Computing devices can utilize communication networks to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or to provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
To facilitate increased utilization of data center resources, virtualization technologies allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.
Generally described, aspects of the present disclosure relate to implementing escalation-resistant services via execution of code on an on-demand code execution system, which system may also be referred to as a “serverless” execution system. The on-demand code execution system enables rapid execution of source code, which may be supplied by users of the on-demand code execution system. In some instances, the code may be utilized to implement network services, such as backend processing for a user-facing application (e.g., a mobile device “app”). Because network services often handle sensitive or confidential information, it is typically desirable that such services be secured against malicious users. While a variety of malicious attacks exist with respect to network services, one particularly problematic category of attack is that of privilege escalation. Generally described, privilege escalation is the act of exploiting a bug, flaw, or oversight within a service that allows one user of the service to gain access to more resources of the service than was intended. For example, a successful privilege escalation may allow a first user to gain access to information of a second user, or to gain administrative privileges for a service. Because privilege escalation can result in loss of confidential information or even control of a service, a variety of attempts have been made to implement escalation-resistant network-services. In general, these attempts operate by limiting the ability of a user to escape their own set of privileges and gain privileges of other users of the service (or of the service itself). For example, a network-based service may operate to provide a database of information, and the service may be made escalation-resistant by attempting to limit each user's access to the database to their own information. One problem with such an approach is that the service is provided with greater privileges than any individual user, and is itself expected to limit the privileges of each user. Thus, vulnerabilities in the service allow for privilege escalations to occur. This paradigm may be considered a “necessary evil” in traditional services, as a service may be required to have greater privileges than any individual user in order to provide services to each individual user. However, with the advent of serverless code execution systems, it is now possible to execute request-driven services, such that an instance of a service is generated in response to a user's request to access the service. Because these instances are scoped to provide the service to an individual user associated with the request, the privileges of each service instance need be no larger than the privileges of the user requesting access to the service. Thus, by implementing the service with privileges scoped to those of the requesting user, privilege escalations can be prevented independent of operation of the service instance. In other words, even if a vulnerability existed within code of the service which allowed for a user to access privileges of a current instance of the service, if that instance has no more privileges than the user themselves, no privilege escalation would be possible. As will be discussed below, the present disclosure enables creation of such escalation-resistant network services on an on-demand code execution system.
The on-demand code execution system disclosed herein may enable users to create request-driven services, by submitting or designating computer-executable source code to be executed by virtual machine instances on the on-demand code execution system in response to user requests to access such services. Each set of code on the on-demand code execution system may define a “task,” and implement specific functionality corresponding to that task when executed on a virtual machine instance of the on-demand code execution system (e.g., functionality of a network-based service). Individual implementations of the task on the on-demand code execution system may be referred to as an “execution” of the task (or a “task execution”). The on-demand code execution system can further enable users to trigger execution of a task based on a variety of potential events, such as detecting new data at a network-based storage system, transmission of an application programming interface (“API”) call to the on-demand code execution system, or transmission of a specially formatted hypertext transport protocol (“HTTP”) packet to the on-demand code execution system. Thus, users may utilize the on-demand code execution system to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the on-demand code execution system may be configured to execute tasks in a rapid manner (e.g., in under 100 milliseconds [ms]), thus enabling execution of tasks in “real-time” (e.g., with little or no perceptible delay to an end user). To enable this rapid execution, the on-demand code execution system can include one or more virtual machine instances that are “pre-warmed” or pre-initialized (e.g., booted into an operating system and executing a complete or substantially complete runtime environment) and configured to enable execution of user-defined code, such that the code may be rapidly executed in response to a request to execute the code, without delay caused by initializing the virtual machine instance. Thus, when an execution of a task is triggered, the code corresponding to that task can be executed within a pre-initialized virtual machine in a very short amount of time.
To provide escalation-resistant services, tasks on the on-demand code execution system can be configured to be executed in execution environments with privileges scoped to those provided within a request to access the service. Illustratively, a user of a user device may pass authentication information within a request to access a network-based service implemented by a task on the on-demand code execution system. The on-demand code execution system, in response, can instantiate an execution of the task within an execution environment, and provision that execution environment with the authentication information of the requesting user (and potentially without other authentication information). In implementing the service, the task execution may inherit the authentication information of the user, thus limiting the ability of the task execution to take actions other than those allowed for the user. For example, where the task execution accesses a network-based database, the task execution may be configured to pass the user's authentication information to the database, and thus be limited in its interactions with the database to those portions of the database accessible to the user. For that reason, even if a vulnerability existed within the task which allowed a user (e.g., via a maliciously formatted request) to escalate their privileges to that of the service, the user would be unable to gain any privileges other than their own. (This is in contrast to operation of typical network-based services, which are generally given more privileges than individual users who access the service, and are thus vulnerability at least in theory to privilege escalation exploits.)
In one embodiment, the authentication information passed within a request to access a task-based service may include credentials of an accessing user, such as a username and password. In another embodiment, the authentication information passed within the request may be alternative information, such as an authentication token provided by an authentication service based on prior authentication with the service. The use of a token may be beneficial, for example, where such token also authorizes the user with privileges (e.g., access to specific resources or actions that may be taken by the user). For example, security tokens, which are generally known in the art, may be used to indicate that a user has been authenticated, and may be associated with authorizations of the user across multiple services. Other credentials, such as a username and password, may also be associated with authorizations of the user across multiple services; however, this is generally undesirable, as it is typically considered insecure to duplicate a username and password across multiple services.
As used in the present disclosure, authentication and authorization are separate concepts in security. Generally, authentication establishes the identity of a user (e.g., “I am User A”), while authorization establishes what privileges a user has (e.g., “User A may modify data X”). In one embodiment, a service instance (e.g., generated on an on-demand code execution system as a task execution) is scoped by passing authentication information to the instance based on the authentication information provided within the request to access the service, and authorizations of the user are enforced by systems external to the service. For example, an authorization agent of the on-demand code executions system may ensure that a user requesting to access a service is authorized to initiate execution of a task providing the service. Once executing, the service's access to other, auxiliary services may be limited by authorization agents executing on such auxiliary services. For example, a service implemented as a task execution may attempt to modify data stored within an auxiliary network-attached-storage (NAS) service, and in doing so pass to the NAS service the authentication information of a user whose request cause the task execution. The NAS service may include an authorization agent which verifies that the user identified by the authentication information is authorized to modify the data. As such, the task execution may not be required to provide any authorization control. In other words, an author of code executing on the on-demand code execution service may not be required to conduct any checks as to whether a requesting user has authorization to undertake any action via the execution of code. Instead, such authorization checks are implemented by the on-demand code execution system itself, and by third-party services with which the task interactions. This configuration may simplify creation of tasks on the on-demand code execution system, and reduce the possibility that users introduce bugs or vulnerabilities into those tasks. In other embodiments, a task execution may itself additionally or alternatively implement authorization with respect to user actions.
As will be appreciated by one of skill in the art in light of the present disclosure, the embodiments disclosed herein improves the ability of computing systems, such as on-demand code execution systems, to implement network-accessible services in a secure manner. Specifically, aspects of the present disclosure reduce the susceptibility of privilege escalation attacks on network-accessible services by enabling creation of service instances that are scoped to the authentication information used to request access to a service. Moreover, the presently disclosed embodiments address technical problems inherent within computing systems; specifically, the susceptibility of computing systems to malicious use and the difficulty of providing secure network-based services. These technical problems are addressed by the various technical solutions described herein, including the creation of scoped execution environments for services instances based on authentication information used to request access to a service. Thus, the present disclosure represents an improvement on existing code execution systems and computing systems in general.
The general execution of tasks on the on-demand code execution system will now be discussed. To execute tasks, the on-demand code execution system described herein may maintain a pool of pre-initialized virtual machine instances that are ready for use as soon as a user request is received. Due to the pre-initialized nature of these virtual machines, delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced, often to sub-100 millisecond levels. Illustratively, the on-demand code execution system may maintain a pool of virtual machine instances on one or more physical computing devices, where each virtual machine instance has one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. When the on-demand code execution system receives a request to execute the program code of a user (a “task”), which specifies one or more computing constraints for executing the program code of the user, the on-demand code execution system may select a virtual machine instance for executing the program code of the user based on the one or more computing constraints specified by the request and cause the program code of the user to be executed on the selected virtual machine instance. The program codes can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.
