This application claims priority on Finnish Application No. 20021922, Filed Oct. 29, 2002.
Not applicable.
The present invention relates to equipment for fabric guiding in a paper machine.
U.S. Pat. No. 5,500,090 makes known equipment for fabric guiding in a paper machine. In the equipment set forth the edge detectors are placed after the roll, in the travel direction of the fabric, separated from the stand. However, sets of equipment are also known in which the edge detectors are attached to the stand.
Independent of the location point, special vertical brackets are needed for supporting the edge detectors in an appropriate manner. Usually the vertical bracket is assembled from machined components, which are attached to the paper machine frame or to the said stand. In addition, a so-called nip guard is required at the equipment for preventing accidents.
The production of a sufficiently rigid vertical bracket requires high material strengths. Consequently, several machining steps are needed in the production, and the final vertical bracket becomes heavy and expensive. In spite of the massive construction, in practical use the vertical bracket vibrates as the roll rotates, and thus disturbs the operation of the edge detectors. Furthermore, the nip guard requires fastening elements of its own, which makes the total equipment complex and expensive to produce, yet sensitive to vibrations and difficult to locate in various positions.
The object of this invention is to provide novel equipment for fabric guiding in a paper machine, being simpler than heretofore, yet stronger and easier to manufacture. The equipment according to the invention unexpectedly utilizes sheet metal in particular for the manufacture of the vertical brackets. Consequently, the final equipment is lighter in weight, yet more rigid than heretofore. In addition, the support structures of the equipment are easier and quicker to manufacture than heretofore while the dimensional accuracy is, however, better than known in the art. In the equipment according to the invention various constructions are additionally combined, which reduces the number of components and machining steps required in production.
It is an object of this invention to provide equipment for fabric guiding in a paper machine comprising at least one fabric arranged as an endless loop as well as rolls adapted to support it, for which rolls there is arranged, at the end of at least one of these rolls, equipment that includes
a is an enlarged fragmentary view of
b is a machine-directional view of the equipment of
a shows the assembly of the sheet metal blank of
b is a side view of the locking device according to the invention.
c is a front view of the locking device of
a and 2b provide a more detailed illustration of the equipment according to the invention, including a stand 19 adapted to attach to the paper machine frame as well as a transfer base 20 movably adapted to the stand 19. Here the stand 19 is attached to the frame while the transfer base 20 is movable. Fabric guiding is provided by changing the position of the roll 17. In practice, the bearing pedestal 21 of the roll 17 is attached to the transfer base 20, which thus moves in the machine direction. The bearing assembly of the roll permits this movement, the range of which can be as long as 100 mm. In practice, a movement of a few millimeters is, however, sufficient for providing the desired guiding effect. Inside the stand 19 there is a suitable motor 22, from which the power is usually transmitted to the transfer base 20 by means of a gearing. Furthermore, the transfer base is movably attached to the stand using linear guides (not shown).
The fabric looping at a higher speed continuously moves in the lateral direction as well. Therefore, its guiding must also be continuous. That is, the roll end must be moved all the time to keep the fabric in the desired position. Therefore, the equipment further comprises at least one edge detector 23 for the roll 17, arranged on the opposite side of the fabric 10, which is used to determine the position of the fabric 10 in the axial direction of the roll 17. In this application, a non-contacting edge detector is used, but other types of edge detectors are also possible. preferably there is additionally sufficient amount of electronics in connection with the stand for the automation of the guiding system. In practice, the electronic system continuously compares the measurement results of the edge detector with the set values and, when required, moves the transfer base for the required distance by controlling the motor. Consequently, the roll end supported by the equipment is set according to the edge detector, in which case the fabric position can be maintained as desired in the roll assembly. Here the electronic center 24 is a separate unit located at the side of the stand 19 and can be turned aside during the maintenance of the motor, for example. This is illustrated by the rectangular depicted with broken lines in
For attaching the edge detector 23, the stand 19 is provided with a vertical bracket 25. In addition, the stand 19 is provided with a nip guard 26 at the gaps formed by the roll 17 and the fabric 10, preventing, for example, introduction of hands in the said gaps. According to the invention the vertical bracket and the nip guard are unexpectedly formed of an integrated sheet-metal construction. That is, the vertical bracket and the nip guard are of a one-piece construction, made of sheet metal. Consequently, the equipment is lighter in weight, yet more rigid than heretofore. Various fastening elements and supports are also needed less than heretofore. The production can be further simplified by forming the sheet-metal construction from one continuous sheet. This sheet-metal blank is shown in
Production problems are easily solved by using both laser cutting and laser welding in the production of the sheet metal according to the invention. In the cutting operation, the sheet-metal blank is additionally provided with perforations 27 enabling a manual bending prior to the manual bending, the sheet-metal blank is provided with bends 28 at the points shown with dot-and-dash lines using an edging press, for example. In this case, the last bending can be made manually, thereby forming a box-type structure. To facilitate the manual bending and especially welding, suitable openings 29 are additionally cut in the sheet-metal blank, with the corresponding projections 30 arranged at the edges of the sheet blank. Consequently, the projections accurately guide manual bending to a correct point, thus providing a box-type structure shown in
Separate vertical brackets known in the art have separate fastening elements for fastening the edge detectors. For a similar purpose, according to the invention, arranged in the vertical bracket 25 of a box-type structure there are unexpectedly a mere opening 32 and locking devices 33. Locking is provided with three support points 34–36, arranged at the edges of the opening 32, at uniform intervals in the peripheral direction. In practice, the edge detector is supported by six support points, three on each of the walls of the box-type structure. One of the support points on each wall is formed of the said locking devices 33 for fastening a cylinder-like edge detector. In addition, the locking devices 33 comprise a slide 37 movably adapted in relation to the opening 32, with a wedge surface 38 for fastening edge detectors of different diameters. The slide 37 is shown separated in
It has been possible to replace as many as 50 components, heretofore separate, with the construction of the equipment according to the invention. In addition, the construction is notably lighter in weight, yet more rigid than heretofore. Furthermore, due to the sheet-metal technique, manufacturing of the construction is quick, and the final construction is dimensionally accurate. Even the complete equipment can be mounted in different locations and positions than what is shown in the example applications. Single type equipment can be used in different parts of a paper machine, while in the prior art technique different devices are often acquired for each production section.
Number | Date | Country | Kind |
---|---|---|---|
20021922 | Oct 2002 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
3750920 | Fountain et al. | Aug 1973 | A |
5500090 | Autio | Mar 1996 | A |
6627044 | Suortti et al. | Sep 2003 | B2 |
6669817 | Savela | Dec 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20040129753 A1 | Jul 2004 | US |