in one or more regions within the chamber when process is being conducted as a flow-through process. For example, if the nozzle is at one end of the housing, the anti-solvent inlet will be disposed at or toward the same end of the housing and the outlet will be disposed at or toward the opposite end of the housing.
The particles are then discharged from the harvesting filter. This is accomplished by providing stopping the flow of scCO2 into the harvesting filter, reducing the internal pressure of the harvesting filter and passing a reverse flow of gas, e.g. inert gas from a supply (9a), across the porous element to dislodge the particles from the porous element. The dislodged particles are conducted through to at least one particle collection filter (12a) comprising a housing, an inlet, an outlet and an interior porous element engaged to the outlet, wherein the gas is separated from the particles at the interior or exterior surface of the porous element. As the particles separate, they are discharged by gravity into the collection vessel (10a). Alternatively or in addition, particles can be removed from the collection filter by providing a reverse flow of gas, such as from a supply (9b), across the porous element to dislodge the particles from the porous element. The dislodged particles can be collected in a collection vessel (10a) equipped with a vent. A collection vessel can be placed beneath the harvesting filter and/or the collection filter. The collection filter and associated equipment are optional. In this case, the alternate embodiment in
The gas used to dislodge particles from the porous element can be any gaseous material. It is preferably an inert non-toxic gas. Suitable gases include nitrogen, helium, argon, or carbon dioxide.
Since the anti-solvent can be provided as a supercritical fluid, the equipment assembly can further comprise a pump (14) and heater (15). The order of placement of the pump and heater can be reversed if needed. Any pump capable of raising the internal pressure of the equipment assembly to a near critical or to the supercritical pressure of the anti-solvent can be used. In some embodiments, the pump is capable of pressurizing the precipitation chamber to a pressure of about 800 to about 3000 psi. In some embodiments, the pump used to pressurize the anti-solvent or process fluid is a metering pump. Likewise, any heater capable of raising the temperature of the anti-solvent to its near critical temperature or to its supercritical temperature can be used. The heater is independently upon each occurrence selected from a flow through heater placed in a conduit or a heating element coupled to a respective supply system of solvent or process fluid. In some embodiments, the heater is capable of heating the process fluid or anti-solvent to a temperature of about 30° to about 70° C.
Although not indicated in some of the drawings, the equipment assembly further comprises plural valves that control the flow of process fluid, anti-solvent, gas, and precipitation fluid milieu. The assembly also comprises one or more flow restrictors (back-pressure regulators) used to regulate the flow of fluid and/or gas through, and thus to regulate the pressure in, the various components of the assembly. These components are used to regulate temperature, flow rate of suspension (liquid or gas) and the internal pressure of individual components of the assembly. In some embodiments, a controller is adapted to maintain the internal pressure of a component to within about ±10%, about ±5%, or about ±1% of a pre-set value. In some embodiments, a controller is adapted to maintain the internal temperature of a component to within about ±10°, about ±5° or about ±2° C. of a pre-set value. In some embodiments, a controller is adapted to maintain the flow rate of supercritical fluid, liquid particle suspension, gas or gaseous particle suspension of a component to within about ±10-33% of a pre-set value. In some embodiments, a controller is adapted to maintain the flow rate of process fluid to a component to within about ±5%, about ±2.5%, about ±1% or about ±0.5% of a pre-set value.
The process fluid is optionally heated via a heater (18), and/or it can be pressurized with a pump (19) or with a pressurized gas, i.e. from a supply (22). The pressure of the process fluid entering the precipitation chamber should be greater than the pressure of the precipitation chamber to ensure positive (forward) flow of the process fluid through the vibrating mesh. The difference in pressure (pressure differential in favor of the process fluid) can be adjusted as desired, keeping in mind that, in general, the greater the pressure differential the faster the flow of process fluid through the vibrating mesh. The pressure differential will generally be at least 5 psi or in the range of about 1 to about 200, about 1 to about 50 or about 1 about 10 psi. The pressure within the chamber can be monitored with a pressure sensor (16). This pressure differential can be used with other dispersers and equipment assemblies described herein.