The on-demand code execution system may include a virtual machine instance manager configured to receive user code (threads, programs, etc., composed in any of a variety of programming languages) and execute the code in a highly scalable, low latency manner, without requiring user configuration of a virtual machine instance. Specifically, the virtual machine instance manager can, prior to receiving the user code and prior to receiving any information from a user regarding any particular virtual machine instance configuration, create and configure virtual machine instances according to a predetermined set of configurations, each corresponding to any one or more of a variety of run-time environments. Thereafter, the virtual machine instance manager receives user-initiated requests to execute code, and identifies a pre-configured virtual machine instance to execute the code based on configuration information associated with the request. The virtual machine instance manager can further allocate the identified virtual machine instance to execute the user's code at least partly by creating and configuring containers inside the allocated virtual machine instance, and provisioning the containers with code of the task as well as dependency code objects. Various embodiments for implementing a virtual machine instance manager and executing user code on virtual machine instances is described in more detail in U.S. Pat. No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION AND MESSAGE GENERATION FOR REQUESTS TO EXECUTE PROGRAM CODE” and filed Sep. 30, 2014 (“the '556 Patent”), the entirety of which is hereby incorporated by reference.
As used herein, the term “virtual machine instance” is intended to refer to an execution of software or other executable code that emulates hardware to provide an environment or platform on which software may execute (an “execution environment”). Virtual machine instances are generally executed by hardware devices, which may differ from the physical hardware emulated by the virtual machine instance. For example, a virtual machine may emulate a first type of processor and memory while being executed on a second type of processor and memory. Thus, virtual machines can be utilized to execute software intended for a first execution environment (e.g., a first operating system) on a physical device that is executing a second execution environment (e.g., a second operating system). In some instances, hardware emulated by a virtual machine instance may be the same or similar to hardware of an underlying device. For example, a device with a first type of processor may implement a plurality of virtual machine instances, each emulating an instance of that first type of processor. Thus, virtual machine instances can be used to divide a device into a number of logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine instances can generally provide a level of abstraction away from the hardware of an underlying physical device, this abstraction is not required. For example, assume a device implements a plurality of virtual machine instances, each of which emulate hardware identical to that provided by the device. Under such a scenario, each virtual machine instance may allow a software application to execute code on the underlying hardware without translation, while maintaining a logical separation between software applications running on other virtual machine instances. This process, which is generally referred to as “native execution,” may be utilized to increase the speed or performance of virtual machine instances. Other techniques that allow direct utilization of underlying hardware, such as hardware pass-through techniques, may be used, as well.
While a virtual machine executing an operating system is described herein as one example of an execution environment, other execution environments are also possible. For example, tasks or other processes may be executed within a software “container,” which provides a runtime environment without itself providing virtualization of hardware. Containers may be implemented within virtual machines to provide additional security, or may be run outside of a virtual machine instance.
The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following description, when taken in conjunction with the accompanying drawings.
By way of illustration, various example user computing devices 102 are shown in communication with the on-demand code execution system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop or tablet computer, personal computer, wearable computer, server, personal digital assistant (PDA), hybrid PDA/mobile phone, mobile phone, electronic book reader, set-top box, voice command device, camera, digital media player, and the like.
The on-demand code execution system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programing interfaces (API), and/or other programmatic interfaces for generating and uploading user-executable source code (e.g., including metadata identifying dependency code objects for the uploaded code), invoking the user-provided source code (e.g., submitting a request to execute the source code on the on-demand code execution system 110), scheduling event-based jobs or timed jobs, tracking the user-provided source code, and/or viewing other logging or monitoring information related to their requests and/or source code. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.
The illustrative environment 100 further includes one or more auxiliary services 106, which can interact with the one-demand code execution environment 110 to implement desired functionality on behalf of a user. Auxiliary services 106 can correspond to network-connected computing devices, such as servers, which generate data accessible to the one-demand code execution environment 110 or otherwise communicate to the on-demand code execution environment 110. For example, the auxiliary services 106 can include web services (e.g., associated with the user computing devices 102, with the on-demand code execution system 110, or with third parties), databases, really simple syndication (“RSS”) readers, social networking sites, or any other source of network-accessible service or data source. In some instances, auxiliary services 106 may be invoked by code execution on the on-demand code execution system 110, such as by API calls to the auxiliary services 106. One or more auxiliary services 106 may be associated with the on-demand code execution system 110, e.g., to provide billing or logging services to the on-demand code execution system 110. An auxiliary service 106 may actively transmit information, such as API calls or other task-triggering information, to the on-demand code execution system 110, or may be passive, such that data is made available for access by the on-demand code execution system 110. For example, components of the on-demand code execution system 110 may periodically poll such passive data sources, and trigger execution of tasks within the on-demand code execution system 110 based on the data provided. While depicted in
The illustrative environment 100 further includes an authentication service 170 configured to authenticate user computing devices 102. As noted above, authentication generally refers to a process of verifying the identity of a user. Thus, the authentication service 170 may include a number of components which allow a user to submit credentials or other identification information to the service 170, and to receive authentication information provided by the service 170 which establishes that the user has authenticated with the service 170. For example, the authentication service 170 may include a user interface 172 through which users may submit credentials or other identification information to the service 170. Credentials or identification information may include, by way of non-limiting example, usernames or passwords, secret keys, biometric information (e.g., fingerprints, facial or retinal scans, etc.), or cryptographic values (e.g., as generated by a physical security token). The user interface 172 may provide any number of different interfaces, such as GUIs, CLIs, or APIs through which such information may be provided. The authentication service 170 may verify the credentials or identification information based on information within an authorization data store 174. The authentication data store 174 may include, for example, authoritative versions of the credentials or identification information, or (and often preferably) non-credential information that can otherwise verify the credentials or identity information (e.g., a salted hash of a credential which does not itself disclose the credential). The authentication data store 174 may correspond to any persistent or substantially persistent data store, such as one or more of a hard disk drive (HDD), solid state drive (SSD), virtual disk drive, tape drive, network attached storage (NAS) device, or any other persistent or substantially persistent storage component. To allow for authentication to other network services, such as the on-demand code execution system, the authentication service 170 further includes a token generator 176. The token generator 176 may be configured to apply cryptographic techniques to generate a unique item of data (a “token”) which, when provided to a network service, authenticates a bearer of the token as a particular user of the authentication service 170. In some embodiments, the token may be associated with additional restrictions, such as a validity time. The generation of authentication tokens is known in the art, and thus will not be described in detail herein. While shown as distinct from on-demand code execution system 110, the authentication service 170 may additionally or alternative be implemented as part of the on-demand code execution system 110.
The user computing devices 102, auxiliary services 106, and authentication service 170 may communicate with the on-demand code execution system 110 via network 104, which may include any wired network, wireless network, or combination thereof. For example, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. As a further example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
The on-demand code execution system 110 is depicted in
Further, the on-demand code execution system 110 may be implemented directly in hardware or software executed by hardware devices and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers. In some instances, the one or more servers may operate as part of a system of rapidly provisioned and released computing resources, often referred to as a “cloud computing environment.”
In the example of
In
To enable interaction with the on-demand code execution system 110, the system 110 includes one or more frontends 120, which enable interaction with the on-demand code execution system 110. In an illustrative embodiment, the frontends 120 serve as a “front door” to the other services provided by the on-demand code execution system 110, enabling users (via user computing devices 102) to provide, request execution of, and view results of computer executable source code. The frontends 120 include a variety of components to enable interaction between the on-demand code execution system 110 and other computing devices. For example, each frontend 120 may include a request interface providing user computing devices 102 with the ability to upload or otherwise communication user-specified code to the on-demand code execution system 110 and to thereafter request execution of that code. In one embodiment, the request interface communicates with external computing devices (e.g., user computing devices 102, auxiliary services 106, authentication service 170, etc.) via a graphical user interface (GUI), CLI, or API. The frontends 120 process the requests and makes sure that the requests are properly authorized. For example, the frontends 120 may determine whether the user associated with the request (e.g., the user identified by authentication information within the request) is authorized to access the source code specified in the request.
