This patent document pertains generally to seating assemblies and methods. More particularly, but not by way of limitation, this patent document pertains to ergonomic seating assemblies and methods configured to support a user in multiple orientations.
In various home, office, educational, and industrial applications, workers and students are required to remain in one location, either sitting or standing, and work on a continuing stream of required tasks. This might occur on a factory assembly line, in a food-processing facility, in a lab, in a classroom, or even performing a clerical function, such as in a mailroom or the like.
For many years, a worker on an assembly line or a student in a lab, for example, has been expected to stand, but sitting in a fixed position is becoming more common. The seats provided to such workers and students, however, are typically institutional seating assemblies, which do not provide proper support or comfort to a user. These institutional seating assemblies typically include a seat and a back support that are rigid and not adjustable relative to each another. As such, the seating assemblies do not adapt to receipt or movement of an occupant user's body. It will be understood from the present disclosure that the ability of a seating assembly to adapt to a user's bodily orientation, at any given time, can be important for the user's comfort and health.
The present inventors have recognized, among other things, that a deficiency shared by existing seating assemblies is being designed for a single or limited range of orientations. Existing seating assemblies fail to offer a user with the ability to vary a sitting or leaning orientation to perform different tasks. Different tasks in a workplace, industrial, home, or educational setting require different bodily orientations for maximizing both comfort and task efficiency, and thus, seating assemblies that limit the user to a specific orientation can require the user to perform a given task with improper posture or without adequate lumbar or other support. Restricting the user's movement while sitting, for example, can lead to the user incurring static stress injuries from the inability to reposition his/her body.
The present inventors have further recognized that a user places an enormous amount of stress on his/her spine when situated in a seated orientation. Prolonged sitting in the same orientation can cause fatigue, stiffness, and back pain due to stress and strain on the ligaments and intervertebral disks of the spine, but properly supporting the lumbar curve of the spine can reduce the load on the lower back muscles. Further yet, the present inventors have recognized that a sit/stand or forward-leaning orientation can reduce stresses that normally build-up in the back, specifically the lower back muscles, and legs during prolonged standing.
The present seating assemblies and methods provide innovative features that ergonomically support a user's body at various orientations. A seating assembly cart comprise a seat, a back support, and a frame component. The frame component can extend from a bottom portion, positioned near an underside of the seat, to a top portion, configured to maintain the back support at a position above the seat. The back support can laterally extend from a left edge portion to a right edge portion and can include a spring member at or near each of the left and right edge portions. The spring member can include at least one undulation or arc providing integrated compression adaptation to a user. The seating assembly can further comprise a tilt mechanism, engaged with the frame component, including one or more leaf springs and a spring contact assembly. The spring contact assembly can be positioned on a top side of the one or more leaf springs.
To better illustrate the seating assemblies and methods disclosed herein, a non-limiting list of examples is provided here:
In Example 1, a seating assembly comprises a seat, a back support, and a frame component. The frame component can extend from a bottom portion, positioned near an underside of the seat, to a top portion, positioned near a rearward surface of the back support and configured to maintain the back support at a position above the seat. The back support can laterally extend from a left edge portion to a right edge portion and can include a spring member. The spring member can be coupled at or near each of the left and right edge portions and have at least one undulation or arc, providing integrated compression adaption to a user, adjacent each coupling location. Optionally, the spring member can be coupled at or near a middle portion of the back support and not coupled at the left and right edge portions. By way of example, the spring member can include a closed circle or oval form that is placed between the back support and the top portion of the frame component. Alternatively, the spring member can include an open arc form that is placed between the back support and the top portion of the frame component.
In Example 2, the seating assembly of Example 1 is optionally configured such that compression of the spring member results in a distance between the rearward surface of the back support and the top portion of the frame component being reduced.
In Example 3, the seating assembly of Example 2 is optionally configured such that a maximum distance reduction, between the rearward surface of the back support and the top portion of the frame component, is at least 2 inches.
