The present invention relates to pneumatically powered inline tools, especially hand-held screwdrivers, nutrunners, impact wrenches and drills. These tools generate start-up and reactive torque forces, which can be injurious to the human anatomy. A device, which could safely distribute the forces created by inline power tools, is clearly indicated and necessary to the welfare of the human operator. Present methods employed to protect operators from these forces include “torque arm tool supports”. These devices consist of an arm, which either clamps to the tools, or attaches to the tools utilizing the air inlet pipe thread that is common to such tools. The opposing end of the arm is attached to a structure, such as a workbench frame. The torque arm tool supports do an effective job of absorbing torque, but at the cost of tool mobility and perceived usability by the operator, since the tool is rigidly connected to a semi-stationary structure. This arrangement decreases the freedom of movement that an operator desires in order to correctly position the tool for work. Another type of attachment, which is well represented in prior art, is a brace which attaches to the power tool and provides a lever to reduce and refer torque forces away from the vulnerable wrist joint of the operator. These braces have a disadvantage in that they clamp to the body of the tool. This attachment means necessitates an accurately sized and shaped clamping collar, specific to each tool. An example of this prior art design is the Bio-Brace (T.M.) device manufactured by DG Industries of Brea, Calif. Other devices, in an effort to provide more versatility, employ a vee-shaped jaw clamp attachment which is problematic, as it exerts uneven circumferential pressure on the sensitive housing of the tool, which can result in tool malfunction or premature failure and damage to the outside surface of the tool, so that if the brace were removed, the gripping area of the tool could be comprimised in surface quality enough to cause discomfort or injury to the operator. A jaw clamp type of attachment has also a disadvantage of unnecessary additional weight. An example of such a brace is disclosed in U.S. Pat. No. 6,324,728.
The present invention is an ergonomic biomechanical forearm brace attachment for a pneumatic inline power tool. The attachment is designed to reduce forces from the power tool transmitted to the operator. A common feature of all pneumatic power tools is a threaded air inlet port. A significant improvement to the prior art would consist of an ergonomic forearm brace which would attach to the power tool using the air inlet connection thread and would provide a comfortable, padded, and insulated lever arm which would refer torque forces to the operator's forearm where they are reduced and easily tolerated and bypass the operator's wrist entirely. A height adjustment on the lever arm would provide adaptation to a variety of tool lengths, operator anatomy and work piece dimensional specifics. The lever arm could also be formed in a semi-u shape, to enable the operator to apply a desired amount of axial force to the tool using the large muscles of the arm, should the work piece application require. In summary, an ergonomic biomechanical forearm brace with tool air inlet attachment means, easily integrated with existing prior art pneumatic power tools, would be a significant improvement resulting in reduced operator fatigue and improved operational efficiencies. The following description and accompanying drawings will illustrate an embodiment of the present invention.
Referring to
Referring to
Referring to
While the invention has been described with reference to preferred embodiments, these should not be construed as limiting the scope of the invention and are meant to be exemplary only. Accordingly, the scope of the invention should be determined not by the embodiment(s) illustrated, but by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2244585 | Tweit | Jun 1941 | A |
4924924 | Stewart | May 1990 | A |
5156429 | Adams | Oct 1992 | A |
5445479 | Hillinger | Aug 1995 | A |
5455981 | Wiese | Oct 1995 | A |
5546749 | Couchee | Aug 1996 | A |
5661960 | Smith et al. | Sep 1997 | A |
5716087 | Backich et al. | Feb 1998 | A |
5890259 | Sarac | Apr 1999 | A |
6021854 | Scarola | Feb 2000 | A |
6082795 | Fornelli | Jul 2000 | A |
6112831 | Gustafsson | Sep 2000 | A |
6324728 | Blankenheim | Dec 2001 | B1 |
6581246 | Polette | Jun 2003 | B1 |
Number | Date | Country |
---|---|---|
3908501 | Sep 1989 | DE |
Number | Date | Country | |
---|---|---|---|
20040143938 A1 | Jul 2004 | US |