References to source code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “source code,” “user code,” and “program code,” may be used interchangeably. Source code which has been compiled for execution on a specific device is generally referred to herein as “machine code.” Both “source code” and “machine code” are representations of the same instructions, which may be collectively referred to as “code.” Such code may be executed to achieve a specific function, for example, in connection with a particular web application or mobile application developed by the user. As noted above, individual collections of code (e.g., to achieve a specific function) are referred to herein as “tasks,” while specific executions of that code are referred to as “task executions” or simply “executions.” Source code for a task may be written, by way of non-limiting example, in JavaScript (e.g., node.js), Java, Python, and/or Ruby (and/or another programming language). Tasks may be “triggered” for execution on the on-demand code execution system 110 in a variety of manners. In one embodiment, a user or other computing device may transmit a request to execute a task may, which can generally be referred to as “call” to execute of the task. Such calls may include the source code (or the location thereof) to be executed and one or more arguments to be used for executing the source code. For example, a call may provide the source code of a task along with the request to execute the task. In another example, a call may identify a previously uploaded task by its name or an identifier. In yet another example, source code corresponding to a task may be included in a call for the task, as well as being uploaded in a separate location (e.g., storage of an auxiliary service 106 or a storage system internal to the on-demand code execution system 110) prior to the request being received by the on-demand code execution system 110. A request interface of the frontend 120 may receive calls to execute tasks as Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing a task. Any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing a task call to the request interface.
A call to execute a task may specify one or more third-party libraries (including native libraries) to be used along with the user code corresponding to the task. In one embodiment, the call may provide to the on-demand code execution system 110 a ZIP file containing the source code and any libraries (and/or identifications of storage locations thereof) corresponding to the task requested for execution. In some embodiments, the call includes metadata that indicates the source code of the task to be executed, the language in which the source code is written, the user associated with the call, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the source code. For example, the source code of a task may be provided with the call, previously uploaded by the user, provided by the on-demand code execution system 110 (e.g., standard routines), and/or provided by third parties. Illustratively, code not included within a call or previously uploaded by the user may be referenced within metadata of the task by use of a URI associated with the code. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular code) are specified for the particular task, and may not vary over each execution of the task. In such cases, the on-demand code execution system 110 may have access to such resource-level constraints before each individual call is received, and the individual call may not specify such resource-level constraints. In some embodiments, the call may specify other constraints such as permission data that indicates what kind of permissions or authorities that the call invokes to execute the task. Such permission data may be used by the on-demand code execution system 110 to access private resources (e.g., on a private network). In some embodiments, individual code sets may also be associated with permissions or authorizations. For example, a third party may submit a code object and designate the object as readable by only a subset of users. The on-demand code execution system 110 may include functionality to enforce these permissions or authorizations with respect to code sets.
In some embodiments, a call may specify the behavior that should be adopted for handling the call. In such embodiments, the call may include an indicator for enabling one or more execution modes in which to execute the task referenced in the call. For example, the call may include a flag or a header for indicating whether the task should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the task is provided back to the user (e.g., via a console user interface). In such an example, the on-demand code execution system 110 may inspect the call and look for the flag or the header, and if it is present, the on-demand code execution system 110 may modify the behavior (e.g., logging facilities) of the container in which the task is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the call by the user interface provided to the user by the on-demand code execution system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in a call.
To manage requests for code execution, the frontend 120 can include an execution queue (not shown in
As noted above, tasks may be triggered for execution at the on-demand code execution system 110 based on explicit calls from user computing devices 102 (e.g., as received at the request interface). Alternatively or additionally, tasks may be triggered for execution at the on-demand code execution system 110 based on data retrieved from one or more auxiliary services 106 or network-based data storage services 108. To facilitate interaction with auxiliary services 106, the frontend 120 can include a polling interface (not shown in
In addition to tasks executed based on explicit user calls and data from auxiliary services 106, the on-demand code execution system 110 may in some instances operate to trigger execution of tasks independently. For example, the on-demand code execution system 110 may operate (based on instructions from a user) to trigger execution of a task at each of a number of specified time intervals (e.g., every 10 minutes).
The frontend 120 can further includes an output interface (not shown in
In some embodiments, the on-demand code execution system 110 may include multiple frontends 120. In such embodiments, a load balancer (not shown in
To execute tasks, the on-demand code execution system 110 includes one or more warming pool managers 130, which “pre-warm” (e.g., initialize) virtual machine instances to enable tasks to be executed quickly, without the delay caused by initialization of the virtual machines. The on-demand code execution system 110 further includes one or more worker managers 140, which manage active virtual machine instances (e.g., currently assigned to execute tasks in response to task calls).
The warming pool managers 130 ensure that virtual machine instances are ready to be used by the worker managers 140 when the on-demand code execution system 110 detects an event triggering execution of a task on the on-demand code execution system 110. In the example illustrated in
As shown in
In some embodiments, the virtual machine instances in a warming pool 130A may be used to serve any user's calls. In one embodiment, all the virtual machine instances in a warming pool 130A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in a warming pool 130A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in a warming pool 130A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations. For example, one instance might have a container created therein for running code written in Python, and another instance might have a container created therein for running code written in Ruby.
The warming pool managers 130 may pre-configure the virtual machine instances in a warming pool 130A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by a user when defining a task. In one embodiment, the operating conditions may include program languages in which the potential source code of a task may be written. For example, such languages may include Java, JavaScript, Python, Ruby, and the like. In some embodiments, the set of languages that the source code of a task may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy calls to execute the task. For example, when the user is configuring a task via a user interface provided by the on-demand code execution system 110, the user interface may prompt the user to specify one of the predetermined operating conditions for executing the task. In another example, the service-level agreement (SLA) for utilizing the services provided by the on-demand code execution system 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that tasks should satisfy, and the on-demand code execution system 110 may assume that the tasks satisfy the set of conditions in handling the requests. In another example, operating conditions specified by a task may include: the amount of compute power to be used for executing the task; the type of triggering event for a task (e.g., an API call, HTTP packet transmission, detection of a specific data at an auxiliary service 106); the timeout for the task (e.g., threshold time after which an execution of the task may be terminated); and security policies (e.g., may control which instances in the warming pools 130A are usable by which user), among other specified conditions.
One or more worker managers 140 manage the instances used for servicing incoming calls to execute tasks. In the example illustrated in
As shown in
In the example illustrated in
Once a triggering event to execute a task has been successfully processed by a frontend 120, the frontend 120 passes a request to a worker manager 140 to execute the task. In one embodiment, each frontend 120 may be associated with a corresponding worker manager 140 (e.g., a worker manager 140 co-located or geographically nearby to the frontend 120) and thus, the frontend 120 may pass most or all requests to that worker manager 140. In another embodiment, a frontend 120 may include a location selector 126 configured to determine a worker manager 140 to which to pass the execution request. Illustratively, to assist in implementation of execution guarantees, the location selector 126 to select the same worker manager 140 to receive each call to a task to the same worker manager 140, such that the worker manager 140 can maintain an authoritative execution record for the task. In one embodiment, the location selector 126 may determine the worker manager 140 to receive a call based on hashing the call, and distributing the call to a worker manager 140 selected based on the hashed value (e.g., via a hash ring). Various other mechanisms for distributing calls between worker managers 140 will be apparent to one of skill in the art.
On receiving a request to execute a task, a worker manager 140 finds capacity to execute a task on the on-demand code execution system 110. For example, if there exists a particular virtual machine instance in the active pool 140A that has a container with the user code of the task already loaded therein (e.g., code 156D-1 shown in the container 156D), the worker manager 140 may assign the container to the task and cause the task to be executed in the container. Alternatively, if the user code of the task is available in the local cache of one of the virtual machine instances (e.g., codes 158G, 158H, which are stored on the instance 158 but do not belong to any individual containers), the worker manager 140 may create a new container on such an instance, assign the container to the task, and cause the user code of the task to be loaded and executed in the container.