In Example 4, the seating assembly of any one or any combination of Examples 1-3 optionally further comprises a tilt mechanism, engaged with the frame component, including one or more leaf springs and a spring contact assembly. The spring contact assembly can be positioned on a top side of the one or more leaf springs.
In Example 5, the seating assembly of Example 4 is optionally configured such that the one or more leaf springs include a stacked arrangement of two or more metal leafs, or a composite leaf having a varying stiffness along its length.
In Example 6, the seating assembly of Example 4 is optionally configured such that the tilt mechanism further includes a slide linkage, engaged with a front end portion of the seat, configured to confine upward movement of the front end portion during backward translation of the seat.
In Example 7, the seating assembly of Example 4 optionally further comprises an adjuster mechanism, coupled to the spring contact assembly, configured to adjust a force of the one or more leaf springs acting on the frame component by changing a location of the spring contact assembly along a length of the one or more leaf springs.
In Example 8, the seating assembly of Example 7 is optionally configured such that the adjuster mechanism includes a lever arm engageable with one or more ratchet teeth when the location of the spring contact assembly, along the length of the one or more leaf springs, is selected.
In Example 9, the seating assembly of Example 8 is optionally configured such that the adjuster mechanism includes three guide rollers engaged with a pivoting end, having an arc configuration, of the lever arm.
In Example 10, the seating assembly of any one or any combination of Examples 1-9 is optionally configured such that the seat and the back support each include a plurality of flex voids. The flex voids associated with the seat can include foci positioned at seat locations configured to receive the user's ischial tuberosities bones.
In Example 11, the seating assembly of any one or any combination of Examples 1-10 is optionally configured such that the seat includes at least one seat valley, positioned along or near a centerline of the seat, configured to allow a left edge portion and a right edge portion of the seat to deflect in one or both of a downward direction or a lateral direction.
In Example 12, the seating assembly of any one or any combination of Examples 1-11 optionally further comprises a first tier and a second tier, spaced from the first tier, of foot support platforms or rings.
In Example 13, the seating assembly of Example 12 is optionally configured such that at least one of the first tier or the second tier includes an opening to a support surface positioned underneath a front edge of the seat.
In Example 14, the seating assembly of any one or any combination of Examples 1-13 optionally further comprises an arm rest rotatable in and out of position.
In Example 15, the seating assembly of any one or any combination of Examples 1-14 optionally further comprises a foot support assembly, deployable from a first position to a second position, including a foot support platform and at least one foot support arm configured to support the foot support platform about a curvilinear translation movement between the first and second positions.
In Example 16, a method comprises receiving, at a tilt mechanism, a force adjustment of one or more leaf springs acting on a frame component, including changing a location of a spring contact assembly along a top side of the one or more leaf springs; maintaining a portion of a back support, including a spring member having at least one undulation or arc, in contact with a user at and between a first orientation and a second orientation, including changing a distance between a rearward surface of the back support and a top portion of the frame component supporting the spring member; and translating a seat about the tilt mechanism as the user moves between the first orientation and the second orientation, including creating a pubic arch in a front edge of the seat during a forward-leaning orientation or creating a flattened front seat lip during a backward-leaning orientation.
In Example 17, the method of Example 16 is optionally configured such that receiving the force adjustment includes changing the location of the spring contact assembly along the top side of the one or more leaf springs.
In Example 18, the method of Example 17, optionally configures such that changing the location of the spring contact assembly on the top side of the one or more leaf springs includes changing an orientation of the seat and back support.
In Example 19, the method of any one or any combination of Examples 17 or 18 is optionally configured such that changing the location of the spring contact assembly along the top side of the one or more leaf springs includes receiving a rotating force, at a lever arm engaged with the spring contact assembly, about a virtual pivot point generated by three guide rollers engaged with an arced end of the lever arm.
