1. Field of the Invention
The invention relates generally to the design of multi-lateral junctions used in downhole hydrocarbon production and methods for creating such junctions in a wellbore.
2. Description of the Related Art
Multilateral wellbores are used to increase the efficiency of drilling and production. A multilateral wellbore includes a main wellbore, which is drilled from the surface, and at least one lateral leg which branches out from the main wellbore. The main wellbore, or at least a portion thereof, is typically vertical or substantially vertical in orientation. The lateral leg(s) usually have a horizontal or deviated orientation with respect to the main wellbore and may be capable of accessing hydrocarbons that are not accessible from the main wellbore.
A downhole junction is used to branch a lateral leg from a central, usually substantially vertical main wellbore. Current mechanical junction arrangements allow formation exposure gaps to develop which increase the risk of erosion and possible intrusion of debris at the junction itself.
The present invention provides devices and methods for providing multilateral junctions in a wellbore. In a described embodiment, a lateral junction is provided by a hanger and a seal bore diverter (SBD). The SBD includes a tubular body with an elongated window formed within. In preferred embodiments, the lower end of the elongated window includes an engagement hook. The hanger includes a straight portion and a deviated portion which can pass through the elongated window of the SBD. It is noted that while the deviated portion will be depicted herein as deviating from, and actually will deviate from the axis of the straight portion when installed in the wellbore, the hanger will typically be a substantially straight tubular when manufactured and run into the wellbore. The hanger also features lateral windows formed in its body as well as an engagement tab. In accordance with preferred embodiments, an orientation mechanism is provided which angularly orients the hanger within the SBD.
In operation to create a lined lateral junction in a multilateral wellbore, a SBD is first landed within the main bore of a multilateral wellbore, oriented so that its elongated window faces a lateral leg which diverges from the main bore. Thereafter, a hanger is lowered into the main bore so that the deviated portion of the hanger enters the central bore of the SBD. If an orientation mechanism is provided, the hanger is then angularly oriented within the SBD so that the deviated portion of the hanger will be pointed toward and exit through the elongated window of the SBD.
When the hanger is fully seated within the SBD, an engagement hook on the SBD will become interlocked with an engagement tab on the hanger. The interlocking engagement will preferably occur at the crux of the acute angular junction where the hanger and SBD meet. The interlocking engagement is formed at the interior portion of the junction between the hanger and SBD. The completed assembly provides a lined junction within which completions or other tools can be run.
For a thorough understanding of the present invention, reference is made to the following detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings, wherein like reference numerals designate like or similar elements throughout the several figures of the drawings and wherein:
The term “multilateral,” as used herein, will refer to wellbores having a main bore, or leg, and at least one lateral leg which branches off from the main bore.
In
When the SBD 28 is landed in the liner 24, the elongated window 36 is oriented to face the casing window 20.
An interior ramp shoulder 38 is formed within the central bore 34 of the SBD 28. The ramp shoulder 38 is formed by thickening the body 32 of the SBD 28 to form the ramp shoulder 38, as best appreciated by reference to
As shown in
A first lateral window 56 is formed in the body 50 of the hanger 44 in the vicinity of the elbow 58 which joins the straight portion 46 to the deviated portion 48. A second, smaller lateral window 60 is also formed in the body 50 adjacent the lateral window 56, and an engagement tab 62 is formed between the two lateral windows 56, 60.
In order to land the hanger 44 within the SBD 28, the deviated portion 48 is slid into the central bore 34 of the SBD 28, as illustrated by
The hanger 44 continues to slide in the direction of arrow 64 until it is in the fully landed position depicted in
Also in the fully landed position, the engagement hook 42 of the SBD 28 and the engagement tab 62 of the hanger 44 will interlock. As best shown in
It is preferable to design the SBD window 36 and the central bore 34 of the SBD 28 to closely match the outer diameter of the hanger 44 at a predetermined angle and deviation to minimize any potential exposure gaps. In addition to the close fit, the SBD 28 and hanger 44 are anchored relative to each other to preserve designed gaps for the remainder of the life of the well. Because the engagement tab 62 does not protrude from the outer diameter of the hanger body 50, the hanger body 50 can closely match the inner diameter of the central bore 34 and window geometry, thereby keeping formation exposure gaps to a minimum. According to preferred embodiments, the window 36 of the SBD 28 is shaped to fit the hanger body 50 at a specified angle relative to the tubular SBD body 32. This angle, as illustrated by the angle of the deviated portion 48 of the hanger 44, will be similar to the angle at which the casing exit was originally milled. Because the outer diameter of the hanger 44 closely matches the interior diameter of the central bore 34, the maximum window width will be close to the central bore 34 diameter. The upper taper of the SBD window 36 is shaped to fit the outer diameter of the hanger 44 at the predetermined angle or deviation. The lower most portion of the SBD window 36 is for the engagement of the engagement tab 62.
After the hanger 44 is landed within the SBD 28, as described above, a completed junction is provided which is fully lined. A user can insert completions or other tools through the central bore 34 and into the lateral leg 22 of the wellbore 10 through the deviated portion 48 of the hanger 44. In addition, a user can have access to the main bore 14 of the wellbore 10 below the junction 45 in order to run tools.
Those of skill in the art will recognize that numerous modifications and changes may be made to the exemplary designs and embodiments described herein and that the invention is limited only by the claims that follow and any equivalents thereof.