BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described, by way of example, with reference to the accompanying drawings in which:
FIG. 1 illustrates a top plan view of a plurality of erosion control mats secured in place by the anchor system of the present invention at the outlet of an effluent discharge;
FIG. 2 illustrates a top perspective view showing the driving rod being positioned into the anchor for securement below ground;
FIG. 3 illustrates a side elevation in partial cross-section of the driving rod positioning the anchor below the ground;
FIG. 4 illustrates a side elevation in partial cross-section of the anchor system of the present invention, shown securing an erosion control mat over an erosion susceptible surface; and
FIG. 5 illustrates a side elevation in partial cross-section of an alternative embodiment of the present invention, shown locking the strap around a portion of the erosion control mat.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
An erosion control mat anchor system according to this invention is shown generally as (10) in FIG. 1. A plurality of the systems (10) are shown securing a plurality of erosion control transition mats (12), such as those described in U.S. Letters Pat. No. 6,951,438, which is incorporated herein by this reference. The system (10) may, of course, be used in association with any type of erosion control surface, such as plastic sheeting, canvas, sod, a turf reinforcement mat, or any other erosion control surface. As shown, the anchor system (10) of the present invention is used to secure the erosion control mats (12) in an overlapped relationship. The anchor systems (10) provided at the upstream and downstream portions of the erosion control transition mats (12) extend through two erosion control transitions mats (12) tying them together, as well as securing them over the erosion susceptible surface (14), such as dirt, sod or secondary erosion control surface such as a turf reinforcement mat or the like. As shown in FIG. 1, the anchor system (10) extends through one of the holes (16) provided in the erosion control transition mats (12). The erosion control transition mat (12) can be secured in a non-overlapping, or any desired configuration. Similarly, any desired erosion control surface may be used instead of an erosion control transition mat (12). As shown, the erosion control transition mats (12) are provided at the mouth of an effluent discharge (18) which, in the preferred embodiment, is a concrete slab but may, of course, be any type of hard armor or any other type of effluent discharge known in the art.
As shown in FIG. 2, an anchor (20) is provided to secure a line such as a strap (22) into the ground (24). (FIGS. 2 and 3). As shown in FIG. 2, the anchor (20) is preferably stamped from a single sheet of steel to provide a tapered, four-sided structure. The anchor (20) is also preferably provided with holes (23) to allow the anchor (20) to be used in association with prior art cables (not shown) instead of the flat strap (22) of the present invention. While the anchor (20) may be constructed of any desired configuration, the tapered configuration allows the anchor (20) to be easily inserted into the ground (24), while reducing damage to the anchor (20) during insertion. Preferably, the anchor (20) is die cut and bent in a manner known in the art to provide a tapered retaining slot (26) to receive the driving rod (28). The slot (26) is defined by a plurality of ribs (30), but may be defined by an extra piece secured to the anchor (20), or may be integrally cast into the anchor (20) as desired.
As shown in FIG. 2, the anchor (20) is provided with a plurality of slots (32) to receive the strap (22) which is woven therein. The slots (32) are preferably provided of a size, configuration and orientation so as to lock the strap (22) into place as the anchor (20) is inserted into the ground (24) by the driving rod (28). Below the slots (32) the anchor (20) is preferably stamped into a corrugation (34), so as to disrupt the ground (24) as the anchor (20) is inserted therein. The corrugation (34) prevents the ground (24) from shearing the strap (22) against the sides of the slots (32). The strap (22) is preferably flexible and resilient. In the preferred embodiment, the strap is constructed of woven nylon, fiberglass or any other suitable material known in the art. Preferably, the strap (22) is treated and/or constructed of a material designed to resist degradation associated with ultraviolet radiation, heat, cold and submersion in water, as well as any other elements to which the system (10) is to be subjected.
When it is desired to insert the anchor (20) into the ground, the driving rod (28) is secured into the slot (26) defined by the ribs (30). The ribs (30) are vertically offset from the slots (32) so that the strap (22) does not interfere with the driving rod (28) during insertion of the anchor (20). Preferably, the driving rod (28) is constructed of steel and provided with a tapered end (36), configured to fit into a mating engagement with the slot (26). The opposite end of the driving rod (28) is preferably provided with a head (38) to provide a striking surface during insertion of the driving rod (28) into the ground (24). (FIG. 3). Once the strap (22) has been woven into the slots (32) of the anchor (20), and the driving rod (28) secured within the slot (26), the erosion control transition mat (12) is positioned as desired over the erosion susceptible surface (14). Thereafter, the driving rod (28) is used to insert the anchor (20) through one of the holes (16) in the erosion control transition mat (12) and into the ground (24).