In Example 20, the method of any one or any combination of Examples 16-19 optionally further comprises rotating a cam-shaped arm rest from a first supporting position to a second supporting, position, including changing an effective supporting position height, relative to the seat, via the rotation.
In Example 21 the method of any one or any combination of Examples 16-20 optionally further comprises receiving, at the frame component, a second seat or a second back support to replace a removed first seat or a removed first back support.
In Example 22, the method of any one or any combination of Examples 16-21 is optionally configured such that maintaining a portion of the back support in contact with the user includes changing the distance between the rearward surface of the back support and the top portion of the frame component at least about one (1) inch, preferably at least about two (2) inches, and more preferably in the range of about three and a half (3.5) inches from an unstressed state.
In Example 23, the method of any one or any combination of Examples 16-22 is optionally configured such that translating the seat about the tilt mechanism includes creating a pubic arch in a front edge of the seat during a forward-leaning orientation or creating a flattened front seat lip during a backward-leaning orientation.
In Example 24, the method of any one or any combination of Examples 16-23 optionally further comprises deploying a foot support assembly synchronized with, and activated by, movement of one or both of the seat or the back support.
In Example 25, a seating assembly comprises a seat, a back support, a frame component configured to maintain the back support at a position above the seat, and a tilt mechanism, engaged with the frame component. The tilt mechanism can include one or more leaf springs and a spring contact assembly positioned on a top side of the leaf springs. The tilt mechanism can further include a slide linkage, engaged with a font end portion of the seat, configured to confine upward movement of the front end portion during backward translation of the seat.
In Example 26, the seating assemblies or methods of any one or any combination of Examples 1-25 is optionally configured such that all elements or options recited are available to use or select from.
Advantageously, the seating assemblies and methods disclosed herein can provide long-term comfort, stability, and support to a user during completion of various active tasks, can be realigned to accommodate different working or seating orientations, and can be conveniently relocated from a first position to a second position on a support surface. These and other examples, advantages, and features of the present seating assemblies and methods will be set forth in part in the following Detailed Description and the accompanying drawings. This Overview is intended to provide non-limiting examples of the present subject matter—it is not intended to provide an exclusive or exhaustive explanation. The Detailed Description and drawings are included to provide further information about the present seating assemblies and methods.
In the drawings, like numerals can be used to describe similar components throughout the several views. Like numerals having different letter suffixes can be used to represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
The art of seating has grown to a science involving considerations of physiology, material science, and ergonomics. Seated workers or students in home, office, educational, and industrial environments often experience back pain and other physiological difficulties as a result of ergonomic deficiencies of existing seating assembly designs on the market. For example, many users currently sit in a forward leaning posture induced by task demands, yet have to sit in a seating assembly designed to support fully seated or reclining orientations.
It is desirable to provide seating assemblies having a maximum degree of comfort and adjustability since a user oftentimes must occupy a seating assembly for relatively long periods of time and the user must also be able to concentrate on his/her tasks without being distracted by discomfort. While the present seating assemblies and methods can embody multiple features, overall goals include maintenance of good health and comfort to the user. The present seating assemblies and methods provide unique approaches to posture correction using one or more of: a self-adjusting back support including a spring member and/or flex voids, a seat including embedded self-adjusting IT regions, Hex voids or a seat valley, a multi-tier foot support platform or ring, a tilt mechanism portion providing synchronization between seal tilt and back support motion and including a spring contact assembly positioned on a top side of one or more leaf springs, a tilt mechanism portion engaged with a front end portion of the seat, synchronization of foot support assembly deployment, a vertically adjustable foot support assembly, a unique base design, and user-friendly actuation interfaces, among other things.
