This application relates to electronic computing, and more particularly erasing and restoring factory settings in computer systems.
Currently, a very small percentage of old computer systems are recycled. After some use, computer systems may contain personally identifiable information. One reason for the current lack of computer system recycling is consumers concerns that their personally identifiable information will be retrieved from the recycled computer system.
Described herein are exemplary system and methods for implementing data erasure and factory setting restoration in an electronic device such as, e.g., a computing system. Some of the methods described herein may be embodied as logic instructions on a computer-readable medium. When executed on a processor, the logic instructions cause a general purpose computing device to be programmed as a special-purpose machine that implements the described methods. The processor, when configured by the logic instructions to execute the methods recited herein, constitutes structure for performing the described methods.
The computing system 100 includes a computer 108 and one or more accompanying input/output devices 106 including a display 102 having a screen 104, a keyboard 110, other I/I device(s) 112, and a mouse 114. The other device(s) 112 can include a touch screen, a voice-activated input device, a track ball, and any other device that allows the system 100 to receive input from a developer and/or a user. The computer 108 includes system hardware 120 including a processing unit 126, a basic input/output system (BIOS) 122, and random access memory and/or read-only memory 130. A file store 180 is communicatively connected to computer 108. File store 180 may be internal such as, e.g., one or more hard drives, or external such as, e.g., one or more external hard drives, network attached storage, or a separate storage network.
Memory 130 includes an operating system 140 for managing operations of computer 108. In one embodiment, operating system 140 includes a hardware interface module 154 that provides an interface to system hardware 120. In addition, operating system 140 includes a kernel 144, one or more file systems 146 that manage files used in the operation of computer 108 and a process control subsystem 148 that manages processes executing on computer 108. Operating system 140 further includes one or more device drivers 150 and a system call interface module 142 that provides an interface between the operating system 140 and one or more application modules 162 and/or libraries 164. The various device drivers 150 interface with and generally control the hardware installed in the computing system 100.
In operation, one or more application modules 162 and/or libraries 164 executing on computer 108 make calls to the system call interface module 142 to execute one or more commands on the computer's processor. The system call interface module 142 invokes the services of the file systems 146 to manage the files required by the command(s) and the process control subsystem 148 to manage the process required by the command(s). The file system(s) 146 and the process control subsystem 148, in turn, invoke the services of the hardware interface module 154 to interface with the system hardware 120. The operating system kernel 144 can be generally considered as one or more software modules that are responsible for performing many operating system functions.
The particular embodiment of operating system 140 is not critical to the subject matter described herein. Operating system 140 may be embodied as a UNIX operating system or any derivative thereof (e.g., Linux, Solaris, etc.) or as a Windows® brand operating system.
In some embodiments, computer system 100 comprises a system restoration control module 166, which may be embodied as logic instructions recorded in a computer readable medium. In some embodiments, the system restoration control module 166 further comprises, but is not limited to, an erasure module 168. Additional details with respect to the system restoration control module 166 are discussed below and with reference to
For example, and not limitation, the user options may include options to; erase only a portion of a user's data (i.e, specified partition only), erase only a specified type of data (i.e. RAM, ROM, NVRAM, etc.), erase data defined by the creation date of the data, erase data defined by the user that created the data, erase data defined by the program in which the data was created or the like.
By way of example, and not limitation, most hard disks are partitioned into a boot partition which holds boot data and a factory image partition which holds the software images as shipped from the factory. The factory image partition is usually compressed. In some embodiments, the erasure module 202 erases the remainder of the hard disk and then uses the factory image partition to restore the computer system to its original factory settings. For the purposes of this invention, erasure of data is defined with reference to United States Department of Defense Standard 5220.22-M, Chapter 8-301. Clearing and Sanitization.
Additionally, and not in limitation of, the system restoration control module 200 may receive an input to restore the factory settings without erasing any personal data stored on the computer system.
Referring to
Generally, various different general purpose or special purpose computing system configurations can be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The functionality of the computers is embodied in many cases by computer-executable instructions, such as program modules, that are executed by the computers. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Tasks might also be performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media.
The instructions and/or program modules are stored at different times in the various computer-readable media that are either part of the computer or that can be read by the computer. Programs are typically distributed, for example, on floppy disks, CD-ROMs, DVD, or some form of communication media such as a modulated signal. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable media when such media contain instructions, programs, and/or modules for implementing the steps described below in conjunction with a microprocessor or other data processors. The invention also includes the computer itself when programmed according to the methods and techniques described below.
For purposes of illustration, programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.
With reference to
Computer 400 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by computer 400 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. “Computer storage media” includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 400. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network, fiber optic networks, or direct-wired connection and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
The system memory 406 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 410 and random access memory (RAM) 412. A basic input/output system 414 (BIOS), containing the basic routines that help to transfer information between elements within computer 400, such as during start-up, is typically stored in ROM 410. RAM 412 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 404. By way of example, and not limitation,
The computer 400 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, the computer system of
The drives and their associated computer storage media discussed above and illustrated in
The computer may operate in a networked environment using logical connections to one or more remote computers, such as a remote computing device 450. The remote computing device 450 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 400. The logical connections depicted in
When used in a LAN networking environment, the computer 400 is connected to the LAN 452 through a network interface or adapter 456. When used in a WAN networking environment, the computer 400 typically includes a modem 458 or other means for establishing communications over the Internet 454. The modem 458, which may be internal or external, may be connected to the system bus 406 via the I/I interface 442, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 400, or portions thereof, may be stored in the remote computing device 450. By way of example, and not limitation,
Moreover, some embodiments may be provided as computer program products, which may include a machine-readable or computer-readable medium having stored thereon instructions used to program a computer (or other electronic devices) to perform a process discussed herein. The machine-readable medium may include, but is not limited to, floppy diskettes, hard disk, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, erasable programmable ROMs (EPROMs), electrically EPROMs (EEPROMs), magnetic or optical cards, flash memory, or other suitable types of media or computer-readable media suitable for storing electronic instructions and/or data. Moreover, data discussed herein may be stored in a single database, multiple databases, or otherwise in select forms (such as in a table).
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.