Control of the pressure, temperature, flow rate of solvent and choice of solvent differential can be used to manipulate particle properties. The rate of desolvation of solutes in solution can alter particle properties such as mean particle diameter, particle size distribution, crystal shape and degree of crystallinity. By carefully controlling the pressure of the anti-solvent compressed gas the rate of desolvation can be increased or decreased to affect particle size. Similarly, changes in the temperature, solvent and ratio of solution to anti-solvent each can alter the rate at which crystals form and therefore alter the properties of the resultant crystals or particles. The particles can be crystalline, amorphous or a combination thereof.
The precipitation chamber can be equipped with a temperature controller (23), which can either heat or cool the chamber as needed, in order to maintain the temperature within the chamber at or above the critical temperature of the anti-solvent. The temperature within the chamber can be monitored with a temperature sensor (17). The temperature controller is depicted as being a heating and/or cooling jacket that surrounds at least a portion of the housing defining the chamber. A heating and/or cooling element can optionally be disposed within the chamber or built into the wall of the housing.
The temperature controller can be exterior to, interior to or integral with the housing. In some embodiments, the temperature controller jackets the housing. It can comprise at least one heating element, at least one cooling element or a combination thereof. The jacket can comprise a gas, vapor, steam or fluid-filled cavity. In some embodiments, the housing comprises an interior wall defining the process cavity and an exterior wall spaced away from the interior wall, wherein the walls and the space there between together define a temperature-controlling jacket.
The collection vessel (10) can be placed as desired in the equipment assembly. It can be located beneath or at a level below a respective filter. The particles in a respective filter can be conducted into the collection vessel via gravity and/or a gas, as described herein or by mechanical equipment. It has been discovered that the collection vessel should be vented (11) in order to maximize collection of particles. The vent (11) can include a frit, cloth, bag or other porous element to retain the particles while permitting passage of the gas.
The flow rate of anti-solvent into the chamber will exceed the flow rate of process fluid, via the atomizer, into the chamber. Doing so will minimize accumulation of excessively high concentration of solvent in the precipitation fluid milieu, in particular in the region of atomization. The ratio of flow rate (1/min) of anti-solvent to flow rate (1/min) of solvent will generally be at least 50:1 or in the range of about 10:1 to about 2000:1, or about 50:1 to about 500:1, or about 1400:1 to about 1500:1.
Although the atomizer is depicted as being disposed at the surface of fluid in the chamber, the assembly may be operated such that the atomizer is disposed above or below the surface of the fluid.
The embodiment of
As depicted, the precipitation fluid milieu exits the chamber by way of an outlet (24) and directed to the left system by valve (26). Valve (28a) directs the milieu to harvesting filter (6a), whereby the solvent/anti-solvent mixture is separated from the particles (which are retained by the filter) and directed to a solvent separation vessel (7a). The solvent that is separated is conducted to the solvent collection vessel (8a). When charging of precipitation milieu into the harvesting filter is complete, the internal pressure thereof is reduced to below supercritical conditions. The valve (29a) is actuated and low pressure inert gas (from a supply 9a) is charged in reverse flow through the harvesting filter thereby dislodging particles retained by the filter to form a gaseous particle suspension. The valve (28a) is also actuated to direct the gaseous particle suspension to a collection filter (12a), which separates particles from the inert gas as described above. The separated particles are collected in the collection vessel (10a).
The secondary harvesting and collection system is configured and operated in much the same way as the primary one. For a continuous particle formation process, the valve (26) is toggled as needed from the primary system to the secondary system and back such that particle harvesting can occur in one system while particle collection occurs in the other system.
Another difference between the assemblies (35 and 45) is that the shape of the process cavity of the precipitation chamber has a tapered end to minimize accumulation of particles in the chamber after formation and facilitate cleaning of the chamber.
The equipment assembly (46) of
During forward operation, particles are retained by the porous element of the filter. Precipitation milieu enters the process cavity via the inlet (56), whereby solvent and anti-solvent pass through the porous element (not depicted in cross-section) to an internal conduit and are conducted to the outlet (57), the cavity (58), the outlet (62) and finally toward the solvent separation system (not depicted). The particles accumulate on the exterior surface of the porous element. In order to keep the temperature of the precipitation milieu within suitable operating range, temperature controlling fluid is conducted through the jacket.
