Embodiments of the present disclosure generally relate to an ergonomic ladder apparatus which can be used for assembling an aircraft.
The fuselage of commercial aircraft includes fuselage portions or sections that are individually assembled and then coupled or attached together to form the fuselage. The assembly of the fuselage portions includes various work tasks along the exterior surface of the fuselage portions, such as drilling, counter-sinking, and installing rivets. Due to the relatively large height and curvature of the fuselage portions, some exterior areas of the fuselage portions may be difficult to access for a mechanic. Therefore, mechanics often climb ladders to access the difficult areas of the fuselage portions during the manufacturing of the aircraft.
However, conventional ladders used for aircraft assembly have several drawbacks. For example, in order to access a working zone which may include a line of holes to be drilled and filled with fasteners, such as rivets, a mechanic typically positions the ladder adjacent to the working zone and leans over a side of the ladder to reach the working zone. The mechanic does not place the ladder in-line with the working zone because the rungs of the ladder interfere with the mechanic's access to the working zone, such as by obstructing the positioning and use of the mechanic's tools. There are several drawbacks associated with the mechanic adopting such awkward body posture of leaning over the side of the ladder, including a risk of injury to the mechanic's wrist, shoulder, and back, and a risk of reduced work quality, such as drilling crooked holes or damaging the exterior surface of the fuselage, both of which are later rectified (thereby prolonging the manufacturing process). Another disadvantage associated with the conventional ladders used for aircraft assembly is the weight of the ladders, which may exceed 65 pounds. Due to the large sizes of the fuselage portions, a mechanic may be tasked with carrying a ladder for hundreds of feet at a time, such as to move from one side of the fuselage portion to the other side, which can lead to injury. In addition, setting up the heavy ladders may require the effort of more than one person, which draws people from other work tasks, thereby reducing workplace efficiency.
Accordingly, known ladders used during the assembly of aircraft are heavy and obstruct access to the area of the aircraft directly behind the ladder, which may cause a mechanic to adopt an awkward body posture in which the mechanic reaches outward over a side of the ladder to work on an area adjacent to the ladder.
A need exists for a ladder apparatus that is lightweight for ease of handling the ladder by a single mechanic. A need also exists for a ladder that allows a mechanic to selectively access the area or zone of the exterior surface of the aircraft directly behind the ladder, allowing the mechanic to work within the space between the two side rails of the ladder without reaching outside of the side rails of the ladder.
With those needs in mind, certain embodiments of the present disclosure provide a ladder that includes a pair of generally curved side rails arranged in a spaced apart manner, a plurality of fixed rungs disposed between the side rails, a plurality of pairs of rung supports, and a plurality of hinged rungs. Each of the pairs of rung supports is horizontally aligned with each other and disposed on respective inner sides of the side rails. The rung supports are spaced apart from the fixed rungs along lengths of the side rails. Each rung support includes a flanged end portion having an aperture therein. Each hinged rung is associated with a respective pair of rung supports. Each hinged rung has a first end pivotally coupled to the flanged end portion of a first rung support in the respective pair of rung supports such that each hinged rung is pivotal between a secured position between the rung supports and a retracted position.
In at least one embodiment, each hinged rung has an opposite, second end configured to be releasably secured via a latch to the flanged end portion of a second rung support in the respective pair of rung supports. Optionally, the first rung support of each of the pairs of rung supports may include a torsion spring that engages the first end of the associated hinged rung and biases the hinged rung towards the retracted position.
In at least one embodiment, the side rails, the fixed rungs, and/or the hinged rungs are composed of a fiber-reinforced polymer composite material. The hinged rungs and the fixed rungs may include anti-skid pads bonded to respective top surfaces of the hinged and fixed rungs. The anti-skid pads may be composed of polyurethane and have a durometer between about 60 and about 80.
Certain embodiments of the present disclosure provide a method of manufacturing a ladder that includes forming a pair of generally curved side rails, a plurality of fixed rungs, and a plurality of hinged rungs out of a fiber-reinforced polymer composite material. The method includes arranging the pair of side rails to extend parallel to each other in a spaced apart manner, and mounting the fixed rungs to the side rails such that the fixed rungs extend between the side rails. The method also includes mounting a plurality of pairs of rung supports to the side rails such that the rung supports are spaced apart from the fixed rungs along lengths of the side rails. Each of the pairs of rung supports is horizontally aligned with each other and disposed on respective inner sides of the side rails. The method further includes pivotally coupling a first end of each of the hinged rungs to a first rung support in a pair of rung supports associated with the respective hinged rung. Each hinged rung is pivotal relative to the side rails between a secured position and a retracted position.