The present seating assemblies, such as au assembly resulting in the orientation of
The rearward portions of the tilt mechanism 408 can include one or more leaf springs 424, initially in an unloaded condition or a slightly preload condition, such as to counterbalance the weight of seating assembly components and/or the user's mass, and a spring contact assembly 426. The spring contact assembly 426 can be positioned along a top side of the one or more leaf springs 424 and can include a roller member 428 to encourage translation along the top side. A location of the spring contact assembly 426 on the top side of the one or more leaf springs 424 can dictate a spring force on the seat and back support, as well as dictate a neutral, unloaded orientation of the seat and back support. Moving the spring contact assembly 426 in a forward direction, for example, along the top side of a leaf spring 424 not only increases the spring force experienced by the seat and back support, but also orients the seat and back support in a more forward orientation. Similarly, for example, moving the spring contact assembly 426 in a rearward direction along the top side of a leaf spring 424 not only decreases the spring force experienced by the seat and back support, but also orients the seat and back support in a more rearward orientation.
The one or more leaf springs 424 can include a stacked arrangement of two or more leafs or can include a single composite leaf. The stacked arrangement can include offset leafs having a similar stiffness along their length. The composite leaf can be made of fiberglass materials, glass reinforced polymers, or thermoplastic materials, for example, and can have a varying or constant stiffness along its length. Optionally, one or more coil or rubber springs can be used in lieu of, or in addition to, the leaf springs 424.
The lever arm 532 can engage with one or more ratchet teeth 534 of the frame component 518 when a desired location of the spring contact assembly, along the length of the one or more leaf springs, is selected. The one or more ratchet teeth 534 can be configured to engage one or more projections on an underside of the lever arm 532 and can prevent the spring contact assembly from translating down the one or more leaf springs when adjustment is not desired. Lifting of the lever arm 532 a short distance away from the frame component 518 can disengage the ratchet teeth 534 and allow for easy forward or rearward travel, as desired.
The adjuster mechanism 530 can be configured to form a virtual pivot point 538, which is located at a point spaced from a perimeter of the frame component 518. The virtual pivot point 538 can be created using three guide rollers 540 engaged with a pivoting end 536 of the lever arm 532. The pivoting end 536 can include an arc configuration engaged with the three guide rollers 540. The three guide rollers 540 can be used to guide the pivoting end 536 in such a way that a user-engaged end of the lever arm 532 is afforded greater linear travel while minimizing the width and mass of the overall adjuster mechanism 530.
Optionally, as illustrated in
Each of the varying tilt mechanisms 708, 808, 908, and 1008 can be used with one or more leaf springs, as discussed above. The tilt mechanisms 708, 808, 908, and 1008 cart complement the leaf springs and support the seat during forward and backward motion. It has been found that the combination of a tilt mechanism 708, 808, 908, or 1008 and one or more leaf springs or other biasing members can advantageously provide for a balanced, smooth transition between reclined orientations, neutral (fully seated) orientations, and forward-leaning orientations of a seating assembly. Additionally, the rubber or other elastomeric mounts 842, 942 can allow for small motions of the scat, which can help to reduce fatigue of, and increase comfort to, a user. For example, the rubber or other elastomeric mounts 942 of
The human pelvis has downwardly projecting IT prominences, which are load bearing points of the user in a sitting orientation. The ischial tuberosities can exert as much as 80% of the weight of the user's torso in a confined area. This force concentration or pressure accounts for “hitting bottom” or “bottoming out” of the user on a seat after prolonged sitting. As the user's body is moved to avoid discomfort to these anatomical portions of greatest weight support, the position and subsequent distribution of weight on the spinal column is changed, thus causing posterior movement of the vertebrae in the lumbar region. Such movement can cause stretching of the deltoid muscles of the back, irregular pressure on the vertebral discs, emphasis and increased pressure on the coccyx, or the like. Stretching of the deltoid muscles can reduce the supportive and strength capabilities of these muscles, which can cause further relaxation and posterior curvature of the spine. Such further relaxation and posterior curvature of the spine can cause additional pressure on the anterior side of the discs yielding nervous stress and subsequent reduction of efficiency.
