The present invention relates generally to the field of medical speculum.
A speculum is a medical tool used to provide visualization into a body cavity. Speculums or specula are traditionally used for viewing the vaginal cavity for gynecology patients. The traditional vaginal speculum consists of two bills with a hinge and a handle. The bills are inserted into the body cavity in a closed position and separated by squeezing two pieces of the handle together, or depressing a thumb lever, thereby dilating the vagina and providing visualization and accessibility of the vagina, the cervix, and surrounding areas. Once opened, the speculum can be locked in an open position using a screw based mechanism so an operator (e.g., physician, nurse, mid-wife, etc.) does not need to continue squeezing the pieces of the handle, or depressing the thumb lever, during the inspection. The operator can then proceed with inspecting the vagina, conducting a Pap smear or any other medical procedures that may need to be provided.
Embodiments herein generally relate to improved speculum devices, components of the same, and methods of making and using the same. The devices and components overcome many drawbacks of existing speculum devices. For example, described herein according to some embodiments are speculum devices that provide a more comfortable and easily manipulated handle design, decreasing the repetitive stress injuries that routinely occur with providers, while also reducing discomfort for the patient.
The double bill design of speculum devices has been in use since the 1800s and not many changes have been made to the original design. The biggest changes that have been seen with the double bill design are the addition of plastic as a speculum material, and the addition of internal lighting on some models of the plastic speculum so that the operator does not have to rely on external lighting to get a clear view of the vagina and the cervix. About 15 years ago, an inflatable speculum was developed, but failed to gain any traction in the market and was quickly discontinued.
In the traditional design, speculums include a handle portion and a body portion positioned at substantially 90 degrees relative to one another. In this configuration, insertion into the vagina and maintenance in that position may be difficult and uncomfortable for the practitioner and the patient.
Furthermore, traditional designs incorporate two handle portions to be squeezed together, or a lever to be depressed, to expand the body portion of the speculum. This, too, is difficult for the practitioner with time, due to the ergonomic issues of repeated action, often times multiple times a day. And finally, to hold the speculum in the opened position, speculums of the traditional metal design incorporate a screw and locking nut apparatus wherein once the desired expansion is achieved, the practitioner locks it in by screwing the nut along the shaft until it locks the speculum in place. This is problematic because it requires the practitioner to use both hands to lock in the opened position.
Speculums are traditionally made of metal, though some made with disposable plastic have been increasing in use. When the speculum is made of metal, it can feel cold upon entry, especially in comparison to the internal temperatures of the body, providing discomfort for the patient during the procedure, resulting in the patient tensing up and making the procedure more painful. However, even when made of plastic, the design of the speculum may be generally the same, but for some differences that may exist in the locking mechanisms, wall thickness, and consistencies between the types of plastic.
As noted above, embodiments herein generally related to improved speculum devices, components of the same, and method of making and using the same. The devices and components overcome many drawbacks of existing speculum devices. For example, described herein according to embodiments are speculum devices that minimize the discomfort for the operator.
In one embodiment there is a speculum that includes a body portion comprising a handle configured to be grasped by a user of the speculum, a lower bill, and a transition portion between the handle and the lower bill. The speculum further includes an upper bill rotatably coupled to the lower bill at the transition portion, allowing the upper bill to move relative to the lower bill to move the speculum into an open position, a window frame coupled to the upper bill defining a viewing window, and an actuation mechanism coupled to the upper bill to cause separation of the upper bill from the lower bill. The transition portion creates an angle greater than 90 degrees between the handle and the lower bill. In some embodiments, the angle is in the range of 100 degrees to 180 degrees.
In some embodiments, the speculum further includes a locking mechanism configured to hold the speculum in the open position by preventing movement of the upper bill relative to the lower bill when the locking mechanism is engaged. In some embodiments, the locking mechanism includes a locking strip having an engagement element, a pawl for interacting with the engagement element which, when interacting, prevents movement of the locking strip in at least one direction relative to the pawl, and a lock switch configured to be actuated to cause interaction of the pawl with the engagement element. In some embodiments, the engagement element is an aperture in the locking strip configured to receive a portion of the pawl which, when interacting, prevents movement of the locking strip relative to the pawl. In some embodiments, the engagement element is a tooth extending from the locking strip configured to interact with a portion of the pawl which, when interacting, prevents movement of the locking strip in one direction relative to the pawl.