Certain embodiments of the present disclosure provide a ladder that includes a pair of generally linear side rails arranged in a spaced apart manner, a plurality of fixed rungs disposed between the side rails, a plurality of pairs of rung supports, and a plurality of hinged rungs. Each of the pairs of rung supports is horizontally aligned with each other and disposed on respective inner sides of the side rails. The rung supports are spaced apart from the fixed rungs along lengths of the side rails. Each rung support includes a flanged end portion having an aperture therein. Each hinged rung is associated with a respective pair of rung supports. Each hinged rung has a first end pivotally coupled to the flanged end portion of a first rung support in the respective pair of rung supports such that each hinged rung is pivotal between a secured position and a retracted position.
The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. As used herein, an element or step recited in the singular and preceded by the word “a” or “an” should be understood as not necessarily excluding the plural of the elements or steps. Further, references to “one embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional elements not having that property.
Certain embodiments of the present disclosure provide an ergonomic ladder with hinged rungs that are retractable. The hinged rungs can be used as typical fixed rungs when the hinged rungs are in a secured position between two side rails of the ladder. Upon selectively retracting a hinged rung, the hinged rung pivots about a rung support at one of the two side rails such that the hinged rung uncouples from the other side rail. The hinged rung swings or flips up to a retracted position that provides a large gap or window between the side rails and the adjacent rungs above and below the retracted hinged rung. An operator standing on the ladder, such as a mechanic, can reach through the gap to access a working zone directly behind the ladder and between the side rails, without having to reach laterally outside of the side rails, which may otherwise cause a body posture that exposes the operator to risk of injury to a wrist, shoulder, and/or back. The ergonomic ladder may have a curved shape that complements the curved fuselage of an aircraft. The gap allows a mechanic to drill, counter-sink, and install fasteners onto the exterior surface of the aircraft.
In certain embodiments, the hinged rungs of the ergonomic ladder are mounted to the side rails via a spring-loaded hinge system designed to apply a pre-loaded force that will assist the hinged rungs in pivoting from the secured position to the retracted position. The spring-loaded hinge system may also retain the hinged rungs at the retracted positions until the mechanic manually forces the hinged rung to swing to the secured position.
In certain embodiments, the hinged rungs are configured to self-lock in the secured position upon moving from the retracted position to the secured position via a latching mechanism. The latching mechanism allows mechanics to unlock or release the hinged rung with little effort by activating a switch, such as a lever, button, or latch handle. The spring-loaded hinge system and the easy release and self-locking latching mechanism are designed to be user-friendly, allowing the mechanic to carry tools or parts while manipulating the hinged rungs.
The ergonomic ladder may also be formed at least partially of a fiber-reinforced polymer composite material for reduced weight relative to known aluminum ladders. In certain embodiments, in order to increase structural integrity and longevity of the ladder, rung supports of the ladder that engage the rungs are mounted to the side rails of the ladder using clamp fittings. Each clamp fitting extends through one of the side rails from an outer side of the side rail and is fastened to a rung support disposed along an inner side of the side rail, such that the clamp fitting and the rung support effectively sandwich the side rail therebetween. The clamp fittings may have a shape that provides increased contact surface with the side rail, such as a lemniscate shape (e.g., dumbbell or dog bone). Mounting the rung supports to the side rails using the clamp fittings provide load distribution and reduce movement of the rung support relative to the side rail (which reduces degradation over time at the coupling interface).
The fuselage 18 of the aircraft 10 defines an interior cabin, which may include a cockpit, one or more work sections (for example, galleys, personnel carry-on baggage areas, and the like), one or more passenger sections (for example, first class, business class, and economy sections), and an aft section. Each of the sections may be separated by a cabin transition area, which may include one or more class divider assemblies. Overhead stowage bin assemblies may be positioned throughout the interior cabin.