The IT regions 1462 can be adapted to fit under the skeletal seat bone structure of the user. This can provide the advantage of, for example, avoiding reliance on the user's soft tissue as a seating support and reducing any need for the user to adjust orientation to avoid discomfort. The present inventors have found that articulation around the IT regions 1462 can be beneficial for the comfort of the seat 1412. The flexible IT regions 1462 can enhance the seat's conformation to the user's buttocks. These regions 1462 can provide a high level of comfort and allow for “cupping” effects that increase the user's overall body stability within the seating assembly.
The plurality of flex voids 1460 can be molded into or cut from the seat 1412 and can provide for ventilation and seat comfort, such as by being located around potential pressure points. In some examples, the plurality of flex voids 1460 can be positioned about the IT regions 1462 and can extend outward to a location near front and side portions of the seat 1412 to encourage ward or lateral flexion of the chair front. Some of the flex voids 1460 can extend in a direction parallel or substantially parallel to the user's upper leg orientation, when the user is seated. Some of the flex voids 1460 can extend in a direction perpendicular or substantially perpendicular to the user's upper leg orientation, when the user is seated. Collectively, a configuration of the flex voids 1460 can encourage the user into a lumbar support position by directing the IT bones to the IT regions 1462. The front edge of the seat 1412 can also or alternatively include a downward curvature to reduce pressure on the user's upper legs.
As shown in the example of
Optionally, the seating assemblies 1600, 1700, 1800 can include a plurality of flex voids 1660, 1760 molded into a single plastic shell, and can include a vertical coupling 1776, 1876 between the spring member 1722, 1822 and the back support 1714, 1814, as shown in
Unlike traditional back supports, which are fixed in space, the present back supports 1614, 1714, 1814 are designed to provide dynamic self-adjustment to a user's back in horizontal and vertical directions through the use of one or more undulations or arcs 1674, 1774, 1874. Undulations or arcs 1674, 1774, 1874, if present, can allow for generally linear translation of the back support 1614, 1714, 1814 toward a top portion of the frame component 1910, and undulations, in particular, can further allow for generally linear translation of the portions of the back support 1614, 1714, 1814 that couple to the spring members 1622, 1722, 1822 during use and can be designed to change or vary the spring force or constant applied by the spring members 1622, 1722, 1822. The undulations can include an S-shape, a Z-shape, or can resemble a corrugated pattern.
Self-adjusting back supports 1614, 1714, 1814 provided by the present seating assemblies 1600, 1700, 1800 can be designed to dynamically maintain contact with the user in “active” (or forward-leaning), neutral (or fully seated), and reclined orientations, and can also limit the spine's ability to assume a kyphotic curvature by maintaining pressure on the sacrum section of the lower back. The amount of force or pressure applied to the user's back by the back supports 1614, 1714, 1814 can be graduated or regulated based on a compression of the back support relative to a top portion of a frame component. Optionally, the spring members 1622, 1722, 1822 can include varying heights and/or thickness and shapes (e.g., they can be tapered between the top portion of the frame component and the back support), such as in a forward-to-backward direction, to provide the graduated or regulated force or pressure applied to the user's back by the back supports 1614, 1714, 1814. By way of example, the amount of force or pressure applied to the user's back by the back support at a forward-leaning position can be less than the amount of force or pressure applied to the user's back by the back support at a neutral or reclined position. In this way, the user's back can be properly supported at various orientations without pushing the user out of the seating assembly when he/she assumes a forward-leaning or more active position.
The present back supports 1614, 1714, 1814 can dynamically support the user's posture while allowing him/her to move side-to-side (e.g., such as in a lateral or horizontal direction), twist, recline, and forward incline, for example. The spring members 1622, 1722, 1822 can be designed with up to about four (4) inches of forward and backward motion. As a result, users with differing body mass can sit in approximately the same location on the seat, such as the locations identified by the IT regions, and they will be accommodated. The self adjustment provided by the back supports 1614, 1714, 1814 can remove the need for distinct seat and back depth adjustment mechanisms, which are typically needed to accommodate different sized users. The back supports 1614, 1714, 1814 can also enable the user to adjust to a comfortable back angle in all seating postures.