If the worker manager 140 determines that the source code associated with the triggered task is not found on any of the instances (e.g., either in a container or the local cache of an instance) in the active pool 140A, the worker manager 140 may determine whether any of the instances in the active pool 140A is currently assigned to the user associated with the triggered task and has compute capacity to handle the triggered task. If there is such an instance, the worker manager 140 may create a new container on the instance and assign the container to execute the triggered task. Alternatively, the worker manager 140 may further configure an existing container on the instance assigned to the user, and assign the container to the triggered task. For example, the worker manager 140 may determine that the existing container may be used to execute the task if a particular library demanded by the task is loaded thereon. In such a case, the worker manager 140 may load the particular library and the code of the task onto the container and use the container to execute the task.
If the active pool 140 does not contain any instances currently assigned to the user, the worker manager 140 pulls a new virtual machine instance from the warming pool 130A, assigns the instance to the user associated with the triggered task, creates a new container on the instance, assigns the container to the triggered task, and causes the source code of the task to be downloaded and executed on the container.
In some embodiments, the on-demand code execution system 110 is adapted to begin execution of a task shortly after it is received (e.g., by the frontend 120). A time period can be determined as the difference in time between initiating execution of the task (e.g., in a container on a virtual machine instance associated with the user) and detecting an event that triggers execution of the task (e.g., a call received by the frontend 120). The on-demand code execution system 110 is adapted to begin execution of a task within a time period that is less than a predetermined duration. In one embodiment, the predetermined duration is 500 ms. In another embodiment, the predetermined duration is 300 ms. In another embodiment, the predetermined duration is 100 ms. In another embodiment, the predetermined duration is 50 ms. In another embodiment, the predetermined duration is 10 ms. In another embodiment, the predetermined duration may be any value chosen from the range of 10 ms to 500 ms. In some embodiments, the on-demand code execution system 110 is adapted to begin execution of a task within a time period that is less than a predetermined duration if one or more conditions are satisfied. For example, the one or more conditions may include any one of: (1) the source code of the task is loaded on a container in the active pool 140 at the time the request is received; (2) the source code of the task is stored in the code cache of an instance in the active pool 140 at the time the call to the task is received; (3) the active pool 140A contains an instance assigned to the user associated with the call at the time the call is received; or (4) the warming pool 130A has capacity to handle the task at the time the event triggering execution of the task is detected.
Once the worker manager 140 locates one of the virtual machine instances in the warming pool 130A that can be used to execute a task, the warming pool manager 130 or the worker manger 140 takes the instance out of the warming pool 130A and assigns it to the user associated with the request. The assigned virtual machine instance is taken out of the warming pool 130A and placed in the active pool 140A. In some embodiments, once the virtual machine instance has been assigned to a particular user, the same virtual machine instance cannot be used to execute tasks of any other user. This provides security benefits to users by preventing possible co-mingling of user resources. Alternatively, in some embodiments, multiple containers belonging to different users (or assigned to requests associated with different users) may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity.
In some embodiments, the on-demand code execution system 110 may maintain a separate cache in which code of tasks are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and the account data store 164 (or other network-based storage not shown in
After the task has been executed, the worker manager 140 may tear down the container used to execute the task to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional calls from the same user. For example, if another call associated with the same task that has already been loaded in the container, the call can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the code of the task in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the task was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional calls from the same user. The determination of whether to keep the container and/or the instance running after the task is done executing may be based on a threshold time, the type of the user, average task execution volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., task execution), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released. In some embodiments, the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.
In some embodiments, the on-demand code execution system 110 may provide data to one or more of the auxiliary services 106 as it executes tasks in response to triggering events. For example, the frontends 120 may communicate with the monitoring/logging/billing services included within the auxiliary services 106. The monitoring/logging/billing services may include: a monitoring service for managing monitoring information received from the on-demand code execution system 110, such as statuses of containers and instances on the on-demand code execution system 110; a logging service for managing logging information received from the on-demand code execution system 110, such as activities performed by containers and instances on the on-demand code execution system 110; and a billing service for generating billing information associated with executing user code on the on-demand code execution system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service). In addition to the system-level activities that may be performed by the monitoring/logging/billing services (e.g., on behalf of the on-demand code execution system 110), the monitoring/logging/billing services may provide application-level services on behalf of the tasks executed on the on-demand code execution system 110. For example, the monitoring/logging/billing services may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the tasks being executed on the on-demand code execution system 110.
In some embodiments, the worker managers 140 may perform health checks on the instances and containers managed by the worker managers 140 (e.g., those in a corresponding active pool 140A). For example, the health checks performed by a worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, a worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks. In other embodiments, the frequency of the health checks may be adjusted based on user requests. In some embodiments, a worker manager 140 may perform similar health checks on the instances and/or containers in a warming pool 130A. The instances and/or the containers in a warming pool 130A may be managed either together with those instances and containers in an active pool 140A or separately. In some embodiments, in the case where the health of the instances and/or the containers in a warming pool 130A is managed separately from an active pool 140A, a warming pool manager 130, instead of a worker manager 140, may perform the health checks described above on the instances and/or the containers in a warming pool 130A.
In the depicted example, virtual machine instances (“instances”) 152, 154 are shown in a warming pool 130A managed by a warming pool manager 130, and instances 156, 158 are shown in an active pool 140A managed by a worker manager 140. The illustration of the various components within the on-demand code execution system 110 is logical in nature and one or more of the components can be implemented by a single computing device or multiple computing devices. For example, the instances 152, 154, 156, 158 can be implemented on one or more physical computing devices in different various geographic regions. Similarly, each frontend 120, warming pool manager 130, and worker manager 140 can be implemented across multiple physical computing devices. Alternatively, one or more of a frontend 120, a warming pool manager 130, and a worker manager 140 can be implemented on a single physical computing device. Although four virtual machine instances are shown in the example of
In accordance with embodiments of the present disclosure, the worker manager 140 can be configured to generate execution environments (e.g., VM instances, containers, etc.) scoped to the privileges of a user requesting execution of a task on the system 110 (e.g., to create an instance of a network-based service). In one embodiment, scoping the privileges of an execution environment may include passing authentication information received within a request to execute a task into the execution environment, such that the execution environment is limited in it's access to other network-based services to those which are accessible based on the passed authentication information. This mechanism of passing authentication information can effectively limit the scope of privileges of an environment, particularly in instances where the ability of a task execution to cause permanent modifications to the on-demand code execution system 110 or other systems is limited. For example, where local modifications to the execution environment are not persisted at the system 110 (which in one embodiment of the system 110 they are not), then no local authorization need by conducted at the system 110 with respect to the environment. However, in some embodiments, it may be desirable for the worker manager 140 to additionally implement authorization at the system 110 based on authentication information passed within a request which causes execution of the code in the environment. For example, where a user attempts to access a task-based service implemented in an environment of the system 110, the worker manager 140 may limit the abilities of the environment to match privileges of the user, based on authentication information in the request to access the service. Illustratively, where the user (identified based on authentication information) has no privileges to write to a hard disk drive of the environment, the worker manager 140 may implement the environment such that no code executing within the environment may right to a hard disk drive of the environment, or the worker manager 140 may implement the environment without a hard disk drive. Thus, even if vulnerabilities were to exist within code executing a service, those vulnerabilities could not be exploited to gain access to additional privileges.
The memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure. The memory 180 generally includes random access memory (RAM), read only memory (ROM) and/or other persistent, auxiliary or non-transitory computer readable media. The memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the worker manager 140. The memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
In addition to and/or in combination with the user interface unit 182, the memory 180 may include an instance allocation unit 186 and a user code execution unit 188 that may be executed by the processing unit 190. In one embodiment, the user interface unit 182, instance allocation unit 186, and user code execution unit 188 individually or collectively implement various aspects of the present disclosure, e.g., finding compute capacity (e.g., a container) to be used for executing user code, causing the user code to be loaded and executed on the container, etc.