In the reverse operation, particles are discharged from the filter. A gas is flowed through the inlet (61), the outlet (57, now serving as an inlet), the internal conduit of the porous element and through the porous element, thereby dislodging the particles and forming a gaseous particle suspension (particles entrained in a moving gas) that exits the housing via the inlet (56, now serving as an outlet).
Although not depicted in
In order to establish the importance of the differences between this instant equipment assembly employing a tandem filter system as described herein, operation of the assembly was compared to another system excluding the harvesting filter and employing a precipitation vessel, a collection filter and a vented collection vessel. The following observations were made: a) particles blew out of the vent of the collection vessel when the harvesting filter was back-flushed with low pressure nitrogen; b) particles accumulated at and adhered to the interior surface of the lid and of the upper portion of the collection vessel. However, when a collection filter was employed downstream of the harvesting filter, particles were cleanly and easily collected in the bottom of the collection vessel and the particles did not adhere to the interior surface of the collection vessel.
In order to establish the importance of back flushing of the harvesting filter with a low pressure gas, the harvesting filter was operated with and without back flushing. Without back flushing, a substantial amount of particles accumulated on the surface of the porous element and at the bottom of the process cavity. The particles had to be dislodged from the porous element and removed from the bottom by physical/mechanical means. With backflusing, no accumulation of particles at the bottom of the cavity was observed and only minimal accumulation of the particles on the surface of the porous element was observed.
The process fluid comprises at least one solvent and at least one solute dissolved therein. The process fluid can comprise two or more or plural solvents. The concentration of solute in the process fluid can be varied as needed. In some embodiments, the concentration is at least about 0.1% wt and can range from 0.1% to about 20% wt.
The dimensions of the housing defining the precipitation chamber can be varied as desired. Although the housing is depicted as being vertically disposed, it can be slanted or horizontally disposed. The housing (and thus the chamber) can be longer than its width, can have the same width and length or can be shorter than its width. A narrow housing defining a narrow chamber can be used. In some embodiments, the lengthwise axis of the chamber is vertical and the diameter of the chamber is shorter than its length.
Even though the system is particularly suitable for supercritical fluid applications, it can also be employed to prepare particles from non-critical and near-critical anti-solvent/solvent particle formation systems, wherein the process fluid (solute-containing solvent) is atomized into or onto anti-solvent.
The solute can be any compound or combination of compounds or materials that is poorly soluble or insoluble in the anti-solvent. Suitable compounds include a pharmaceutical active ingredient, pharmaceutical excipients (inactive ingredient), chemical, natural product, biologic compound, pesticide, herbicide, or other chemical. For example, an active pharmaceutical ingredient may be mixed with a polymer such as PLGA and co-precipitated as a complex with unique properties distinct from the active pharmaceutical ingredient alone. Similarly, two pharmaceutically active ingredients could be mixed together in a single solvent and co-precipitated to produce a combination drug product.
The process fluid and/or the anti-solvent can comprise one or more additional ingredients that are ultimately incorporated into the particles and/or onto the surface of the particles.
As used herein, the term solvent refers to a fluid that dissolves a solute to form a solute-containing fluid (process fluid). The solvent must also be soluble in or miscible with an anti-solvent such that placing a solute-containing solvent into the anti-solvent will result in precipitation of the solute to form particles. The solvent is typically an organic solvent. Suitable organic solvents include ethanol, methanol, 1-propanol, isopropanol, 1-butanol, 2-butanol, tert-butanol, acetone, methylethylketone, dichloromethane, chloroform, hexafluoroisopropanol, diethyl ether, dimethylamide, dimethylformamide, DMSO and mixtures thereof.
As used herein, the term anti-solvent refers to a liquid (or compressed gas or plasma or supercritical fluid) in which the solute that forms the particles is poorly soluble or insoluble. The anti-solvent can serve as a solvent for and can be used to remove unwanted components in the particles. The anti-solvent can be capable of forming a supercritical fluid. Suitable supercritical fluid-forming anti-solvents can comprise carbon dioxide, propane, butane, isobutane, nitrous oxide, sulfur hexafluoride and trifluoromethane.
Various different solvent/anti-solvent combinations can be used. Selection of a particular combination will depend upon the degree of solubility of the solvent within the solvent and the anti-solvent.