The at least one undulation or arc 1974 can be located adjacent coupling locations between the back support 1914 and the spring member 1922 and can provide integrated compression adaptation to a user. As the user sits and leans back, the at least one undulation or arc 1974 can be compressed in a direction 1978 and the user can be properly guided onto a seat 1912. In various examples, the at least one undulation or arc 1974 can provide the back support 1914 with at least one inch, and preferably between approximately 2-4 inches of compression along direction 1978, as well as movement side-to-side and vertical (e.g., the back support can move in all three dimensions and relative to the top portion of the frame component), which in turn, can provide comfort and support to the user. Preferably, this extent of compression along direction 1978 and other movement is allowed by the lateral spring components, and exists even if the vertical spring component member is not present. Compression adaptation of the back support 1914 in conjunction with flexing or pivoting of portions of the seat 1912 can advantageously allow for the dynamic opening of the user's torso to thigh opening.
Optionally, the support frame component 1910 suspending the back support 1914 relative to the seat 1912 can be configured to pivot about its lower end portion, thereby providing a further range of contact between the user and the back support 1914. The frame component 1910 can also or alternatively be height adjustable. As a further option, a manual lever allowing horizontal movement of the back support 1914 can be included for those users preferring an active upright posture.
The shape of the back support 2014 can provide freedom of arm movement to a user, while supporting the user's spine. In the example shown, the back support 2014 includes an inverted T-shape defining opposed lower side wings 2080 and a narrow intermediate portion 2082. In some examples, the intermediate portion 2082 can include a flex region having a thinner cross-section than adjacent portions of the back support. The narrow intermediate portion can allow the user's arms to move freely and the lower side wings 2080 can wrap around the user's back and help guide him/her on and off the seat 2012.
As shown in the example of
The arm rests 2116, 2216 can be locked in the desired configuration, such as a configuration providing an ergonomically-positioned platform for a user to rest his/her arm. It has been found that the arm rests 2116, 2216 of
Optionally, the platforms or rings 2351, 2451 can be efficiently manufactured in interlocking segments couplable to the base 2302, 2402. Casting of interlocking segments can result in reduced manufacturing tooling costs relative to the costs associated with casting a complete ring. in the example of
As shown in the example of
The present inventors have found that the W-shaped and the H-shaped bases 2602 can provide favorable feet clearance for a user of the seating assembly and can allow the base to be located close to laboratory work surfaces. Additionally, these base shapes can facilitate easy lateral movement along a counter work surface; are stable allowing users to stand on a foot support assembly with confidence; and result in the user knowing where the base members are located in relation to his/her feet.
Various options can be utilized to lock a position of the base 2602, and thus the associated seating assembly, relative to a work surface. In one example, one or more casters 2667 coupled to an end of the arm members can be manually locked. In another example, one or more casters 2667 coupled to an end of the arm members can be configured to automatically lock under load or at a forward tilt position of a seat or back support. In the example shown, the base 2602 includes five support arm members and five vertically disposed cylindrical sockets. Each of the cylindrical sockets can house a compression spring and a shaft of a wheeled caster. The compression springs can be chosen relative to the weight of the seating assembly such that, when a user is not seated on the seat, the entire seating assembly can be easily moved by the user to any desired position. When the user sits or leans on seat, the user's weight can be greater than the force generated by springs, and the casters can recede into the cylindrical sockets such that a lower edge of the base 2602 becomes the load bearing structure to prevent assembly movement. The option of a locking base to inhibit the tendency of the seating assembly to creep allows a user to be fixed in one location, carrying out one or more tasks for an extended period of time.