The instance allocation unit 186 finds the compute capacity to be used for servicing a request to execute user code. For example, the instance allocation unit 186 identifies a virtual machine instance and/or a container that satisfies any constraints specified by the request and assigns the identified virtual machine instance and/or container to the user or the request itself. The instance allocation unit 186 may perform such identification based on the programming language in which the user code is written. For example, if the user code is written in Python, and the instance allocation unit 186 may find a virtual machine instance (e.g., in the warming pool 130A of
The user code execution unit 188 manages the execution of the program code specified by the request of the user once a particular virtual machine instance has been assigned to the user associated with the request and a container on the particular virtual machine instance has been assigned to the request. If the code is pre-loaded in a container on the virtual machine instance assigned to the user, the code is simply executed in the container. If the code is available via a network storage (e.g., an auxiliary service 106 of
In addition, the memory further includes an authentication provisioning unit 189, which executed by the processing unit 190 enables the worker manager 140 to scope an execution environment's privileges based on authentication information passed within a request which causes execution of a task within the environment. The authentication provisioning unit 189 may scope the environment's privileges, for example, by passing to the environment the authentication information of the request, and potentially be excluding the environment from accessing other authentication information (such as authentication information of a user who created a task, which user may be distinct from a user who submits a request to access a service implemented as an execution a task). The authentication provisioning unit 189 may further scope the privileges of an execution environment may limiting the ability of the environment to take actions on the system 110. Illustratively, the authentication provisioning unit 189 may, during initialization of an environment, scope the abilities of the environment based on privileges associated with authentication information passed within a request to execute code within the environment. As such, code executing within the environment may not be required to conduct authentication or authorization, negating the possibility of vulnerabilities within such code.
While the instance allocation unit 186, the user code execution unit 188, and authentication provisioning unit 189 are shown in
In some embodiments, the worker manager 140 may further include components other than those illustrated in
With reference to
The interactions of
At (2), the authentication service 170 authenticates the user device 102, by verifying that the information within the authentication request matches or otherwise corresponds to information stored at the authentication service 170. For example, the authentication service 170 may confirm that cryptographic hash within the request matches a hash stored at the service 170. Thereafter, the authentication service 170 generates authentication information for the user device 102, which may be passed to other services to indicate that the user device 102 has authenticated with the authentication service 170 as a particular identity (e.g., a given user). In one embodiment, the authentication information is a “token”—a secret data value (likely cryptographic). The token may be associated with various restrictions, such as a time period during which the token is valid. At (4), the authentication service 170 returns the authentication information to the user device 102 such that the user device 102 may present the authentication information to other services in order to authenticate with such services.
Thereafter, the user device 102, at (5), transmits a request to the on-demand code execution system 110 to access a service implemented by a task executing on the system 110. The request may be generated, for example, based on software executing on the user device 102. In one embodiment, the request is an HTTP request. The request illustratively includes the authentication information provided to the user device 102 by the authentication service 170 (e.g., as an authentication token), which the system 110 can utilize to generate an escalation-resistant instance of the requested service.
Specifically, at (6), the frontend 120 of the system 110 transmits to a worker manager 140 instructions to execute a task corresponding to the requested service, using the authentication information. The task may be identified, for example, based on information within the request (e.g., a URL to which the request was transmitted). While not shown in
At (7), the worker manager 140 generates an execution environment 302 scoped to the authentication information provided by the user device 102. The execution environment 302 may be, for example, a virtual machine instance or a container. In one embodiment, generation of a scoped execution environment 302 may include passing the authentication information to the execution environment 302, and ensuring that the execution environment 302 does not have access to other authentication information (e.g., of other users, of an administrator, etc.). For example, if the worker manager 140 elects to reuse an execution environment 302 previously created for another user, the worker manager 140 may wipe a memory location of the execution environment 302 associated with authentication information of the other user, and place within that location the authentication information of the requesting user device 120. Thus, the execution environment 302 may be prevented from using authentication information other than that provided within the request. In other embodiments, the worker manager 140 may additionally or alternatively set privileges of the execution environment 302 based on the authentication information passed from the user device 120. For example, the worker manager 140 may access privileges previously associated with the authentication information (or a user identified by such information), and generate an execution environment 302 with those privileges. Illustratively, if a user identified by authentication information is restricted from making persistent changes to an execution environment, the worker manager 140 may configured the execution environment 302 such that changes to the execution environment 302 made during execution of the task on behalf of the user are discarded by a host system (e.g., a hypervisor or host OS).
Thereafter, at (8), code of the task executes within the scoped execution environment. Illustratively, the task execution may utilize the information of the request to undertake some action on behalf of the user device 102. In doing so the task execution may, for example, access one or more other network services, and authenticate itself with such other network services. In a conventional service implementation, the information used to authenticate one service with another is typically broader than the authentication information passed to the first service. For example, a data processing service may authenticate itself to a database service and gain privileges through such authentication to modify an entire table in the service. The data processing service may then modify only a portion of that table required to service a given user request. However, if a vulnerability exists in the code of the data processing service, it is conceivable that a specifically crafted request may allow a user to modify other portions of the table, to which the data processing service has privileges but the user does not, resulting in privilege escalation. In contrast to this model, the scoped execution environment 302 of
While the interactions of
Moreover, while the request of
With reference to
The interactions of
While the privileges of the scoped execution environment 302 would be limited to those of a calling user, in some embodiments, it may be desirable for calls from the scoped execution environment 302 to be further restricted. For example, it may be desirable to prevent a task executing within a scoped execution environment 302 from itself accessing the service implemented by the environment 302, or to prevent other services called by the task execution from gaining the full authentication information of a user who called the service as implemented in the environment 302. As such, the call from the environment 302 may be intercepted by the worker manager 140 (e.g., via configuration of a host for the scoped execution environment 302). Thereafter, at (2), the authentication information included within the call may be scoped down by the worker manager 140, to further restrict the privileges to which the authentication information provides access. In one embodiment, privileges may be scoped down based on authorizations of a user identified within the authentication information of the environment 302. For example, a creator of a task which implements a service may specify that instances of that service, executing on behalf of individual users, are disallowed from invoking additional instances of the service on the system 110. Thus, the worker manager 140 may remove portions of the authentication information that authenticate the user with the system 110 from any calls issued from the scoped execution environment 302 (which has inherited the authorization of a calling user). Accordingly, any attempt to call for an additional instance of the service from the scoped execution environment 302 is expected to fail, as authentication information for the system 110 would be removed from such a call. In one embodiment, scoping down of authentication information may be accomplished by removing a portion of the authentication information associated with a service which the scoped environment 3021 is disallowed from calling.
After scoping down the authentication information, the worker manager 140, at (3), transmits the call to an original destination (e.g., an auxiliary service 106) including the scoped down authentication information. The auxiliary service 106 in turn, at (3), determines the environment 302 authorization to access the service 106 based on the scoped down authentication information, and returns a response to the call based on the determined authorization, at (4). As noted above, because the authentication information passed within the call to the auxiliary service 106 provides no greater privileges than those of the user for which the environment 302 was created, the call to the auxiliary service 106 should similarly be limited to accessing privileges available to that user. In this manner, task executing within the scoped execution environment 302 provides an escalation-resistant service.
With reference to
The routine 500 begins at block 502, where a request is received at the system 100 to access a service implemented by execution of a task on the system 110. The request includes or otherwise specifies authentication information for a user who wishes to access the service. In one embodiment, the authentication information is an authentication token, such as may be issued by the authentication service 170.
At block 504, the system 110 generates an execution environment, such as a virtual machine instance or container, which has privileges scoped to those of the user identified by the authentication information. Scoping of privileges for an environment may include, for example, ensuring that the environment has only the authentication information of the request to access the service, and thus may not authenticate itself as another entity (e.g., another user, administrator, etc.). Scoping of the privileges for the environment may further include limiting the abilities of any code executing within the environment to undertake actions other than those authorized based on the authentication information. For example, scoping the privileges of the environment may include limiting a type of data which can be transmitted from the environment (e.g., based on network protocol) to those types of data allowed based on authentication information.
At block 506, code of the task implementing the service is executed within the scoped environment, in order to provide an escalation-resistant instance of the service. Specifically, because the privileges of the environment are limited to those of a user accessing the instance of the service, it is expected that the code executing the service will be unable to take actions other than authorized under those privileges, even if vulnerabilities in that code were to exist. Thus, the instance of the service can be considered escalation-resistant.
