The present application relates to electric power engineering field, and more particularly to an equivalent-conductance-compensated eccentric method for obtaining power transfer coefficients of direct current (DC) power networks.
The DC power network is a new kind of electric energy transmission network. Using the branch security regulation experience of traditional alternating current (AC) power networks for reference, a set of power transfer coefficients of the DC power network is a necessary tool for regulating its branch securities. As a result, it is urgent to develop an accurate, fast and reliable method for obtaining the power transfer coefficients of DC power networks.
The globally-linear method for obtaining power transfer coefficients of AC power networks is produced by assuming all bus voltage amplitude to be 1.0 p.u. and voltage angle difference across each branch close to zero, and then simplifying the AC power network steady-state model. The bus voltage in the DC power network is just characterized by amplitude (without angle), if assuming that all bus voltage amplitudes are 1.0 p.u., then each branch-transferred power will always be zero, consequently no globally-linear method for obtaining power transfer coefficients of DC power networks can be produced following the above AC power network method. If linearizing the steady-state model of the DC power network at its operation base point to obtain its power transfer coefficients, then the resultant local linear characteristics will lead to being unable to satisfy the accuracy requirement of the branch security regulation under wide range change of the operation point of the DC power network. As a result, there is currently no globally-linear method for obtaining the power transfer coefficients of the DC power network.
An Embodiment of the present application provides an equivalent-conductance-compensated eccentric method for obtaining the power transfer coefficients of the DC power network, thus the power transfer coefficients of the DC power network can be obtained in a globally linear way.
The present application provides an equivalent-conductance-compensated eccentric method for obtaining power transfer coefficients of a DC power network, which comprises:
establishing an equivalent-conductance-compensated globally-linear function that relates all bus translation voltages to a bus injection power according to given bus load parameters and given bus source parameters of the DC power network;
establishing an equivalent-conductance-compensated globally-linear eccentric matrix-equation model for steady state of the DC power network according to the equivalent-conductance-compensated globally-linear function and a given reference bus serial number;
establishing an equivalent-conductance-compensated globally-linear eccentric matrix relation between non-reference bus injection powers and non-reference bus translation voltages by using ordinary inversion of matrices according to the equivalent-conductance-compensated globally-linear eccentric matrix-equation model;
establishing an equivalent-conductance-compensated globally-linear eccentric expression of a branch-transferred power in terms of the non-reference bus injection powers according to the equivalent-conductance-compensated globally-linear eccentric matrix relation; and
obtaining power transfer coefficients of the DC power network according to the equivalent-conductance-compensated globally-linear eccentric expression and the known definition of power transfer coefficient.
According to an embodiment of the present application, the equivalent-conductance-compensated globally-linear function that relates all the bus translation voltages to the bus injection power is firstly established according to the given bus load parameters and the given bus source parameters of the DC power network; the equivalent-conductance-compensated globally-linear eccentric matrix-equation model for the steady state of the DC power network is then established according to the equivalent-conductance-compensated globally-linear function and the given reference bus serial number; thereafter, the equivalent-conductance-compensated globally-linear eccentric matrix relation between the non-reference bus injection powers and the non-reference bus translation voltages is established by using the ordinary inversion of matrices according to the equivalent-conductance-compensated globally-linear eccentric matrix-equation model; the equivalent-conductance-compensated globally-linear eccentric expression of the branch-transferred power in terms of the non-reference bus injection powers is then established according to the equivalent-conductance-compensated globally-linear eccentric matrix relation; and the power transfer coefficients of the DC power network are finally obtained according to the equivalent-conductance-compensated globally-linear eccentric expression and the known definition of power transfer coefficient. The accuracy of the invented method is high, because the established globally-linear function that relates all bus translation voltages to a bus injection power counts the impacts of nonlinear terms of original bus injection power formula by introducing equivalent-conductance-compensation. Resulting from its global linearity, the invented method is not only fast and reliable in obtaining a set of power transfer coefficients of an arbitrarily configurated DC power network, but also satisfies the accuracy and real-time requirement of the regulation under wide range change of the operation point of the DC power network, thereby successfully solving the problem that there is currently no globally-linear method for obtaining the power transfer coefficients of the DC power network.
In order to explain the technical solution of the embodiments of the present application more clearly, the drawings used in the description of the embodiments will be briefly described hereinbelow. Obviously, the drawings in the following description are some embodiments of the present application, and for persons skilled in the art, other drawings may also be obtained on the basis of these drawings without any creative work.
In the description hereinbelow, for purposes of explanation rather than limitation, specific details such as specific systematic architectures and techniques are set forth in order to provide a thorough understanding of the embodiments of the present application. However, it will be apparent to persons skilled in the art that the present application may also be implemented in absence of such specific details in other embodiments. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
Technical solution of the present application is explained hereinbelow by particular embodiments.
Please refer to
In step 101: an equivalent-conductance-compensated globally-linear function that relates all bus translation voltages to a bus injection power is established according to given bus load parameters and given bus source parameters of the DC power network.