Although some embodiments of the present disclosure are directed to use of a ladder along the exterior surface of an aircraft, it is recognized that the embodiments of the ladder described herein are not limited to use with an aircraft. The ladder according to the embodiments described herein may be used for climbing various other curved structures, such as tanker trucks, silos, cement trucks, smokestacks, etc., and even non-curved structures.
The ladder 100 in the illustrated embodiment includes frictional feet 108 mounted to the side rails 106 at the upper end 104. The frictional feet 108 are disc-shaped and include rubberized pads that face away from the side rails 106. The rubberized pads and are configured to engage the exterior surface 110 of the fuselage 18, as shown in
The ladder 100 also includes swivel feet 120 at the lower end 102. Each side rail 106 includes a swivel foot 120 mounted to a bottom end 122 of the respective side rail 106. The swivel feet 120 are configured to engage the ground or floor, and may include a frictional surface for gripping the ground or floor. The ladder 100 optionally includes hooks 124 at the bottom ends 122 of the side rails 106. The hooks 124 are configured to couple to a mounting component, such as an edge of the floor, to secure the lower end 102 of the ladder 100 in place relative to the ground or floor.
The ladder 100 also includes a plurality of fixed rungs 114 disposed between the side rails 106. Each of the fixed rungs 114 is secured to both of the side rails 106. The fixed rungs 114 maintain the structural integrity of the ladder 100 by linking the two side rails 106 together and maintaining the distance between the side rails 106. Once the ladder 100 is assembled and functional, the fixed rungs 114 are fixed in position and do not move relative to either of the side rails 106. The fixed rungs 114 are disposed at different locations along the length of the ladder 100. For example, a first fixed rung 114A is located at, or at least proximate to (e.g., within six inches of), the upper end 104 of the ladder 100. The fixed rung 114A is the upper-most rung in the ladder 100. A second fixed rung 114B is located at, or at least proximate to (e.g., within twelve inches of), the lower end 102 of the ladder 100, and is the lower-most rung in the ladder 100. Although in one or more embodiments the ladder 100 may include only the two fixed rungs 114A, 114B, the ladder 100 may include additional fixed rungs 114. In the illustrated embodiment, the ladder 100 includes two additional fixed rungs 114 adjacent to the lower-most rung 114B along a lower portion 116 of the ladder 100.
The ladder 100 also includes multiple hinged rungs 118 disposed between the side rails 106. The hinged rungs 118 are spaced apart from the fixed rungs 114 along the lengths of the side rails 106. The hinged rungs 118 may be similar or identical to at least some of the fixed rungs 114 in shape and/or material composition, but are not immovably fixed to the side rails 106. Rather, the hinged rungs 118 are configured to be selectively, individually pivotable relative to the side rails 106 between a secured position and a retracted position. In the secured position, a given hinged rung 118 extends between and engages the two side rails 106, similar to the fixed rungs 114. In the retracted position, the hinged rung 118 is spaced apart from one of the two side rails 106, while remaining coupled to the other side rail 106. The hinged rungs 118 are configured to pivot or swing from the secured position to the retracted position. When in the retracted position, a window or gap 134 is formed that is defined laterally between the side rails 106 and longitudinally between adjacent intact rungs 114, 118 on either side of the retracted hinged rung 118. The window 134 is greater than the gap 136 defined between adjacent intact rungs 114, 118, so a mechanic on the ladder 100 is better able to access the space directly behind the ladder 100.
In the illustrated embodiment, the ladder includes multiple hinged rungs 118 disposed side-by-side along an upper portion 138 of the ladder 100. The upper portion 138 is discrete from (e.g., does not overlap) the lower portion 116 along the length of the ladder 100. Most of the hinged rungs 118 are shown in the secured position, but one hinged rung 118A is shown in the retracted position, and an adjacent hinged rung 118B is shown in an intermediate or transition position between the secured and retracted positions. As the hinged rungs 118 are pivoted to the retracted position, the rungs 118 swing generally upwards and/or towards the mechanic on the ladder 100. Therefore, there is no risk of the rungs 118 knocking into and damaging the fuselage 18 behind the ladder 100. In at least one embodiment, the hinged rungs 118 pivot at least 90° from the secured position to the retracted position. For example, from a horizontal orientation in the secured position, the hinged rungs 118 pivot to at least a vertical or upright orientation, and possibly beyond the vertical orientation (e.g., beyond 90°), to the retracted position.