At block 508, implementation of the routine 500 varies according to whether additional requests to access the service are received. As noted above, the system 110 in some instances may function to maintain an execution environment in which a task can execute for some period of time after an execution of the task completes. In this manner, the system 110 can better utilize resources, by reducing the need to create new execution environments. However, in such an instance, if authentication information is persisted across task executions, a later execution of a task may be able to obtain privileges associated with a prior execution. For this reason, if additional service requests are obtained and are to be serviced by a task execution of an existing execution environment, the routine 500 continues to block 510, where existing authentication information (e.g., passed in a prior request to access the service) is removed from the execution environment. The routine 500 then returns to block 504, where the execution environment is scoped to the authentication information provided by a subsequent request to access the service. The routine 500 may continue in the above manner until no additional calls to access the service are received, at which point the routine 500 can end at block 512.
While the routine 500 is described above sequentially, it may be desirable in some instances for a service to handle multiple concurrent requests. The traditional model for doing so is to provide a service instance with sufficient privileges to service requests from multiple clients, which privileges are typically at least a superset of the privileges of each client who concurrently requests the service. This traditional model generally leaves a service vulnerable at least in theory to privilege escalation attacks. To maintain an escalation-resistant service while enabling concurrent handling of user requests, embodiments of the present disclosure may implement multiple instances of the routine 500 concurrently, such that individual concurrent users are serviced by isolated service instances, each scoped to the privileges of a respective individual user.
While embodiments of the present disclosure are described with respect to execution environments whose privileges are scoped to those of individual users, some embodiments may enable service instances to be implemented on execution environments whose privileges are scoped to the privileges of a group of users, between which a lesser security for privilege escalation is acceptable. For example, two service instances may be provided to handle requests for users within two organizations, respectively. Each service instance may obtain privileges scoped to their respective organizations. Thus, each service instance may be said to be escalation resistant with respect to privileges of the other organization. Grouping of users in this manner may increase the efficiency of implementation of a service on the system 110, since multiple user requests could be handled concurrently within a single service instance. However, the greater scope of privileges of a service instance may leave a possibility of privilege escalation within that scope of privileges.
All of the methods and processes described above may be embodied in, and fully automated via, software code modules executed by one or more computers or processors. The code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.
Conditional language such as, among others, “can,” “could,” “might” or “may,” unless specifically stated otherwise, are otherwise understood within the context as used in general to present that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Disjunctive language such as the phrase “at least one of X, Y or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y or Z, or any combination thereof (e.g., X, Y and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y or at least one of Z to each be present.
Unless otherwise explicitly stated, articles such as ‘a’ or ‘an’ should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.
Any routine descriptions, elements or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or elements in the routine. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, or executed out of order from that shown or discussed, including substantially synchronously or in reverse order, depending on the functionality involved as would be understood by those skilled in the art.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4949254 | Shorter | Aug 1990 | A |
5283888 | Dao et al. | Feb 1994 | A |
5835764 | Platt et al. | Nov 1998 | A |
5970488 | Crowe et al. | Oct 1999 | A |
5983197 | Enta | Nov 1999 | A |
6237005 | Griffin | May 2001 | B1 |
6260058 | Hoenninger et al. | Jul 2001 | B1 |
6385636 | Suzuki | May 2002 | B1 |
6463509 | Teoman et al. | Oct 2002 | B1 |
6501736 | Smolik et al. | Dec 2002 | B1 |
6523035 | Fleming et al. | Feb 2003 | B1 |
6549936 | Hirabayashi | Apr 2003 | B1 |
6708276 | Yarsa et al. | Mar 2004 | B1 |
7036121 | Casabona et al. | Apr 2006 | B1 |
7308463 | Taulbee et al. | Dec 2007 | B2 |
7340522 | Basu et al. | Mar 2008 | B1 |
7558719 | Donlin | Jul 2009 | B1 |
7577722 | Khandekar et al. | Aug 2009 | B1 |
7590806 | Harris et al. | Sep 2009 | B2 |
7665090 | Tormasov et al. | Feb 2010 | B1 |
7707579 | Rodriguez | Apr 2010 | B2 |
7730464 | Trowbridge | Jun 2010 | B2 |
7774191 | Berkowitz et al. | Aug 2010 | B2 |
7823186 | Pouliot | Oct 2010 | B2 |
7831464 | Nichols et al. | Nov 2010 | B1 |
7870153 | Croft et al. | Jan 2011 | B2 |
7886021 | Scheifler et al. | Feb 2011 | B2 |
7949677 | Croft et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
8010679 | Low et al. | Aug 2011 | B2 |
8010990 | Ferguson et al. | Aug 2011 | B2 |
8024564 | Bassani et al. | Sep 2011 | B2 |
8046765 | Cherkasova et al. | Oct 2011 | B2 |
8051180 | Mazzaferri et al. | Nov 2011 | B2 |
8051266 | DeVal et al. | Nov 2011 | B2 |
8065676 | Sahai et al. | Nov 2011 | B1 |
8065682 | Baryshnikov et al. | Nov 2011 | B2 |
8095931 | Chen et al. | Jan 2012 | B1 |
8127284 | Meijer et al. | Feb 2012 | B2 |
8146073 | Sinha | Mar 2012 | B2 |
8166304 | Murase et al. | Apr 2012 | B2 |
8171473 | Lavin | May 2012 | B2 |
8201026 | Bornstein et al. | Jun 2012 | B1 |
8209695 | Pruyne et al. | Jun 2012 | B1 |
8219987 | Vlaovic et al. | Jul 2012 | B1 |
8296267 | Cahill et al. | Oct 2012 | B2 |
8321554 | Dickinson | Nov 2012 | B2 |
8321558 | Sirota et al. | Nov 2012 | B1 |
8336079 | Budko et al. | Dec 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8387075 | McCann et al. | Feb 2013 | B1 |