The step 101 is specifically as follows: the equivalent-conductance-compensated globally-linear function that relates all the bus translation voltages to the bus injection power is established according the following formula:
in which, both i and k denote serial numbers of buses in the DC power network and belong to the set of continuous natural numbers, namely belong to {1, 2, . . . , n}; n denotes the total number of buses in the DC power network; PGi denotes the power of the source connected to bus i; PDi denotes the power of the load connected to bus i; PGi−PDi is bus i injection power; gik denotes the conductance of branch ik connected between bus i and bus k; υi denotes the translation voltage at bus i; υk denotes the translation voltage at bus k; both υi and υk are per-unit voltages translated by −1.0; μi* is a DC power network parameter determined by the formula μi*=(1+υi0); and υi0 denotes the base point translation voltage at bus i and is a per-unit voltage translated by −1.0.
PGi, PDi, n, gik and υi0 are all given DC power network parameters.
The variables in the above equivalent-conductance-compensated globally-linear function are all global variables rather than increments. In addition, coefficients μi*gik and −μi*gik of υi and υk in the above equivalent-conductance-compensated globally-linear function are respectively self-conductance and mutual-conductance, which are respectively supplemented with the conductance term υi0gik and the conductance term −υi0gik compared with the traditional self-conductance and mutual-conductance. The two supplementary conductance terms, υi0gik and −υi0gik of equal absolute value and opposite signs, are produced by viewing (υi−υk) of original bus injection power formula as a compositional variable and finding its coefficient at a base point, which are used to compensate the impacts of nonlinear terms of original bus injection power formula. This is the reason why the above function is called the equivalent-conductance-compensated globally-linear function that relates all the bus translation voltages to the bus injection power.
The above equivalent-conductance-compensated globally-linear function is established following operation characteristics of the DC power network. The operation characteristics of the DC power network is that each bus translation voltage translated by −1.0 is very small, so replacing the product of a branch conductance and its end bus translation voltage with a constant always causes very small impact on accuracy of power transfer coefficients.
In step 102, an equivalent-conductance-compensated globally-linear eccentric matrix-equation model for steady state of the DC power network is established according to the equivalent-conductance-compensated globally-linear function and a given reference bus serial number
The step 102 is specifically as follows: the equivalent-conductance-compensated globally-linear eccentric matrix-equation model for the steady state of the DC power network is established by the following formula:
in which, i, j and k denote serial numbers of buses in the DC power network and belong to the set of continuous natural numbers, namely belong to {1, 2, . . . , n}; n denotes the total number of buses in the DC power network; PG1 denotes the power of the source connected to bus 1; PGi denotes the power of the source connected to bus i; PGn-1 denotes the power of the source connected to bus n−1; PD1 denotes the power of the load connected to bus 1; PDi denotes the power of the load connected to bus i; PDn-1 denotes the power of the load connected to bus n−1; gij denotes the conductance of branch ij connected between bus i and bus j; gik denotes the conductance of branch ik connected between bus i and bus k; the bus numbered n is the given reference bus; (Gij) is the equivalent-conductance-compensated bus conductance matrix of the DC power network and does not include the row and the column corresponding to the reference bus, the dimension of the equivalent-conductance-compensated bus conductance matrix is (n−1)×(n−1); Gij is the row-i and column-j element of the equivalent-conductance-compensated bus conductance matrix (Gij); υ1 denotes the translation voltage at bus 1; υi denotes the translation voltage at bus i; υn-1 denotes the translation voltage at bus n−1; υ1, υi and υn-1 are all per-unit voltages translated by −1.0; μi* is a DC power network parameter determined by the formula μi*=(1+υi0); and υi0 denotes the base point translation voltage at bus i and is a per-unit voltage translated by −1.0.
PG1, PD1, PGi, PDi, PGn-1, PDn-1 and (Gij) are given DC power network parameters.
In the above equivalent-conductance-compensated globally-linear eccentric matrix-equation model, the translation voltage of the reference bus is specified to be zero, which means the reference bus is the center of the bus translation voltage values of the DC power network. The center of the bus translation voltage values is to the reference bus completely. This is the reason why the above matrix-equation model is called the equivalent-conductance-compensated globally-linear eccentric matrix-equation model.
In step 103, an equivalent-conductance-compensated globally-linear eccentric matrix relation between non-reference bus injection powers and non-reference bus translation voltages is established by using ordinary inversion of matrices according to the equivalent-conductance-compensated globally-linear eccentric matrix-equation model.
The step 103 is specifically as follows: the equivalent-conductance-compensated globally-linear eccentric matrix relation between the non-reference bus injection powers and the non-reference bus translation voltages is established by the following formula:
in which, i and j denote serial numbers of buses in the DC power network and belong to the set of continuous natural numbers, namely belong to {1, 2, . . . , n}; n denotes the total number of buses in the DC power network; (Gij)−1 denotes the ordinary inversion of the equivalent-conductance-compensated bus conductance matrix (Gij) of the DC power network; PG1 denotes the power of the source connected to bus 1; PGi denotes the power of the source connected to bus i; PGn-1 denotes the power of the source connected to bus n−1; PD1 denotes the power of the load connected to bus 1; PDi denotes the power of the load connected to bus i; PDn-1 denotes the power of the load connected to bus n−1; υ1 denotes the translation voltage at bus 1; υi denotes the translation voltage at bus i; υn-1 denotes the translation voltage at bus n−1; and υ1, υi and υn-1 are all per-unit voltages translated by −1.0.