The hinged rungs 118 are mounted to the side rails 106 via rung supports 128, 130 disposed along inner sides 126 of the side rails 106. The inner sides 126 of the side rails 106 face each other. The rung supports 128, 130 include first rung supports 128 and second rung supports 130 that are arranged in pairs 132. In each pair 132, the first and second rung supports 128, 130 are horizontally aligned. The pairs 132 of rung supports 128, 130 are spaced apart from the fixed rungs 114 along the length of the ladder 100.
Each of the pairs 132 of rung supports 128, 130 is associated with a respective hinged rung 118. For example, a first end 140 of the respective hinged rung 118 is pivotally coupled to the first rung support 128. An opposite, second end 142 of the hinged rung 118 is releasably secured to the second rung support 130. The second end 142 engages the second rung support 130 when the hinged rung 118 is in the secured position, and is spaced apart from the second rung support 130 when the hinged rung 118 is in the retracted position. The first end 140 of the hinged rung 118 remains in engagement with the first rung support 128 regardless of the position of the hinged rung 118. As used herein, the first rung supports 128 are referred to as pivoting rung supports 128, and the second rung supports 130 are referred to as locking rung supports 130. In the illustrated embodiment, all of the pivoting rung supports 128 are mounted to the side rail 106A, and all of the locking rung supports 130 are mounted to the other side rail 106B. Therefore, all of the hinged rungs 118 move in the same direction from the secured position to the retracted position. The consistency and uniformity of the hinged rungs 118 reduces confusion for the mechanic on the ladder 100 when manipulating the hinged rungs 118. In an alternative embodiment, the hinged rungs 118 may be reversed such that the pivoting rung supports 128 are mounted to the side rail 106B.
In the illustrated embodiment, the three hinged rungs 118 that are not in the secured position define a large window 204 through the ladder 100 that extends laterally between the side rails 106. The mechanic is able to access a working zone 208 on the exterior surface 110 of the fuselage 18 through the window 204. The ladder 100 is positioned relative to the fuselage 18 such that a joint or seam 206 in the fuselage 18 is located in the working zone 208 between the side rails 106, although behind the ladder 100 relative to the mechanic. The window 204 is large enough to allow the mechanic to perform a work task on the working zone 208 through the window 204 without obstruction by the rungs 114, 118. The work task may involve drilling, counter-sinking, installing fasteners (e.g., rivets or the like) along or proximate to the joint 206. Since the working zone 208 is directly behind the ladder 100, the mechanic does not need to reach outside of the frame of the ladder 100 to access the working zone 208, so the mechanic can adopt a comfortable posture and can accurately and efficiently work on the fuselage 18.
In an example operation, the mechanic may perform a work task by reaching through two rungs, such as two adjacent hinged rungs 118 in the secured position. Then, the mechanic may lift one of the hinged rungs 118 to increase the size of the window through the ladder 100 for accessing the exterior surface 110 of the fuselage 18. Upon completing a work task in the working zone 208 within the window, the mechanic may subsequently pivot the hinged rung 118 back to the secured position and lift an adjacent hinged rung 118 from the secured position to the retracted position to move the window that is defined by the ladder 100 along the length of the ladder 100. The mechanic again performs the work task through the ladder 100 until completing the work task. Therefore, the mechanic may move upwards or downwards along the ladder 100 to perform the work task along different segments of the joint 206 in the fuselage 18 by repeatably lifting and then closing adjacent hinged rungs 118 to provide access to the joint 206 behind the ladder 100.
In an embodiment, the hinged rung 118 is at least partially hollow, and includes a hinge plate 302 that is mounted within a hollow cavity 304 of the hinged rung 118 via fasteners 306, such as bolts or the like. The pivoting rung support 128 disposed along the inner side 126 of the side rail 106 includes a flanged end portion 308 that has an aperture 310 therein. The first end 140 of the hinged rung 118 is pivotally coupled to the flanged end portion 308.
As shown in
In
In an alternative embodiment, a different type of spring, such as a leaf spring or a coil spring, may be used to provide a lift-assist for the hinged rung 118 instead of the torsion springs 320. In yet another embodiment, the pin 316 is not spring-loaded and the hinged rung 118 is not biased towards the retracted position. For example, the hinged rung 118 moved to the retracted position by hand may remain in the retracted position due to the angle of the hinged rung 118 at the retracted position. The hinged rung 118 may pivot more than 90° from the secured position to the retracted position, and may rest on the side rail 106 or another stop surface to remain in the retracted position.