A porous element can comprise one or more frits, one or more rings, one or more porous plates, one or more porous tubes or a combination thereof. The porous element can comprise a sintered metal, ceramic, TEFLON®, plastic, steel and other such materials. In some embodiments, the porous element comprises at least one sintered metal tube. The average (or nominal) pore size of porous element will be at least 10%, at least 15%, at least 20%, at least 40%, at least 50%, at least 75%, at least 80%, at least 90%, at least 95% or at least 99% smaller than the average diameter of particles to be processed by the filter. The transverse (perpendicular to the lengthwise axis) cross-section of the porous element can be any geometrical shape. In some embodiments, the transverse cross-section comprises a circle, oval, octagon, pentagon, hexagon or other geometric shape. In some embodiments, the transverse cross-section of the porous element comprises substantially the same shape as the transverse cross-section of the upper cylindrical portion of the process cavity defined by the housing.
The housing of a filter can be adapted for vertical installation into an equipment assembly. In some embodiments, the lower port of the housing is disposed at or adjacent the lower end of the cavity, and the upper port is disposed at or adjacent the upper end of the process cavity. In a filter, the porous element can be installed vertically within the housing such that it is disposed above the inlet port and beneath the outlet port of the housing.
A temperature controller can be exterior to, interior to or integral with a housing. In some embodiments, the temperature controller jackets the housing. It can comprise at least one heating element, at least one cooling element or a combination thereof. The jacket can comprise a fluid-filled cavity. In some embodiments, the housing comprises an interior wall defining the process cavity and an exterior wall spaced away from the interior wall, wherein the walls and the space there between together define a temperature-controlling jacket.
By “downwardly-pointing” conical portion is meant a conical section of the cavity wherein the narrower diameter portion of the cone is below the wider diameter portion of the cone. In other words, the conical portion of the cavity is defined by a tapered (at least with respect to its inner diameter) section of the housing, thereby providing the conical portion with a funnel shape. The cross-sectional geometry of the surface defining the conical section can be as desired. In some embodiments, the conical portion has a circular or oval cross-section when observed perpendicular to the lengthwise axis of the conical portion.
In view of the above description and the examples below, one of ordinary skill in the art will be able to practice the invention as claimed without undue experimentation. The foregoing will be better understood with reference to the following examples that detail certain assemblies and methods according to the present invention. All references made to these examples are for the purposes of illustration. The following examples should not be considered exhaustive, but merely illustrative of only a few of the many embodiments contemplated by the present invention.
The following process can be used to make particles comprising acetaminophen. The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
The precipitation chamber is charged with scCO2 and its temperature and pressure are equilibrated. The pressure is about 1,200 psi and the temperature is about 38° C. Flow of scCO2 through the precipitation chamber is initiated. Clean solvent is conducted through an atomizer, comprising a vibrating porous mesh and a capillary nozzle upstream of the mesh, by way of an inlet in the precipitation chamber, whereby it is atomized directly into the scCO2. The flow rate (about 730 ml/min) of scCO2 into the chamber exceeds flow rate of solvent and process fluid (about 10 ml/min) into the chamber. The feed stream is gradually changed from clean solvent to process fluid. The process fluid is conducted through a capillary tube to contact the back-side of the vibrating porous mesh, whereby it is atomized directly into the scCO2. The process can be operated without the vibrating mesh and the process fluid would flow directly from the capillary tube into the scCO2. Formation of particles occurs as droplets of process fluid contact the scCO2 and solvent in the process fluid diffuses into the scCO2 and causes precipitation of the solute into particles.
A high pressure particle harvesting filter is equilibrated with scCO2 which is run through the filter in anticipation of loading of the precipitation milieu. Following formation of the particles in the precipitation chamber, the precipitation fluid milieu (comprising scCO2, solvent and particles) is conducted through an outlet toward the opposite end (with respect to the inlet) of the chamber to a particle collection filter, wherein the fluid scCO2 and solvent are separated from the particles at the surface of the porous element in the filter. The scCO2 and solvent are conducted to a solvent separation vessel where the pressure is about 200 psi, which causes separation of solvent from anti-solvent by changing the anti-solvent from supercritical to gas phase. From there, the separated solvent is conducted to a solvent collection vessel. While the particles reside in the harvesting filter, additional clean scCO2 is flowed through the filter to remove solvent from the particles. The pressure within the filter is reduced.