In some embodiments, the actuation mechanism is a thumb tab coupled to the window frame. In some embodiments, the speculum further includes an illumination source. In some embodiments, the illumination source is a lighting module having a housing comprising a front plate and a back plate, a lighting element, a power source, and an activation mechanism for providing power to the lighting element prior to use. In some embodiments, the lighting element is an LED. In some embodiments, the power source is a battery. In some embodiments, the activation mechanism is a pull tab provided between a first and a second battery to prevent discharge of the batteries, and wherein when the pull tab is removed, the first and the second battery become electrically coupled and provide power to the lighting element.
In some embodiments, all edges and shape transitions on an outer surface of the handle are rounded. In some embodiments, the speculum further includes a gripping portion. In some embodiments, the gripping portion includes at least a portion made of a different material than a material of the speculum. In some embodiments, the gripping portion includes an overmold placed over the handle. The overmold may be silicone or other similar material.
In another embodiment, there is a locking mechanism for a speculum having a handle, a first bill, and a second bill, the locking mechanism includes a locking strip having an engagement element, the locking strip coupled to the first bill and configured to move in unity with the first bill, a pawl for interacting with the engagement element which, when interacting, prevents movement of the locking strip in at least one direction relative to the pawl, thereby preventing movement of the first bill relative to the second bill, and a lock switch configured to be actuated to cause interaction of the pawl with the engagement element and prevent movement of the locking strip in at least one direction relative to the pawl.
In some embodiments, the engagement element is an aperture in the locking strip configured to receive a portion of the pawl which, when interacting, prevents movement of the locking strip relative to the pawl. In some embodiments, the engagement element is a tooth extending from the locking strip configured to interact with a portion of the pawl which, when interacting, prevents movement of the locking strip in one direction relative to the pawl.
In yet another embodiment, there is a lighting module for a speculum having a housing comprising a front plate and a back plate, a lighting element, a power source; and an activation mechanism for providing power to the lighting element prior to use. In some embodiments, the lighting element is an LED. In some embodiments, the power source is a battery. In some embodiments, the activation mechanism is a pull tab provided between a first and a second battery to prevent discharge of the batteries, and wherein when the pull tab is removed, the first and the second battery become electrically coupled and provide power to the lighting element.
In yet another embodiment, there is method of performing a medical procedure on a female, comprising, providing a speculum according to any of the embodiments described above; inserting the speculum into the vagina of a female patient; and performing the medical procedure.
In yet another embodiment there is a method of reducing hand fatigue or injury in a medical professional using a speculum, comprising, providing a speculum according to any of the embodiments described above to the professional for use in a female medical procedure.
In the following detailed description, reference is made to the accompanying drawings, which form a part of the present disclosure. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. The detailed description is intended as a description of exemplary embodiments and is not intended to represent the only embodiments which may be practiced. The term “exemplary,” as used herein, means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and form part of this disclosure.
Referring to the figure generally, a speculum system is shown. The speculum is an updated design relative to the antiquated, traditional two-bill design. The speculum has an ergonomic handle for increased comfort during use. Without being limited thereto, in some embodiments, the handles described herein can have one or more features selected from a greater angle between the grip or the handle portion and the bills of the speculum, a textured grip on the handle, the size of the handle, etc. As one example, the larger angle can be beneficial so that the handle does not interfere or contact patient as readily while being inserted, while inserted, or when removed and also can be more comfortable for the user by providing a neutral position for the wrist. As another example, the ergonomic handle with a textured grip can provide for improved precision during use, for example, due to ergonomic touch points. The improvements can minimize hand fatigue or other stresses to the hand including carpel tunnel problems for the user. In addition, an improved locking mechanism can allow the speculum to be used with one hand, as opposed to locking mechanisms that require the use of two hands. In some embodiments, the profile of the speculum, for example the bill portion, may be narrower than traditional speculum while still maintaining an equal or greater level of usability. In some embodiments, the speculum may be used with a sleeve that can be placed over the bill portion to provide side wall support. The sleeve may be disposable, reusable, lubricated, or include a therapeutic agent.
The bills 102 and 104 each comprise a transition portion 102a, 104a and a main bill portion 102b, 104b. The main bill portions 102b, 104b form an elongated portion 116 of the speculum 100. Various embodiments of the elongated portion 116 are shown in the end views of
As shown in
Still referring to
In the embodiment shown, tab 108 has a concave surface to cooperate with the shape of the thumb of the user and provide a more stable area for the thumb to apply force 120. In some embodiments, the tab 108 is a separate element that is coupled to the window frame 112. In other embodiments, the tab may be formed unitary with the window frame. The applied force 120 should not need to be a substantial force. As described above, in some embodiments, a distance the actuation mechanism moves correlates to a distance the bills 102 and 104 separate. In this regard, the user would be able to modify the specific distance between the bills 102 and 104 for each patient. The bills 102 and 104 may open in a continuous fashion when force 120 is continuously applied to the actuation mechanism. The user may have to hold the actuation mechanism in place in order to maintain the distance between the bills 102 and 104. Alternatively, the speculum 100 may have a locking mechanism, such that the bills 102 and 104 can be locked in an open position. In this regard, the user would not have to maintain pressure on the actuation mechanism to maintain the distance between bills 102 and 104.
