The present application relates to the field of error correction, particularly error correction in the presence of inter-symbol interference (ISI).
In 1948 C. Shannon, the founder of Information Theory, published a paper that showed that no more than
C=W log 2 (1+SNR)
bits could be transmitted over a digital communications channel without error, where C is called the channel capacity in bits/sec/Hz, W is the channel bandwidth in Hz, and SNR is the signal-to-noise-power ratio. He also proved that codes existed that allowed rates arbitrarily close to C with arbitrarily small error rates.
He did not show how to construct these codes, and none were discovered until Berrou et al. invented turbo codes (C. Berrou, A. Glavieus and P. Thitmayshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes,” Proc. Of 1993 International Conference on Communications, pp. 1064-1070, 1993) that have rates close to C at low SNRs (e.g., 3 db) but not at high SNRs of 15 to 30 db. Turbo codes are now widely used where reliable communication at low SNRs such as NASA deep space channels is required.
Computer hard disk drives are binary channels that typically have strong intersymbol interference (ISI) as a consequence of recording information at as high a density as is possible, and the resulting ISI is countered with Viterbi detectors, as first described in “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm,” published in IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967. Error correction that is internal to the Viterbi detector has been investigated by several commercial vendors. Strong parity checks or block code decoders such as Reed-Solomon decoders external to the detector are generally used.
U.S. Pat. No. 6,751,771 by Chuang et al describes the processing of serial data from a storage device whereby the data is stored and processed using an inner and outer code correction with Reed-Solomon decoding.
U.S. Pat. No. 5,268,908 by Grover et al describes an error correction system where the data is overlaid into multiple blocks and separately processed.
U.S. Pat. No. 6,269,116 by Javerbring et al describes a demodulation system whereby a set of data symbols is demodulated in a time-forward and a time-reversed direction.
U.S. Pat. No. 7,006,563 by Allpress et al describes an equalizer which compensates for ISI by equalizing the channel using samples stored and thereafter filtered in a time-forward and time-reversed manner.
U.S. Pat. No. 5,050,186 by Gurcan et al describes an ISI equalizer using decision feedback whereby signal equalization is performed using a time-forward and time-reversed FIR filter configuration with coefficients calculated separately for each filter.
U.S. Pat. No. 6,608,862 by Zangi et al describes an algorithm for computing coefficients for a time-forward and time-reversed filter.
A first object of this invention is an error detection and correction apparatus for achieving near Shannon channel capacity (SCC) with small bit error ratios (BER) at SNRs greater than 15 db. The coding and decoding implementation typically will be less complicated than the implementation for a prior art turbo code.
A second object of the invention is a threshold logic unit (TLU) for use in improving a decision surface.
A third object of the invention is an arrangement of a forward threshold logic unit and two backward threshold logic units for error detection and correction.
A fourth object of the invention is a parity apparatus for use with a forward threshold logic unit and two backward threshold logic units for error detection and correction.
When many bits/sec/Hz are transmitted through a channel, a limiting factor is the amount of intersymbol interference (ISI) that can be tolerated by a conventional detector. For a given input sequence of 1s and 0s, the output of a specified channel with ISI due to the signal will always be the same. A pattern recognizer can be trained to recognize which input bit sequence resulted in any given ISI corrupted waveform. This sequence is the detected output.
One pattern recognizer type that can be used in this invention is a Threshold Logic Unit (TLU), which implements a linear decision surface. The threshold is a function of the previous detector outputs. It can be shown that this detector is near optimum for a channel with ISI.
Other types of pattern recognizers can be used, and the descriptions of the TLU in the present patent are not meant to imply that the practice of the invention is restricted to TLU pattern recognizers. Prior art Nearest Neighbor recognizers and the trainable digital logic recognizers that are described in U.S. Pat. No. 5,263,124 are suitable, but the invention is not restricted to these types. A fundamental element of this invention is the use of pattern recognition to identify the input bit sequence from the ISI signal channel output waveform.