The particles are then discharged from the harvesting filter by providing a low pressure (about 10 to about 100 psi, about 20 to about 50 psi, or about 30 to about 40 psi) reverse flow of gas, e.g. nitrogen, across the porous element to dislodge the particles from the porous element. The gas can be pulsed through the porous element. The dislodged particles are conducted as a gaseous particle suspension to a particle collection filter, whereby gas passes through the porous element and particles fall into a vented collection vessel.
The following process can be used to make particles comprising paclitaxel and PLGA (poly-(lactic acid)-co-(glycolic acid) polymer). The following ingredients in the amounts indicated are used.
The process of Example 1 is followed with the following exceptions.
The process fluid is prepared by dissolving paclitaxel and PLGA in acetone in amounts according to the table above.
The following process can be used to make particles comprising meloxicam. The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
The precipitation chamber is charged with scCO2 and its temperature and pressure are equilibrated. The pressure is about 1,200 psi and the temperature is about 38° C. Flow of scCO2 through the precipitation chamber is initiated. Clean solvent is conducted through an atomizer, comprising a vibrating porous mesh and a capillary nozzle upstream of the mesh, by way of an inlet in the precipitation chamber, whereby it is atomized directly into the scCO2. The flow rate (about 730 ml/min) of scCO2 into the chamber exceeds flow rate of solvent and process fluid (about 10 ml/min) into the chamber. The feed stream is gradually changed from clean solvent to process fluid. The process fluid is conducted through a capillary tube to contact the back-side of the vibrating porous mesh, whereby it is atomized directly into the scCO2. The process can be operated without the vibrating mesh and the process fluid would flow directly from the capillary tube into the scCO2. Formation of particles occurs as droplets of process fluid contact the scCO2 and solvent in the process fluid diffuses into the scCO2 and causes precipitation of the solute into particles.
A high pressure particle harvesting filter is equilibrated with scCO2 which is run through the filter in anticipation of loading of the precipitation milieu. Following formation of the particles in the precipitation chamber, the precipitation fluid milieu (comprising scCO2, solvent and particles) is conducted through an outlet toward the opposite end (with respect to the inlet) of the chamber to a particle harvesting filter, wherein the fluid scCO2 and solvent are separated from the particles at the surface of the porous element in the filter. The scCO2 and solvent are conducted to a solvent separation vessel where the pressure is about 200 psi, which causes separation of solvent from anti-solvent by changing the anti-solvent from supercritical to gas phase. From there, the separated solvent is conducted to a solvent collection vessel. While the particles reside in the harvesting filter, additional clean scCO2 is flowed through the filter to remove solvent from the particles. The pressure within the filter is reduced resulting in a phase change of the carbon dioxide from fluid to gaseous.
The particles are then discharged from the harvesting filter by providing a low pressure (about 10 to about 100 psi, about 20 to about 50 psi, or about 30 to about 40 psi) reverse flow of gas, e.g. nitrogen, across the porous element to dislodge the particles from the porous element. The gas can be pulsed through the porous element. The dislodged particles are conducted as a gaseous particle suspension to a particle collection filter, whereby gas passes through the porous element and particles fall into a vented collection vessel.
The following process can be used to make particles comprising biosynthetic human insulin. The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
(HFIP) in amounts according to the table above. Dissolution can be done while heating and/or mixing. The anti-solvent is supercritical carbon dioxide (scCO2).
The precipitation chamber is charged with scCO2 and its temperature and pressure are equilibrated. The pressure is about 1,200 psi and the temperature is about 38° C. Flow of scCO2 through the precipitation chamber is initiated. Clean solvent is conducted through an atomizer, comprising a vibrating porous mesh and a capillary nozzle upstream of the mesh, by way of an inlet in the precipitation chamber, whereby it is atomized directly into the scCO2. The flow rate (about 730 ml/min) of scCO2 into the chamber exceeds flow rate of solvent and process fluid (about 10 ml/min) into the chamber. The feed stream is gradually changed from clean solvent to process fluid. The process fluid is conducted through a capillary tube to contact the back-side of the vibrating porous mesh, whereby it is atomized directly into the scCO2. The process can be operated without the vibrating mesh and the process fluid would flow directly from the capillary tube into the scCO2. Formation of particles occurs as droplets of process fluid contact the scCO2 and solvent in the process fluid diffuses into the scCO2 and causes precipitation of the solute into particles.