Referring now back to
In an embodiment, the top surface 202 of the hinged rung 118 includes an anti-skid pad 340 that is configured to increase the friction between the top surface 202 and the mechanic's feet and hands for reducing slippage. The anti-skid pad 340 may be bonded to the top surface 202 of the hinged rung 118. For example, the anti-skid pad 340 and the hinged rung 118 may be co-cured at a temperature between about 120° F. and about 160° F. Alternatively, the anti-skid pad 340 may be bonded to the rung 118 via the use of fasteners or an adhesive. In one embodiment, the anti-skid pad 340 is composed of polyurethane that has a durometer (e.g., hardness) between about 60 and about 80, such as about 70. The anti-skid pad 340 may have a thickness between about 0.03 inches and about 0.3 inches, such as between about 0.06 inches and 0.13 inches. Although only one hinged rung 118 is shown in
In an embodiment, the pivoting rung support 128 is mounted to the side rail 106 via a clamp fitting 350 that engages an outer side 342 of the side rail 106. The support fitting 350 is described in more detail below with reference to
Additional reference is made to
In an embodiment, the second end 142 of the hinged rung 118 is releasably secured to the locking rung support 130 via a latch 416 of the latching mechanism 400. The locking rung support 130 disposed along the inner side 126 of the side rail 106 includes a flanged end portion 408 that has an aperture 410. The flanged end portion 408 defines a channel 412 between two ears 414 of the flanged end portion 408. The aperture 410 is defined through both of the ears 414. Optionally, the locking rung support 130 may be identical to the pivoting rung support 128 shown in
The latch 416 further includes a release switch 422 operably coupled to the spring-loaded pin 418 such that actuation of the release switch 422 retracts the spring-loaded pin 418 out of the slot 411 to release the hinged rung 118 from the locking rung support 130. In the illustrated embodiment, the release switch 422 is a rotatable lever or handle. The sleeve 430 has a cambered end 432 that engages the lever 422. As the lever 422 is rotated, the cambered end 432 forces the lever 422 and the pin 418 in a releasing direction 434, releasing the hinged slot 118 from the locking rung support 130. The spring-force on the pin 418 moves the latch 416 back towards the channel 412 when the actuation force on the lever 422 is removed. In other embodiments, the release switch 422 may be a button, a different type of lever, or the like.
In an alternative embodiment, the support fitting 402 on the hinged rung 118 may include a spring-loaded pin instead of the locking rung support 130. The release switch 422 on the locking rung support 130 may be used for pushing the spring-loaded pin on the support fitting 402 towards a retracted position instead of pulling the spring-loaded pin 418 towards a retracted state.
The clamp fitting 504 includes a base 508 and an insert 510 extending from the base 508. The base 508 is generally planar and is configured to engage and abut against the outer side 342 of the side rail 106. The insert 510 is received into the fitting opening 506. The insert 510 is fastened to the locking rung support 130, such that the side rail 106 is sandwiched between the locking rung support 130 and the base 508 of the clamp fitting 504. For example, the fasteners 502 are inserted through apertures 514 in the locking rung support 130, through the fitting opening 506, and are received into apertures 516 in the insert 510. In an embodiment, the insert 510 includes a boss 512 at a distal end of the insert 510. The boss 512 may be coplanar with the inner side 126 of the side rail 106, such that the boss 512 engages a bottom surface 518 of the locking rung support 130.
In an embodiment, the insert 510 of the clamp fitting 504 has a lemniscate shape that provides increased contact surface with the side rail 106. The lemniscate shape may resemble a dumbbell, an hourglass, and/or a dog bone. The fitting opening 506 in the side rail 106 has a complementary lemniscate shape as the insert 510. The clamp fitting 504 is configured to provide load distribution at the coupling interface between the rung support 130 and the side rail 106. The clamp fitting 504 may also reduce relative movement of the rung support 130 relative to the side rail 106, such as rubbing, which may increase the longevity of the ladder 100 by reducing degradation of the fiber composite material.