During error correction, a block of incoming signal and noise samples is first processed through a “forward” TLU detector in the forward (in time) direction while a buffered copy of the input signal is processed in the reverse direction through two “reverse” TLU detectors. Forward and reverse detector errors rarely occur at the same sample, and the forward and reverse TLUs exploit this characteristic, thereby allowing a simple and accurate method to determine when an error has occurred. A small number of parity check bits helps to determine in which direction the error has occurred. Boolean logic is used to compare the forward and reverse detector outputs to correct the errors. The result is a detection system with a low BER in computer simulations where the bit rate is near the Shannon Channel Capacity (SCC) at high SNR.
The invention can also be used with conventional external error correction and is applicable to both hard disk drives and BPSK and QPSK communication channels.
TLUs have been used in pattern recognition for over 40 years. Their use in this invention is similar to decision directed feedback. However, significantly better detector BER is obtained by a new training algorithm.
When a non-return to zero (NRZ) binary signal 12 is transmitted in a communications channel at rates sufficient to cause ISI, the individual 1s and 0s can become so distorted that they become undistinguishable, as shown in the analog waveform 14 in
yn is the dot product of the vectors Xn and W where
The elements of Xn are the nth sample of the waveform, xn, and the previous m−1 samples.
Then
yn=W·Xn.
If yn≧T then the threshold 210 output 212 is 1; otherwise it is 0.
The equation for yn is a plane 304, as is shown in
The following standard training algorithm commonly is used to adjust the weights and T so that the plane 304 is between the clusters 300 and 302. The vectors Xn are made up from the training set (recall that the first element of Xn is the sample xn and the rest of the elements are the previous m samples) and are entered into the algorithm. Wn and Tn are the nth weight and threshold values, respectively, and the category of Xn is the value of the nth input bit.
The weights are adjusted as follows:
If Wn·Xn≧Tn and the category is 0 then
Wn+1=Wn+δXn
Tn+1=Tn−δ
If Wn·Xn<Tn and the category is 1 then
Wn+1=Wn−δXn
Tn+1=Tn+δ, where 0<δ<2
If Wn·Xn≧Tn and the category is 1, or
If Wn·Xn<Tn and the category is 0, then
Wn+1=Wn
Tn+1=Tn.
This algorithm guarantees that the plane 304 will be placed between non-overlapping clusters in a finite number of steps.
When the plane 304 is between the clusters no more errors are made, and therefore the adjustments cease. The plane usually will be in a non-optimum position 306 as shown in
1) Trim any vectors from the clusters where the vectors are determined to cause the clusters to be too close to each other or to overlap.
2) Translate the Xn vector coordinates by subtracting the mean value
This results in a simplified process where the threshold starts out and remains zero, and only the weights need to be adapted, producing a modified version of the training rule (and subsequently of the classification rule). Wherever Xn appears in the equations, it is substituted with(Xn−
3) Adapt the TLU weights W according to the equations above.
4) If the weights don't converge, i.e., if after a reasonable amount of adaptation processing, errors continue to occur when testing the weights with the training set, remove the vectors that cause the errors, and repeat the adaptation with the diminished training vector set.
5) Once the weights have converged, convert the TLU support vector W to a unit vector.
6) Adjust each dimension of the unit vector until optimum separation between clusters is achieved. To do this, apply a small incremental amount 6 as follows:
4. Stop when δ becomes small enough to cause a negligible difference.
7)Once all dimensions have been adapted as above, save the final result as Dmax.
8) Repeat the above orthogonal vector process, starting again with the original TLU vectors and changing the sign of the original δ. Save the final TLU vector as Dmin.
9) Take the mean of Dmax and Dmin as the adjusted optimal TLU.
After training with the modified training algorithm in the invention, the weights wi remain fixed; i.e., the vector W does not change. This is implemented in the improved TLU 400 of
The threshold value T from signal 416 is used in the digital value comparison 418, which generates the detector output 424. However, the threshold value T depends on the previous m threshold outputs, which are stored in shift register Dn through Dn−m+1. The stored values are input in parallel to lookup table L that outputs the threshold T, which is subtracted from the value yn.