A high pressure particle harvesting filter is equilibrated with scCO2 which is run through the filter in anticipation of loading of the precipitation milieu. Following formation of the particles in the precipitation chamber, the precipitation fluid milieu (comprising scCO2, solvent and particles) is conducted through an outlet toward the opposite end (with respect to the inlet) of the chamber to a particle harvesting filter, wherein the fluid scCO2 and solvent are separated from the particles at the surface of the porous element in the filter. The scCO2 and solvent are conducted to a solvent separation vessel where the pressure is about 200 psi, which causes separation of solvent from anti-solvent by changing the anti-solvent from supercritical to gas phase. From there, the separated solvent is conducted to a solvent collection vessel. While the particles reside in the harvesting filter, additional clean scCO2 is flowed through the filter to remove solvent from the particles. The pressure within the filter is reduced resulting in a phase change of the carbon dioxide from fluid to gaseous.
The particles are then discharged from the harvesting filter by providing a low pressure (about 10 to about 100 psi, about 20 to about 50 psi, or about 30 to about 40 psi) reverse flow of gas, e.g. nitrogen, across the porous element to dislodge the particles from the porous element. The gas can be pulsed through the porous element. The dislodged particles are conducted as a gaseous particle suspension to a particle collection filter, whereby gas passes through the porous element and particles fall into a vented collection vessel.
The following process can be used to make particles comprising Bovine Serum Albumin (BSA). The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
The following process can be used to make particles comprising docetaxel. The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
The following process can be used to make particles comprising dexamethasone. The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
The following process can be used to make particles comprising paliperidone. The following ingredients in the amounts indicated are used.
An equipment assembly as depicted in
As used herein, the term about is taken to mean±10%, ±5%, ±2.5% or ±1% of a respective value.
The above is a detailed description of particular embodiments of the invention. It will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims. All of the embodiments disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure.
The present application claims the benefit of U.S. 61/783,682, filed Mar. 14, 2013, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4881722 | Koizumi | Nov 1989 | A |
5460701 | Parker | Oct 1995 | A |
5527466 | Li | Jun 1996 | A |
5571299 | Tonn | Nov 1996 | A |
5584913 | Williams | Dec 1996 | A |
5864923 | Rouanet | Feb 1999 | A |
5874029 | Subramaniam | Feb 1999 | A |
5874684 | Parker | Feb 1999 | A |
5961835 | Sarrade | Oct 1999 | A |
5981474 | Manning | Nov 1999 | A |
6113795 | Subramaniam | Sep 2000 | A |
6270732 | Gardner | Aug 2001 | B1 |
6440337 | Hanna | Aug 2002 | B1 |
6620351 | Gupta | Sep 2003 | B2 |
6830714 | Avontuur | Dec 2004 | B1 |
6860907 | Hanna | Mar 2005 | B1 |
6916389 | Pesiri | Jul 2005 | B2 |
6998051 | Chattopadhyay | Feb 2006 | B2 |
7150766 | Hanna | Dec 2006 | B2 |
7175886 | Del Re | Feb 2007 | B2 |
7250152 | Gentile | Jul 2007 | B2 |
7279181 | Chattopadhyay | Oct 2007 | B2 |
7291296 | Perrut | Nov 2007 | B2 |
7332111 | Grothe | Feb 2008 | B2 |
7449136 | Shekunov | Nov 2008 | B2 |
7455797 | Shekunov | Nov 2008 | B2 |
7635442 | Del Re | Dec 2009 | B2 |
7740775 | Nicola | Jun 2010 | B2 |
8215489 | Roberts | Jul 2012 | B1 |
8323615 | Piran | Dec 2012 | B2 |
8323685 | Piran | Dec 2012 | B2 |
20010051118 | Mosso | Dec 2001 | A1 |
20020010982 | Hanna | Jan 2002 | A1 |
20130093111 | Demibuker et al. | Apr 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
61783682 | Mar 2013 | US |