For example, referring to the cross-sectional view of
According to the embodiment shown, the locking mechanism further includes lock switch 128. The pawl 126 includes an aperture 127, through which a connection mechanism of the lock switch 128 passes through to couple the lock switch 128 inside the handle. As shown in
The locking mechanism shown in
Once the user has completed the inspection of the vaginal cavity and cervix, the bills 102 and 104 may be returned to the closed or mostly closed position prior to or during removal the speculum 100 from the patient. To return the bills 102 and 104 to the closed position, the user may release the force 120 from the actuation mechanism. Removing force 120 would work to close the bills 102 and 104 if the force 120 needed to be applied for the length of the procedure to maintain the viewing window. However, if the actuation mechanism locks into place when force 120 is applied, a user will unlock the speculum to close the bills 102 and 104. For example, using the locking mechanism depicted in
In alternative embodiments, a second force may be applied to the actuation mechanism to close the bills 102 and 104. The second force may be applied in a direction opposite of force 120. The second force should be small enough so as to be easy to apply with an upward movement of the thumb of the user. The user should be able to apply the second force while maintaining control of the speculum 100. Alternatively, the actuation mechanism may be released by applying a second force 120 to the actuation mechanism to move the actuation mechanism past the locking position, releasing the lock and closing the bills 102 and 104.
Once the bills 102 and 104 of the speculum 100 are closed, the speculum 100 can be removed from the patient. When closing the bills 102 and 104, the user should take caution to ensure no vaginal tissue is between the bills 102 and 104 such that the tissue may become pinched when closed. The speculum 100 should then be pulled along an axis along the length of bills 102 and 104 to easily remove the bills 102 and 104 from the patient.
The actuation mechanism should be located at a position such that the user is able to easily reach the actuation mechanism with a thumb when the rest of a hand of the user is holding handle 106. In the embodiments of
Referring to
The handle 106 may also be rounded, lacking sharp corners and edges, and have a circular cross section to provide a more comfortable and natural fit in the hand of the user. Alternatively, a patient side of the handle 106 may be rounded while a user side may be flat. This configuration may provide the user a flat portion to rest a thumb of the user during the procedure. In another embodiment, both the user and patient sides are rounded, but with different curvatures such that the cross section is more oblong than circular. The handle 106 may include a grip 114 for comfort and ergonomic benefit. The grip 114 may be of a material that provides more traction for the hand of the user, for example, the grip 114 may be an overmold placed over a portion of the handle. The overmold may be silicone or other similar material. In some embodiments, the grip 114 is textured to provide more traction for the hand of the user. For example, the grip 114 may include bumps, dimples, and/or other texturizing elements, and a rounded or formed body for comfort and ergonomic benefit. The grip texture can include any suitable feature to permit gripping of the handle. For example, the texture can include raised elements or protrusions such as bumps, ridges (e.g., vertical or horizontal, straight or waved, etc.), and/or indentations or holes, which can be in the shape of pinholes, grooves, channels, etc. The grip 114 may allow the user to apply less force with the hand of the user in order to hold the speculum 100. By allowing the user to use less force to hold the speculum, the user may become less fatigued when performing the procedure. In addition, when less force is needed, the user may experience less cramps, strains and/or injuries caused by using the speculum 100. The grip 114 may extend the length of the handle 106. In some embodiments, the grip 114 only extends a portion of the length of the handle 106. In some embodiments, the grip 114 may be located only on the user or patient side of the handle 106. In other embodiments, the grip 114 may be located on both the user and patient side of the handle 106 in separate pieces. In another embodiment, the grip 114 wraps around the circumference of the handle 106. In yet another embodiment, the grip 114 is a plurality of pieces spaced along the handle 106. In another embodiment, the grip 114 is made of grooves located along the handle 106, where the grooves align with where fingers of the user would be located when holding the handle 106. The grip 114 may also provide for cushioning the practitioner's hold on the handle, and/or for a more secure grip on the device.