During training, the training set is divided according to the m known previous threshold outputs. For example, if m=5 the set is divided into 32 subsets (25=32 is the total possible number of combinations). The previous 5 bits might have been known, for example, to be (10011). Then all vectors where the categories of the previous 5 vectors were 1, 0, 0, 1, and 1 are placed in the (10011) subset. Each subset is trained individually. The vector W is obtained by averaging the 32 individual support vectors, and the 32 individual threshold values are entered into the threshold lookup table 422.
Error correcting parity check bits are added to the data bit sequence before transmission. As an example, assume that the bit sector including both data and parity bits is 1024 bits long. Let xn be the nth bit in the sequence, where x1 through x959 are data bits, and x960 through x1024 are the parity bits. The first parity check bit, x960, is chosen so that
x1⊕x65⊕x129⊕x193⊕ . . . ⊕x960=0 (1)
where ⊕ denotes modular 2 addition.
The rest of the parity check bits are chosen as follows:
This method will be called “non-random parity.”
In this example there are 64 parity bits per sector, or an overhead of approximately six percent. The 1024-bit sector is divided into 16 subsectors of 64 bits. The nth row of equations (2) contains the nth bit of the each subsector. For example, the second bit in the second sector is x66, which is in the second row of equations (2). If, for example, x66 and x67 are in error (a double error) parity checks alone cannot prove that the two errors are in the second bit position of sub sectors two and three. A double error at 15 other pairs (e.g., x194 and x195) will give the same parity check errors. Information from the outputs of detectors FT1, RT1 and RT2, along with the parity checks, is used to find the true error locations (x66 and X67).
Usually errors will occur in bursts at serial adjacent bit positions (typically three bits). A second set of parity bits can be added to lower the bit error rate. Instead of the nth bit of each subsection being contained in the nth row, the bits for this row are selected in random order with one bit from each subsector in each row. For example, the equations might be
where bits x960 through x1024 are added to make each row equal to zero. Furthermore, the bits are ordered so that no column contains successive bit positions, e.g., x66 and x67 cannot both appear in any one column. This assures that parity check when a double error occurs will indicate a double error only at the true location. Then parity checks for both methods will indicate a double error only at the true error location. This method will be called “random parity.”
Prior to the receiver input there is receiver noise and channel noise 708 which is shown added 710 to the incoming signal to the receiver 712, where the incoming signal and noise are filtered by bandpass filter F2714. The bandpass function of F2714 may be equal to the bandpass of F1706. The output of F2714 is input to the product detector 716 which multiplies the recovered carrier 715 against the incoming signal to perform baseband detection. The carrier recovery may be alternately performed with a separate input which is a phase reference that is also transmitted. Normally the phase of this reference will equal the reference of the transmitter in-phase component before modulation. The change in phase during transmission will equal the change in phase of the transmitted signal during transmission. The phase reference is usually derived from the receiver using phase locked loops and other prior art methods.
In the product detector 716, the phase reference 715 can be multiplied by the filter F2714 output and the product detector 714 may also include after detection a low pass filter which may have a bandwidth equal to the bandwidth of filter F2714. The output of the product detector 716 filter is input to the detection and error correction circuit 718.
Waveform 826 is the noiseless output from the product detector 716 of
The overall objective of the circuit of
Consider a data block size of 1024 samples. This size is assumed for illustration purposes only; it can be any practical number. As the samples are stored in memory 910, the detected outputs (1s and 0s) from FT1902 output 924 are stored in the detector output storage 912. Upon storage completion the stored samples are processed in the reverse direction by reverse TLU RT1904 and reverse TLU RT2906; the reverse processing order is 1024, 1023, . . . , 2, 1.