In an embodiment, the fitting opening 506 at an outer end 506a shown in
Although only one clamp fitting 504 is shown in
At 604, the pair of side rails 106 are arranged to extend parallel to each other in a spaced apart manner. At 606, the fixed rungs 114 are mounted to the side rails 106 such that the fixed rungs 114 extend between the side rails 106. The fixed rungs 114 provide structural integrity to the ladder 100 by forming a secure frame that holds the side rails 106 in place relative to each other.
At 608, a plurality of pairs of rung supports 128, 130 are mounted to the side rails 106 such that the rung supports 128, 130 are spaced apart from the fixed rungs 114 along lengths of the side rails 106. The rung supports 128, 130 in each pair 132 of rung supports 128, 130 are horizontally aligned with each other and disposed on respective inner sides 126 of the side rails 106. Optionally, the rung supports 128, 130 are mounted to the side rails 106 by fastening the rung supports 128, 130 to associated clamp fittings 350, 504. The clamp fittings 350, 504 each include a base 508 engaging an outer side 342 of a corresponding one of the side rails 106 and an insert 510 that extends from the base 508. The insert 510 is received within a fitting opening 506 defined through the corresponding side rail 106. The inserts 510 is fastened to one of the rung supports 128, 130 that is disposed along the inner side 126 of the side rail 106, such that the side rail 106 is sandwiched between the rung support 128, 130 and the clamp fitting 350, 504. The inserts 510 of the clamp fittings 350, 504 and the fitting openings 506 in the side rails 106 may have lemniscate shapes.
At 610, a first end 140 of each of the hinged rungs 118 is pivotally coupled to a first rung support 128 in the pair 132 of rung supports 128, 130 associated with the respective hinged rung 118. Each hinged rung 118 is pivotal relative to the side rails 106 between a secured position and a retracted position. In the secured position, an opposite second end 142 of the hinged rung 118 engages a second rung support 130 in the pair 132, and the hinged rung 118 can be used as a typical ladder rung. In the retracted position, the second end 142 of the hinged rung 118 is spaced apart from the second rung support 130, creating a large window or opening in the ladder 100 between adjacent intact rungs on either side of the retracted hinged rung 118, which allows a mechanic to access a working zone directly behind the ladder 100 and between the side rails 106.
While various spatial and directional terms, such as top, bottom, front, rear, lateral, horizontal, vertical, and the like, may be used to describe embodiments of the present disclosure, it is understood that such terms are merely used with respect to the orientations shown in the drawings. The orientations may be inverted, rotated, or otherwise changed, such that an upper portion is a lower portion, and vice versa, horizontal becomes vertical, and the like.
As used herein, the term “controller,” “central processing unit,” “CPU,” “computer,” or the like may include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set computers (RISC), application specific integrated circuits (ASICs), logic circuits, and any other circuit or processor including hardware, software, or a combination thereof capable of executing the functions described herein. Such are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of such terms.
As used herein, a structure, limitation, or element that is “configured to” perform a task or operation is particularly structurally formed, constructed, or adapted in a manner corresponding to the task or operation. For purposes of clarity and the avoidance of doubt, an object that is merely capable of being modified to perform the task or operation is not “configured to” perform the task or operation as used herein.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments of the disclosure without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments of the disclosure, the embodiments are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the disclosure should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the various embodiments of the disclosure, including the best mode, and also to enable any person skilled in the art to practice the various embodiments of the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or if the examples include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1314201 | Moore | Aug 1919 | A |
2192521 | McGaw | Mar 1940 | A |
2975857 | Suroff | Mar 1961 | A |
3871481 | Ballek | Mar 1975 | A |
4463829 | Grin | Aug 1984 | A |
4815564 | Yoo | Mar 1989 | A |
6145621 | Nye | Nov 2000 | A |
8443938 | Furseth et al. | May 2013 | B2 |
9027711 | Lonergan et al. | May 2015 | B2 |
9068394 | Geiselman, III | Jun 2015 | B1 |
20010017233 | Panzeri | Aug 2001 | A1 |
20030221910 | Huang | Dec 2003 | A1 |
20040251083 | Leipziger | Dec 2004 | A1 |
20090107768 | McCoolidge | Apr 2009 | A1 |
20100258379 | Mickens | Oct 2010 | A1 |
20130037350 | Geiselman, III | Feb 2013 | A1 |
20160258214 | Ambriz | Sep 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180371835 A1 | Dec 2018 | US |