The handle 106 may be made of metal and/or plastic, including, but not limited to, titanium, aluminum, stainless steel, acrylic, polyethylene, polyester, polyethyleneaphthlate, polystyrene, polyvinylchloride, polyethersulfone, polyetherimide, polycarbonate, polysulfone, polyetheretherketone, polyphenylsulfone, and polymethyl methacrylate. The handle 106 may be made of a material that can be sterilized. The handle 106 may be made of material that is biocompatible. The handle 106 may be made using a variety of techniques including, but not limited to, injection molding, extrusion, machining, blow molding, rotational molding, compression molding, transfer molding, stamping, and casting.
As shown in
Lighting module 200 also includes a power source, such as one or more batteries. In the embodiment shown, two button cell batteries 206 are used to power each LED 204 electrically coupled thereto (through in line resistors). Each battery 206 preferably has a voltage of about 3.0V, but batteries having other voltages may also be used. The lighting module also includes an activation mechanism which can be manipulated to cause the LEDs to go from an “off” state to an “on” state. In this embodiment, the activation mechanism is a pull tab 210 positioned between the batteries, thereby preventing discharge of the batteries and keeping the LEDs “off” The pull tab 210 is configured to be pulled by the user to dislodge the pull tab 210 from between the batteries 206, thereby allowing the flow of current and providing power to the LEDs. In this embodiment, there is no mechanism for powering the LEDs off after they have been turned on. In some embodiments, the same activation mechanism may be used to power off the LEDs or there may be a second mechanism for powering off the LEDs.
The scroll and press mechanism includes a scroll wheel 140. The scroll wheel 140 may be embedded into the handle 106 such that only a portion of the scroll wheel 140 is visible and accessible to the user. The scroll wheel 140 can be rotated in two directions. When the scroll wheel 140 is rotated in a first direction, the diameter of the speculum 100 increases. The increase in diameter moves the bills 102 and 104 further away from one another while in the closed position. When the scroll wheel 140 is rotated in a second direction, the diameter of the speculum 100 decreases. The decrease in diameter moves the bills 102 and 104 closer to one another. The user may obtain a better view of the cervix by properly adjusting the diameter of the speculum 100 to the diameter of the cervix in the vagina. The scroll wheel 140 may also include ridges or grooves 142 to allow the user to rotate the scroll wheel 140 more easily. In some embodiments, the ridges or grooves 142 provide an indication of the diameter the speculum. The scroll wheel 140 may provide fluid increases and decreases in diameter as the scroll wheel 140 is rotated. Alternatively, the scroll wheel 140 may provide fixed increases and decreases in diameter as the scroll wheel 140 is rotated. For example, a full 360 degree rotation may be needed to increase or decrease the diameter by a set amount. The user may have the ability to lock the scroll wheel 140 into place when an appropriate diameter is selected. Subsequently, the user may be able to unlock the scroll wheel 140 when the examination has concluded.
The scroll wheel 140 may be located on the handle 106. The scroll wheel 140 should be located in such a way that the user can easily rotate the scroll wheel 140 with a thumb while maintaining a secure grip on the handle 106. The scroll wheel 140 should not interfere with the ability of the user to move and adjust the placement of the speculum 100 into the vagina of the patient.
The squeeze and slide mechanism includes a groove 152. The groove 152 is an elongated opening that provides a track for a slider 154. The groove 152 may be rounded at each end. The groove 152 may be located on the handle 106 of the speculum 100. The groove 152 has a length that is shorter than a length of the handle 106. Inside the groove 152 is a mechanism that opens and closes the bills, based on the movement of the slide 154. In other embodiments, an actuation mechanism as described above with respect to speculum 100 may be used, and the slide 154 is used to move between a locked and an unlocked state.
The slider 154 has an elongated body and can be moved in two directions along the groove 152. Movement in a first direction causes the bills 102 and 104 to separate, increasing the diameter of the opening created by the speculum 100. Movement in a second direction causes the bills 102 and 104 to close, decreasing the diameter of the opening created by the bills 102 and 104. In other embodiments, where the bills are opened by a separate actuation mechanism, movement in the first direction causes the speculum to lock and movement in the second direction causes the speculum to unlock, or vice versa. The slider 154 may have a rounded, elongated body to facilitate the placement of the thumb on the slider 154. The slider 154 should be located in such a way that the user can easily apply a force to the slider 154 with the thumb while maintaining a secure grip on the handle 106. The slider 154 should not interfere with the ability of the user to move and adjust the placement of the speculum 100 into the vagina of the patient.
In one embodiment, the slider 154 includes a spacer 156 to raise the slider 154 out of the groove 152. In this embodiment, the user applies a force 158 to the slider 154. The force 158 causes the slider 154 to abut the groove 152 and activate the internal mechanism. The user can slide the slider 154 up and down along groove 152 while force 158 is applied to adjust the diameter of the opening created by the bills 102 and 104 and/or move between a locked and unlocked position. Once force 158 is removed from slider 154, spacer 156 is visible again. The slider 154 is locked into place when no force is applied.