The reverse TLUs, RT1904 and RT2906, have a common set of weights W, and the weight multiplication and summing is done only once per sample, as was described for
Burst errors (more than one successive bit error) in FT1902 and RT2906 occur because the first error results in both an incorrect value stored in shift register SR1 and an incorrect value for the threshold, which may cause another error. If there is no error in the forward direction all the bits in the shift register of RT1904b will be correct and RT1 will not have burst errors when there is an error in the reverse direction, as illustrated in
A basic principle of forward-reverse processing is that an error burst will start with the first error. With high probability, samples other than this first error will not be corrupted by noise bursts, and therefore only a single signal sample will be corrupted. Therefore, if there are errors in both directions, there will be overlap only at the site of the corruption. The probability is very great that errors have occurred whenever the outputs from FT1902 and RT2906 are different. The parity bits are used to detect the overlapping bit error.
The input to the error-correction logic 920 is all binary and consists of outputs from FT1924 via storage memory 912, the detected outputs of RT1930 and RT2932, and the parity outputs from RPC1914, RPC1916, and RPC2918, respectively, as described earlier. Within the logic the differences at each bit position n are defined as
D11(n)=OFT1⊕ORT1
D12(n)=OFT1⊕ORT2
D22(n)=ORT1⊕ORT2
where OFT1 is the output of FT1, ORT1 is the output of RT1, and ORT2 is the output of RT2. The nine outputs OFT1, ORT1, ORT2, FC1, RC1, RC2, D11, D12, and D22 are then the logic inputs. The logic will output a 1 or a 0.
The logic can be implemented in several forms. One is a simple switching function or lookup table where the dimension of the binary input vector is nine and information about errors in adjacent bit intervals is not used. The maximum number of possible vector values is 512; however, experience has shown that approximately 300 of these vector values never occur.
A classification method is as follows. During training, many nine-dimensional vectors are generated and counts are made of both the number of times the correct bit value for each vector is 1 and the number of times the correct value is 0. For example, the correct value for vector (101011100) might be 1 96 times and 0 10 times. During testing, when this vector occurs the classification would be 1 because 1 was counted more frequently during training.
During training, almost always for a given vector either the 1 count is zero or the 0 count is zero. It is unusual for both counts to be greater than zero. When both are greater than zero and equal or when both counts equal 0 the classification is arbitrarily assigned a 1 or a 0.
One of several widely available switching-function generation programs can be used to determine the binary logic.
The BER can be reduced by using some of the nine input variables from bit intervals adjacent to the interval that is being tested. For example, at sample n
If D11(n)=1 AND D11(n−1)=0 AND D11(n+1)=0 then E=0, else E=1,
where E is the tenth input to the correction logic. This operation determines whether differences either side of n are zero.
Define
G1i=D11(n+i)
G2i=D11(n−i)
G3i=D12(n+i)
G4i=D12(n−i)
G5i=D22(n+i)
G6i=D22(n−i)
where n+i<1024 and n−i>0.
G1i, G2i, G3i, G4i. G5i, and G6i are additional elements in the vector input to the error correction logic.
For example, if i=1, there will be 16 inputs to the error correction logic because of the six additional inputs due to the G11 . . . G61. Then there are 216 (65 k) possible combinations. A set of samples with known signals can be used to generate the 16 inputs to determine which of the 64K are possible. Experience has shown that only a small fraction will occur.
Another form of the error correction logic that is practical for use when many adjacent bit intervals are included in the processing will now be described. It can be implemented using Boolean logic.
Error processing is done on one block of B bit positions at a time. For illustrative purposes it will be assumed that a block of B=1024 bit positions, 1 through 1024, have been processed by FT1 in the forward direction and 1024 outputs of FT1 are stored in the detector output storage. During reverse processing the RT1 and RT2 error correction is done on a segment of P consecutive bit positions, for a total of B/P segments. Let P=8 for this example, which results in 128 segments. For example, these positions could be numbers 1016, 1015, 1014, 1013, 1012, 1011, 1010 and 1009. The numbers for P and B (8 and 1024) are used for illustrative purposes only and any practical set can be used. All 1024 bit positions are contained in the 128 non-overlapping segments.