8392558 | Ahuja et al. | Mar 2013 | B1 |
8417723 | Lissack | Apr 2013 | B1 |
8429282 | Ahuja | Apr 2013 | B1 |
8448165 | Conover | May 2013 | B1 |
8479195 | Adams | Jul 2013 | B2 |
8490088 | Tang | Jul 2013 | B2 |
8555281 | Van Dijk et al. | Oct 2013 | B1 |
8560699 | Theimer et al. | Oct 2013 | B1 |
8566835 | Wang et al. | Oct 2013 | B2 |
8601323 | Tsantilis | Dec 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8615589 | Adogla et al. | Dec 2013 | B1 |
8631130 | Jackson | Jan 2014 | B2 |
8667471 | Wintergerst et al. | Mar 2014 | B2 |
8677359 | Cavage et al. | Mar 2014 | B1 |
8694996 | Cawlfield et al. | Apr 2014 | B2 |
8700768 | Benari | Apr 2014 | B2 |
8719415 | Sirota et al. | May 2014 | B1 |
8725702 | Raman et al. | May 2014 | B1 |
8756322 | Lynch | Jun 2014 | B1 |
8756696 | Miller | Jun 2014 | B1 |
8769519 | Leitman et al. | Jul 2014 | B2 |
8793676 | Quinn et al. | Jul 2014 | B2 |
8799236 | Azari et al. | Aug 2014 | B1 |
8799879 | Wright et al. | Aug 2014 | B2 |
8806468 | Meijer et al. | Aug 2014 | B2 |
8806644 | McCorkendale et al. | Aug 2014 | B1 |
8819679 | Agarwal et al. | Aug 2014 | B2 |
8825863 | Hansson et al. | Sep 2014 | B2 |
8825964 | Sopka et al. | Sep 2014 | B1 |
8839035 | Dimitrovich et al. | Sep 2014 | B1 |
8850432 | Mcgrath et al. | Sep 2014 | B2 |
8869300 | Singh et al. | Oct 2014 | B2 |
8874952 | Tameshige et al. | Oct 2014 | B2 |
8904008 | Calder et al. | Dec 2014 | B2 |
8966495 | Kulkarni | Feb 2015 | B2 |
8972980 | Banga | Mar 2015 | B2 |
8997093 | Dimitrov | Mar 2015 | B2 |
9027087 | Ishaya et al. | May 2015 | B2 |
9038068 | Engle et al. | May 2015 | B2 |
9052935 | Rajaa | Jun 2015 | B1 |
9086897 | Oh et al. | Jul 2015 | B2 |
9086924 | Barsness et al. | Jul 2015 | B2 |
9092837 | Bala et al. | Jul 2015 | B2 |
9098528 | Wang | Aug 2015 | B2 |
9110732 | Forschmiedt et al. | Aug 2015 | B1 |
9110770 | Raju et al. | Aug 2015 | B1 |
9111037 | Nalis et al. | Aug 2015 | B1 |
9112813 | Jackson | Aug 2015 | B2 |
9116733 | Banga | Aug 2015 | B2 |
9141410 | Leafe et al. | Sep 2015 | B2 |
9146764 | Wagner | Sep 2015 | B1 |
9152406 | De et al. | Oct 2015 | B2 |
9164754 | Pohlack | Oct 2015 | B1 |
9183019 | Kruglick | Nov 2015 | B2 |
9208007 | Harper et al. | Dec 2015 | B2 |
9218190 | Anand et al. | Dec 2015 | B2 |
9223561 | Orveillon et al. | Dec 2015 | B2 |
9223966 | Satish et al. | Dec 2015 | B1 |
9250893 | Blahaerath et al. | Feb 2016 | B2 |
9268586 | Voccio et al. | Feb 2016 | B2 |
9298633 | Zhao et al. | Mar 2016 | B1 |
9317689 | Aissi | Apr 2016 | B2 |
9323556 | Wagner | Apr 2016 | B2 |
9361145 | Wilson et al. | Jun 2016 | B1 |
9413626 | Reque et al. | Aug 2016 | B2 |
9417918 | Chin | Aug 2016 | B2 |
9436555 | Dornemann et al. | Sep 2016 | B2 |
9461996 | Hayton et al. | Oct 2016 | B2 |
9471775 | Wagner | Oct 2016 | B1 |
9471776 | Gu | Oct 2016 | B2 |
9483335 | Wagner et al. | Nov 2016 | B1 |
9489227 | Oh et al. | Nov 2016 | B2 |
9497136 | Ramarao et al. | Nov 2016 | B1 |
9501345 | Lietz et al. | Nov 2016 | B1 |
9514037 | Dow et al. | Dec 2016 | B1 |
9537788 | Reque et al. | Jan 2017 | B2 |
9563613 | Dinkel et al. | Feb 2017 | B1 |
9575798 | Terayama et al. | Feb 2017 | B2 |
9588790 | Wagner et al. | Mar 2017 | B1 |
9594590 | Hsu | Mar 2017 | B2 |
9596350 | Dymshyts et al. | Mar 2017 | B1 |
9600312 | Wagner et al. | Mar 2017 | B2 |
9613127 | Rus et al. | Apr 2017 | B1 |
9626204 | Banga | Apr 2017 | B1 |
9628332 | Bruno, Jr. et al. | Apr 2017 | B2 |
9635132 | Lin et al. | Apr 2017 | B1 |
9652306 | Wagner et al. | May 2017 | B1 |
9652617 | Evans et al. | May 2017 | B1 |
9654508 | Barton et al. | May 2017 | B2 |
9661011 | Van Horenbeeck et al. | May 2017 | B1 |
9678773 | Wagner et al. | Jun 2017 | B1 |
9678778 | Youseff | Jun 2017 | B1 |
9703681 | Taylor et al. | Jul 2017 | B2 |
9715402 | Wagner et al. | Jul 2017 | B2 |
9720661 | Gschwind | Aug 2017 | B2 |
9720662 | Gschwind | Aug 2017 | B2 |
9727725 | Wagner et al. | Aug 2017 | B2 |
9733967 | Wagner et al. | Aug 2017 | B2 |
9760387 | Wagner et al. | Sep 2017 | B2 |
9760443 | Tarasuk-Levin et al. | Sep 2017 | B2 |
9767271 | Ghose | Sep 2017 | B2 |
9785476 | Wagner et al. | Oct 2017 | B2 |
9787779 | Frank et al. | Oct 2017 | B2 |
9811363 | Wagner | Nov 2017 | B1 |
9811434 | Wagner | Nov 2017 | B1 |
9817695 | Clark | Nov 2017 | B2 |
9830175 | Wagner | Nov 2017 | B1 |
9830193 | Wagner et al. | Nov 2017 | B1 |
9830449 | Wagner | Nov 2017 | B1 |
9864636 | Patel et al. | Jan 2018 | B1 |
9898393 | Moorthi | Feb 2018 | B2 |
9910713 | Wisniewski et al. | Mar 2018 | B2 |
9921864 | Singaravelu et al. | Mar 2018 | B2 |
9928108 | Wagner et al. | Mar 2018 | B1 |
9929916 | Subramanian et al. | Mar 2018 | B1 |
9930103 | Thompson | Mar 2018 | B2 |
9930133 | Susarla et al. | Mar 2018 | B2 |
9952896 | Wagner et al. | Apr 2018 | B2 |
9977691 | Marriner et al. | May 2018 | B2 |
9979817 | Huang et al. | May 2018 | B2 |
9983982 | Kumar et al. | May 2018 | B1 |
10002026 | Wagner | Jun 2018 | B1 |
10013267 | Wagner et al. | Jul 2018 | B1 |
10042660 | Wagner et al. | Aug 2018 | B2 |
10048974 | Wagner et al. | Aug 2018 | B1 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10067801 | Wagner | Sep 2018 | B1 |
10102040 | Marriner et al. | Oct 2018 | B2 |
10108443 | Wagner et al. | Oct 2018 | B2 |
10139876 | Lu et al. | Nov 2018 | B2 |
10140137 | Wagner | Nov 2018 | B2 |
10146635 | Chai et al. | Dec 2018 | B1 |
10162655 | Tuch | Dec 2018 | B2 |
10162672 | Wagner et al. | Dec 2018 | B2 |
10162688 | Wagner | Dec 2018 | B2 |
10191861 | Steinberg | Jan 2019 | B1 |
10193839 | Tandon | Jan 2019 | B2 |
10203990 | Wagner et al. | Feb 2019 | B2 |
10248467 | Wisniewski et al. | Apr 2019 | B2 |
10255090 | Tuch | Apr 2019 | B2 |
10277708 | Wagner | Apr 2019 | B2 |
10303492 | Wagner et al. | May 2019 | B1 |
10331462 | Varda et al. | Jun 2019 | B1 |
10346625 | Anderson | Jul 2019 | B2 |
10353678 | Wagner | Jul 2019 | B1 |
10353746 | Reque et al. | Jul 2019 | B2 |
10360025 | Foskett | Jul 2019 | B2 |
10360067 | Wagner | Jul 2019 | B1 |
10365985 | Wagner | Jul 2019 | B2 |
10387177 | Wagner et al. | Aug 2019 | B2 |
10402231 | Marriner et al. | Sep 2019 | B2 |
10423158 | Hadlich | Sep 2019 | B1 |
10437629 | Wagner et al. | Oct 2019 | B2 |
10445140 | Sagar et al. | Oct 2019 | B1 |
10459822 | Gondi | Oct 2019 | B1 |
10503626 | Idicula et al. | Dec 2019 | B2 |
10528390 | Brooker et al. | Jan 2020 | B2 |
10531226 | Wang et al. | Jan 2020 | B1 |
10552193 | Wagner et al. | Feb 2020 | B2 |
10564946 | Wagner et al. | Feb 2020 | B1 |
10572375 | Wagner | Feb 2020 | B1 |
10592269 | Wagner et al. | Mar 2020 | B2 |
10608973 | Kuo | Mar 2020 | B2 |
10623476 | Thompson | Apr 2020 | B2 |