In other embodiments, the slider 154 remains flush with the groove 152. In this embodiment, the user applies a force 160 to the slider 154, to slide the slider 154 up and down along groove 152 to adjust the diameter of the opening created by the bills 102 and 104 and/or move between a locked and unlocked position. Once force 160 is removed from slider 154, the slider 154 is held in place.
The mechanism of
The movement of the guiding member 174 in relation to the base 170 may cause the bills of the speculum to separate. To lock the bills in an open position, the locking member 176 may be moved in a first direction (e.g., in an upward direction), along a longitudinal axis of the base 170. The locking member 176 may use groove 172 as a track to slide. Alternatively, locking member 176 may use a separate aperture to slide. To unlock the bills (i.e., return the bills to a closed position), the locking member 176 may be moved in a second direction (e.g., in a downward direction), along the longitudinal axis of the base 170. The locking member 176 may be shaped to conform to the shape of a thumb or finger of the user. The locking member 176 may also include a ridge to increase the ease of moving the locking member 176. The ridge may be centered on the locking member 176 and orientated perpendicular to the longitudinal axis of the base 170. The locking member 176 may be shaped to conform to the shape of guiding member 174 when in the locked position.
For the practitioner, the features of the present disclosure may reduce fatigue and repetitive stress injury, allow for one-handed opening and locking, allow increased visibility and accessibility, along with many other benefits. For the patients, these features may reduce patient anxiety because they employ quieter mechanisms than the traditional designs and because of the updated look of the lever 108 and handle 106.
Some embodiments herein relate to methods of performing obstetric or gynecological procedures utilizing speculum devices having a handle with one or more of the features described herein. Non-limiting examples of such procedures include pelvic exams, pap smears, insemination, IUD insertion/removal. In some embodiments, the methods can include performing a plurality of such procedures in a given period of time, such as an 8 hour or 24 hour period of time, or any sub period of time therein. Other embodiments relate to methods of reducing hand fatigue or repetitive use injury in a user of a device or handle as described herein.
The foregoing description details certain embodiments of the systems, devices, and methods disclosed herein. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the devices and methods can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to including any specific characteristics of the features or aspects of the technology with which that terminology is associated. The scope of the disclosure should therefore be construed in accordance with the appended claims and any equivalents thereof.
It will be appreciated by those skilled in the art that various modifications and changes may be made without departing from the scope of the described technology. Such modifications and changes are intended to fall within the scope of the embodiments, as defined by the appended claims. It will also be appreciated by those of skill in the art that parts included in one embodiment are interchangeable with other embodiments; one or more parts from a depicted embodiment can be included with other depicted embodiments in any combination. For example, any of the various components described herein and/or depicted in the Figures may be combined, interchanged or excluded from other embodiments.
The devices, components, methods and systems described herein can be combined with one or more of the devices, components, methods and systems described in any of U.S. patent application entitled “Speculum with Secondary Bills,” filed on Dec. 28, 2016 and identified by Atty. Docket No. 112359-0253, U.S. patent application entitled “Insertable Sleeve for Speculum and Use Thereof,” filed on Dec. 28, 2016 and identified by Atty. Docket No. 112359-0353, and U.S. patent application entitled “Sleeve for Speculum and Use Thereof,” filed on Dec. 28, 2016 and identified by Atty. Docket No. 112359-0403, each of which is incorporated herein by reference in its entirety.
With respect to the use of any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the terms “comprising” and “having” should, respectively, be interpreted as “comprising at least” and “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” In general, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”; the same holds true for the use of definite articles used to introduce claim recitations.
Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general, such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
The technology disclosed herein has numerous applications and while particular embodiments of the technology have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified given the design considerations discussed herein. Therefore, the foregoing description is to be considered exemplary rather than limiting, and the true scope of the invention is that defined in the following claims.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/272,616 filed Dec. 29, 2015, and entitled “Ergonomic Handle for Medical Speculum.” This application also claims the benefit of and priority to U.S. Provisional Patent Application No. 62/281,690 filed Jan. 21, 2016, and entitled “Ergonomic Handle for Medical Speculum.” This application also claims the benefit of and priority to U.S. Provisional Patent Application No. 62/310,602 filed Mar. 18, 2016, and entitled “Ergonomic Handle for Medical Speculum.” Each of the aforementioned provisional applications is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62310602 | Mar 2016 | US | |
62281690 | Jan 2016 | US | |
62272616 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15392686 | Dec 2016 | US |
Child | 17378621 | US |