Additional Definitions of Variables
Definition of XV(1) . . . XV(12)
A difference between two TLU outputs is designated by the number 1 if the two outputs at a given bit position are not equal and by a 0 if they are equal. For example, if the output from FT1 is not the same as the output from RT1 at bit position 1012 then the difference D (FT1, RT1)=1.
The variables (XV(1), XV(2), . . . XV(12)) form a 12-bit binary number (the “processing result”); there are 212 or 4096 possible processing results. A set of signal and noise waveforms called training waveforms, where the correct bit value at each bit interval is known, is processed to generate the XV(n) for each bit interval. The number of times the correct value for each bit interval matches the FT1 output is counted (the “correct count”). The number of times the correct bit value does not match the FT1 output also is counted (the “incorrect count”). Typically less than 1000 of the 4096 numbers will occur during training, and only a small number (less than 1%) will have both counts greater than zero.
A lookup table is made as follows, with all possible processing results as input. For a given processing result, if the incorrect count is 0 and the correct count is greater then 0, a 1 is entered into the table. Likewise, if the correct count is 0 and the incorrect count is greater than 0, a 0 is entered. If both counts are 0 or both are not, a 2 is entered. For example, if the processing result was (10101110) and part of the time OFT1 was correct and part of the time OFT1 was in error, neither count would be 0, and therefore a 2 would be entered for vector (10101110).
Definition of YXOR
At a given bit position a parity check is made with non-random parity.
1. YXOR is 0 if
2. YXOR is 1 if
At a given bit position a parity check is made with non-random parity.
1. ZXOR is 0 if
2. ZXOR is 1 if
a. RT1 parity does not fail and RT2 parity fails
b. RT1 parity fails and RT2 parity does not fail
Definition of SA1, SA2, SA3 and SA4
At a given bit position a parity check is made with non-random parity.
SB1 is the number of times in the segment where D(FT1, RT1)=1.
Error Detection and Correction Logic
The logic for the ECC is diagrammed in
During the first stage of the error correction and detection the processing result is generated and the detection and correction proceed as follows:
1. Step 1104: For each bit in a segment the binary number (XV(1), XV(2), . . . , XV(12)) is generated (all the XV(n)=1 or 0 so inside the parentheses is a binary number). If the corresponding number in the lookup table is 1 the classification is the same as OFT1.
2. If the corresponding number is 0 then the classification is opposite OFT1; e.g., if OFT1=1 (step 1116) then the classification is 0 (step 1118).
3. Step 1112: If the corresponding number is 2, the flag is set and the classification at that bit position is not made (step 1114).
These processes are done for all bits in the segment (typically 8). If the flag is set 1122 the processing is continued as shown in
An important principle is as follows: All bits in the segment will be processed according to the logic shown in
For example, assume that there are 8 bits in the segment and that both correct and incorrect counts are greater than zero (the table entry is 2) for bits 4 and 5. Bits 1, 2, 3, 6, 7, and 8 have been classified with the lookup table according to their processing result. The flag has been set and, for example, that in the first decision box in
The remaining logic details will now be described.
6.1.1 (step 1172) Test: ZXOR=0 and RT1 parity not OK
Yes: go to C in
No: go to step 6.1.2 (step 1176)
6.1.2 Test: (step 1176) RT1 fails parity
The segment length for the remainder of the logic is standard and not extended.
Go to start (step 1102).
This application claims the benefit of U.S. Provisional Application No. 60/673,630 filed Apr. 21, 2005.
Number | Name | Date | Kind |
---|---|---|---|
5050186 | Gurcan et al. | Sep 1991 | A |
5268908 | Glover et al. | Dec 1993 | A |
5982741 | Ethier | Nov 1999 | A |
6269116 | Javerbring et al. | Jul 2001 | B1 |
6493398 | Erisman | Dec 2002 | B1 |
6608862 | Zangi et al. | Aug 2003 | B1 |
6751771 | Chuang et al. | Jun 2004 | B2 |
7006563 | Allpress et al. | Feb 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
60673630 | Apr 2005 | US |