Depending upon the type of ground (24) into which the anchor (20) is to be inserted, the driving rod (28) is used to insert the anchor (20) deeper or shallower so as to attain the desired anchoring of the erosion control transition mat (12) relative to the erosion susceptible surface (14). In very hard ground (24), the anchor (20) may be inserted shallow, while in loose dirt or sand the anchor (20) must be provided more deeply to obtain a similar amount of anchoring. The strap (22) is preferably provided on a spool (40) to allow the desired amount of strap (22) to be inserted into the ground (24) with minimal waste. To assist in driving the anchor (20) into the ground, a hammer (42) or the like may be used to strike the driving rod (28) on the head (38).
Once the driving rod (28) has been used to drive the anchor (20) to the desired depth, the driving rod (28) is pulled upward. As the top surface (44) of the anchor (20) is provided with a much greater surface area than the bottom (46) of the anchor (20), the anchor (20) inserts easily into the ground (24), but resists upward movement of the anchor (20) relative to the ground (24). Accordingly, as the driving rod (28) is pulled upward, the tapered end (36) of the driving rod (28) exits the slot (26), leaving the anchor (20) imbedded into the ground (24). After the driving rod (28) has been removed, the strap (22) is pulled upward to “set” the anchor (20) into the ground (24). Once the anchor (20) has been set, the strap (22) is cut, preferably ten to twenty centimeters above the top of the erosion control transition mat (12). Thereafter, a washer (48), such as those known in the art, is positioned over the strap (22) and set on the erosion control mat (12). Preferably, the washer (48) is constructed of nylon or other strong weather resistant material and is preferably provided of a diameter greater than the hole (16) through which the strap (22) extends.
A one-way button (50) is then provided over the strap (22) and secured over the washer (48). Preferably, the one-way button (50) is provided of a weather resistant material. The button (50) is provided with an opening (52) having a one-way mechanism, such as those known in the art, to allow the strap (22) to move in a first direction, but which prevents movement of the strap (22) in an opposite direction through the opening (52). To set the button (50) in place, the strap (22) is preferably pulled upward with pliers (54), or the like, while the button (50) is pushed downward. By stretching the strap (22) with the pliers (54), when the button (50) is in place and the pliers (54) released, the resiliency of the strap (22) pulls against the one-way button (50), forcing the erosion control transition mat (12) into contact with the erosion susceptible surface (14). As shown in FIG. 1, preferably a plurality of anchor systems (10) are provided as desired to secure the erosion control transition mats (12) as needed.
FIG. 5 shows an alternative embodiment of the present invention in which the erosion control transition mat (56) is provided with a support bar (58) having a circular cross-section. The support bar (58) may be integrally formed as part of the erosion control transition mat (56), or may otherwise be secured to the erosion control transition mat (56). As shown in FIG. 5, the strap (60) is anchored into the ground (62) in a manner such as that described above for the preferred embodiment. A button (64) is then provided with two slots (66) and (68). Although one or both of the slots (66) and (68) may be of a one-way construction such as that noted above, in the preferred embodiment both of the slots (66) and (68) are provided of a one-way construction. Accordingly, the strap (60) is threaded through the first slot (66), around the support bar (58) and back through the second slot (68). The strap (60) is preferably secured by pulling on the strap (60) with pliers or other retention means to stretch the strap (60) so that when the pliers (not shown) are released, the resiliency of the strap (60) pulls the support bar (58) and erosion control transition mat (56) into the ground (62).
The foregoing description and drawings merely explain and illustrate the invention, and the invention is not limited thereto, except insofar as the claims are so limited, as those skilled in the art that have the disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention. The anchor system (10) may, of course, be utilized with any desired strap (22) constructed of any suitable material, including, but not limited to, metal or rope. Similarly, any desired type of retainer may be utilized which allows the strap to move in a first direction relative to the retainer and prevents the strap from moving in a second direction relative to the retainer.