Since the variables in the above equivalent-conductance-compensated globally-linear eccentric matrix relation are all global variables (rather than increments), the non-reference bus translation voltages determined by this matrix relation are accurate under wide range change of the bus injection powers or wide range change of the operation point of the DC power network, and the calculation process only involves a step of simple calculation of linear relation, thereby being fast and reliable.
In step 104, an equivalent-conductance-compensated globally-linear eccentric expression of a branch-transferred power in terms of the non-reference bus injection powers is established according to the equivalent-conductance-compensated globally-linear eccentric matrix relation.
The step 104 is specifically as follows: the equivalent-conductance-compensated globally-linear eccentric expression of the branch-transferred power in terms of the non-reference bus injection powers is established by the following formula:
in which, i, j and k denote serial numbers of buses in the DC power network and belong to the set of continuous natural numbers, namely belong to {1, 2, . . . , n}; n denotes the total number of buses in the DC power network; gik denotes the conductance of branch ik connected between bus i and bus k; μi* is a DC power network parameter determined by the formula μi*=(1+υi0); υi0 denotes the base point translation voltage at bus i and is a per-unit voltage translated by −1.0; Pik denotes the power transferred by branch ik; aij denotes the row-i and column-j element of the ordinary inverse matrix of the equivalent-conductance-compensated bus conductance matrix (Gij) of the DC power network; akj denotes the row-k and column-j element of the ordinary inverse matrix of the equivalent-conductance-compensated bus conductance matrix (Gij) of the DC power network; PGj denotes the power of the source connected to bus j; PDj denotes the power of the load connected to bus j; and PGj−PDj is bus j injection power.
In step 105, power transfer coefficients of the DC power network are obtained according to the equivalent-conductance-compensated globally-linear eccentric expression and the known definition of power transfer coefficient.
The step 105 is specifically as follows: the power transfer coefficients of the DC power network are calculated by the following formula:
D
ik,j=(aij−akj)μi*gik
in which, i, j and k denote serial numbers of buses in the DC power network and belong to the set of continuous natural numbers, namely belong to {1, 2, . . . , n}; gik denotes the conductance of branch ik connected between bus i and bus k; μi* is a DC power network parameter determined by the formula μi*=(1+υi0); υi0 denotes the base point translation voltage at bus i and is a per-unit voltage translated by −1.0; Dik,j denotes the power transfer coefficient from bus j to branch ik; aij denotes the row-i and column-j element of the ordinary inverse matrix of the equivalent-conductance-compensated bus conductance matrix (Gij) of the DC power network; and akj denotes the row-k and column-j element of the ordinary inverse matrix of the equivalent-conductance-compensated bus conductance matrix (Gij) of the DC power network.
The power transfer coefficient is defined as follows: when the branch-transferred power is expressed by a linear combination of all bus injection powers, each combination coefficient is a power transfer coefficient.
For the combinations of all branches and all non-reference buses of the DC power network, all power transfer coefficients determined by the above formula form a set of power transfer coefficients of the DC power network, thereby realizing the obtaining of the power transfer coefficients of the DC power network.
The above formulas are based on the ordinary inversion of the equivalent-conductance-compensated bus conductance matrix of the DC power network. As the ordinary inversion of this matrix exists indeed, the power transfer coefficients of the DC power network can be obtained reliably. In addition, the global linearity feature of the above expression of the branch-transferred power in terms of the non-reference bus injection powers allows the calculation of the power transfer coefficients to be accurate and fast under wide range change of the operation point of the DC power network. Consequently, the equivalent-conductance-compensated eccentric method for obtaining the power transfer coefficients of the DC power network is accurate, fast and reliable.
It should be understood that the serial number of each step in the above embodiment doesn't mean the sequence of an execution order, the execution order of different steps should be determined according to their functions and the internal logics, and should not constitute any limitation to the implementation process of the embodiment of the present application.
It can be appreciated by persons skilled in the art that the exemplified units and algorithm steps described in combination with the embodiments of the present application can be implemented in the form of electronic hardware or in the form of a combination of computer software and the electronic hardware. Whether these functions are executed in the form of hardware or software is determined by specific application and designed constraint conditions of the technical solution. For each specific application, persons skilled in the art may use different methods to implement the described functions, but the implementation should not be considered to go beyond the scope of the present application.
This application is a continuation of International Patent Application No. PCT/CN2017/084282 with an international filing date of May 15, 2017, designating the United States, now pending. The contents of the aforementioned application, including any intervening amendments thereto, are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/084282 | 5/15/2017 | WO | 00 |