The deployable foot support 2704 allows users of differing builds and heights, and users using high desk platforms, to position their seat 2712 at an appropriate position for their upper body, while providing adequate support for their feet. The deployable foot support 2704 can further allow independent adjustability of the position of a platform 2751 in relation to the seat 2712 to accommodate proper lumbar orientation during various tasks. Further yet, the deployable foot support 2704 can be configured to be efficiently retracted and stored out of the way of the user for easy foot access to the floor.
One or more foot-activated actuation mechanisms 2875 can be used to trigger a first biasing member 2877 or a second biasing member 2879. The first biasing member 2877 can move the platform 2851 between the extended position shown and a retracted position. The second biasing member 2879 can provide for height adjustment of the platform 2851. Advantageously, foot-activated control of foot support assembly deployment or height adjustment can provide a user-friendly feature and allow for more compact seating assembly designs. The range of travel of the biasing members (e.g., gas springs) can act to limit motion of the platform 2851 between the retracted and extended positions, as well as the vertical movement of the platform 2851. In the example shown, the foot support platform 2851 can include a hinge 2881 so that the platform rides upward if and when it contacts the base 2802.
Neither a standing nor a sitting position is particularly comfortable unless a user (e.g., worker or student) is provided with proper support that can be adjusted, configured, or otherwise adapted to his/her needs. Proper support is particularly useful where the user assumes a forward-leaning orientation to perform a task.
The present seating assemblies and methods provide innovative features that can ergonomically support a user's body at various orientations, including forward-leaning orientations. The present seating assemblies and methods can provide long-term comfort, stability, and support to a user during completion of various active tasks, can be realigned to accommodate different working or seating orientations, and can be conveniently relocated from a first position to a second position. The interaction of the seat's tilt biasing, IT pockets and flex voids, the back support's spring member and flex voids, and/or a tilt mechanism in operable engagement with the seat and back support can provide a high degree of support to a user's body during micro-motions, twisting, rocking, and flexing.
The above Detailed Description includes references to the accompanying drawings, which form a part of the Detailed Description. The drawings show, by way of illustration, specific embodiments in which the present seating assemblies and methods can be practiced. These embodiments are also referred to herein as “examples.”
The above Detailed Description is intended to be illustrative, and not restrictive. The above-described examples (or one or more elements or components thereof) can be used in combination with each other. For example, a first element or component (e.g., a seat) of any figure can be used in combination with a second element or component (e.g., a back support) of a different figure. The elements and components of each figure can be used with elements and components of any other figure to allow assembly of a desired seating assembly. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. Also, various features or elements can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
In the event of inconsistent usages between this document and any document so incorporated by reference, the usage in this document controls.
In this document, the terms “a” or “an” are used to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” The term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. The terms “about” and “approximately” are used to refer to an amount that is nearly, almost, or in the vicinity of being equal to a stated amount. The terms “right,” “left,” “top,” “bottom,” “underside,” “upward,” “downward,” “rearward,” “forward,” “backward,” “front,” and “rear” (or similar designate directions in the drawings to which reference is made. The hypothetical “user” is a potential user of the seat assemblies and can include small-sized individuals, medium-sized individuals, and large-sized individuals, for example. Furthermore, with respect to elements that are referred to herein as coupled, connected, engaged, in communication, etc., there are numerous ways that this coupling, connecting, engaging, communication, etc. can be implemented. For example, common connectors or fasteners, such as screws, bolts, rivets, pins, or studs, can be used, or the elements can be molded as an integral unit without requiring separate fasteners. The numerous ways of coupling, connecting engaging, or otherwise communicating among the elements with respect to embodiments of the invention arc either known or will be apparent to one of ordinary skill in the art in light of the present disclosure.
In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” The terms “including” and “comprising” are open-ended, that is, an assembly or method that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Benefit of priority is hereby claimed to U.S. Provisional Patent Application Ser. No. 61/515,138, entitled “ERGONOMIC SEATING ASSEMBLIES,” (Attorney Docket No. 2342.011PRV), filed on Aug. 4, 2011, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61515138 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14235847 | May 2014 | US |
Child | 15261543 | US |