10637817 | Kuo | Apr 2020 | B2 |
10649749 | Brooker et al. | May 2020 | B1 |
10649792 | Kulchytskyy et al. | May 2020 | B1 |
10650156 | Anderson | May 2020 | B2 |
10691498 | Wagner | Jun 2020 | B2 |
10713080 | Brooker et al. | Jul 2020 | B1 |
10719367 | Kim et al. | Jul 2020 | B1 |
10725752 | Wagner et al. | Jul 2020 | B1 |
10725826 | Sagar et al. | Jul 2020 | B1 |
10733085 | Wagner | Aug 2020 | B1 |
10754701 | Wagner | Aug 2020 | B1 |
10776091 | Wagner et al. | Sep 2020 | B1 |
10776171 | Wagner et al. | Sep 2020 | B2 |
10817331 | Mullen et al. | Oct 2020 | B2 |
10824484 | Wagner et al. | Nov 2020 | B2 |
10831898 | Wagner | Nov 2020 | B1 |
10846117 | Steinberg | Nov 2020 | B1 |
10853112 | Wagner et al. | Dec 2020 | B2 |
10853115 | Mullen et al. | Dec 2020 | B2 |
10884722 | Brooker et al. | Jan 2021 | B2 |
10884787 | Wagner et al. | Jan 2021 | B1 |
10884802 | Wagner et al. | Jan 2021 | B2 |
10884812 | Brooker et al. | Jan 2021 | B2 |
10891145 | Wagner et al. | Jan 2021 | B2 |
10915371 | Wagner et al. | Feb 2021 | B2 |
20010044817 | Asano et al. | Nov 2001 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020172273 | Baker et al. | Nov 2002 | A1 |
20030071842 | King et al. | Apr 2003 | A1 |
20030084434 | Ren | May 2003 | A1 |
20030149801 | Kushnirskiy | Aug 2003 | A1 |
20030191795 | Bernardin et al. | Oct 2003 | A1 |
20030229794 | James, II et al. | Dec 2003 | A1 |
20040003087 | Chambliss et al. | Jan 2004 | A1 |
20040019886 | Berent et al. | Jan 2004 | A1 |
20040044721 | Song et al. | Mar 2004 | A1 |
20040049768 | Matsuyama et al. | Mar 2004 | A1 |
20040098154 | McCarthy | May 2004 | A1 |
20040158551 | Santosuosso | Aug 2004 | A1 |
20040205493 | Simpson et al. | Oct 2004 | A1 |
20040249947 | Novaes et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050027611 | Wharton | Feb 2005 | A1 |
20050044301 | Vasilevsky et al. | Feb 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050132167 | Longobardi | Jun 2005 | A1 |
20050132368 | Sexton et al. | Jun 2005 | A1 |
20050149535 | Frey et al. | Jul 2005 | A1 |
20050193113 | Kokusho et al. | Sep 2005 | A1 |
20050193283 | Reinhardt et al. | Sep 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257051 | Richard | Nov 2005 | A1 |
20060010440 | Anderson | Jan 2006 | A1 |
20060015740 | Kramer | Jan 2006 | A1 |
20060080678 | Bailey et al. | Apr 2006 | A1 |
20060123066 | Jacobs et al. | Jun 2006 | A1 |
20060129684 | Datta | Jun 2006 | A1 |
20060155800 | Matsumoto | Jul 2006 | A1 |
20060168174 | Gebhart et al. | Jul 2006 | A1 |
20060184669 | Vaidyanathan et al. | Aug 2006 | A1 |
20060200668 | Hybre et al. | Sep 2006 | A1 |
20060212332 | Jackson | Sep 2006 | A1 |
20060218601 | Michel | Sep 2006 | A1 |
20060242647 | Kimbrel et al. | Oct 2006 | A1 |
20060242709 | Seinfeld | Oct 2006 | A1 |
20060248195 | Toumura et al. | Nov 2006 | A1 |
20060259763 | Cooperstein | Nov 2006 | A1 |
20060288120 | Hoshino et al. | Dec 2006 | A1 |
20070033085 | Johnson | Feb 2007 | A1 |
20070050779 | Hayashi | Mar 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070101325 | Bystricky et al. | May 2007 | A1 |
20070112864 | Ben-Natan | May 2007 | A1 |
20070130341 | Ma | Jun 2007 | A1 |
20070174419 | O'Connell et al. | Jul 2007 | A1 |
20070180449 | Croft et al. | Aug 2007 | A1 |
20070180450 | Croft et al. | Aug 2007 | A1 |
20070180493 | Croft et al. | Aug 2007 | A1 |
20070186212 | Mazzaferri et al. | Aug 2007 | A1 |
20070192082 | Gaos et al. | Aug 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070198656 | Mazzaferri et al. | Aug 2007 | A1 |
20070199000 | Shekhel et al. | Aug 2007 | A1 |
20070220009 | Morris et al. | Sep 2007 | A1 |
20070226700 | Gal et al. | Sep 2007 | A1 |
20070240160 | Paterson-Jones | Oct 2007 | A1 |
20070255604 | Seelig | Nov 2007 | A1 |
20080028409 | Cherkasova et al. | Jan 2008 | A1 |
20080052401 | Bugenhagen et al. | Feb 2008 | A1 |
20080052725 | Stoodley et al. | Feb 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080104247 | Venkatakrishnan et al. | May 2008 | A1 |
20080104608 | Hyser et al. | May 2008 | A1 |
20080115143 | Shimizu et al. | May 2008 | A1 |
20080126110 | Haeberle et al. | May 2008 | A1 |
20080126486 | Heist | May 2008 | A1 |
20080127125 | Anckaert et al. | May 2008 | A1 |
20080147893 | Marripudi et al. | Jun 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080195369 | Duyanovich et al. | Aug 2008 | A1 |
20080201568 | Quinn et al. | Aug 2008 | A1 |
20080201711 | Amir Husain | Aug 2008 | A1 |
20080209423 | Hirai | Aug 2008 | A1 |
20080244547 | Wintergerst et al. | Oct 2008 | A1 |
20080288940 | Adams | Nov 2008 | A1 |
20090006897 | Sarsfield | Jan 2009 | A1 |
20090013153 | Hilton | Jan 2009 | A1 |
20090025009 | Brunswig et al. | Jan 2009 | A1 |
20090055810 | Kondur | Feb 2009 | A1 |
20090055829 | Gibson | Feb 2009 | A1 |
20090070355 | Cadarette et al. | Mar 2009 | A1 |
20090077569 | Appleton et al. | Mar 2009 | A1 |
20090125902 | Ghosh et al. | May 2009 | A1 |
20090158275 | Wang et al. | Jun 2009 | A1 |
20090158407 | Nicodemus et al. | Jun 2009 | A1 |
20090177860 | Zhu et al. | Jul 2009 | A1 |
20090183162 | Kindel et al. | Jul 2009 | A1 |
20090193410 | Arthursson et al. | Jul 2009 | A1 |
20090198769 | Keller et al. | Aug 2009 | A1 |
20090204960 | Ben-yehuda et al. | Aug 2009 | A1 |
20090204964 | Foley et al. | Aug 2009 | A1 |
20090222922 | Sidiroglou et al. | Sep 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090300151 | Friedman et al. | Dec 2009 | A1 |
20090300599 | Piotrowski | Dec 2009 | A1 |
20090307430 | Bruening | Dec 2009 | A1 |
20100023940 | Iwamatsu et al. | Jan 2010 | A1 |
20100031274 | Sim-Tang | Feb 2010 | A1 |
20100031325 | Maigne et al. | Feb 2010 | A1 |
20100036925 | Haffner | Feb 2010 | A1 |
20100037031 | DeSantis et al. | Feb 2010 | A1 |
20100058342 | Machida | Mar 2010 | A1 |
20100058351 | Yahagi | Mar 2010 | A1 |
20100064299 | Kacin et al. | Mar 2010 | A1 |
20100070678 | Zhang et al. | Mar 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100083048 | Calinoiu et al. | Apr 2010 | A1 |
20100083248 | Wood et al. | Apr 2010 | A1 |
20100094816 | Groves, Jr. et al. | Apr 2010 | A1 |
20100106926 | Kandasamy et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100115098 | De Baer et al. | May 2010 | A1 |
20100122343 | Ghosh | May 2010 | A1 |
20100131936 | Cheriton | May 2010 | A1 |
20100131959 | Spiers et al. | May 2010 | A1 |
20100186011 | Magenheimer | Jul 2010 | A1 |
20100198972 | Umbehocker | Aug 2010 | A1 |
20100199285 | Medovich | Aug 2010 | A1 |
20100257116 | Mehta et al. | Oct 2010 | A1 |
20100257269 | Clark | Oct 2010 | A1 |
20100269109 | Cartales | Oct 2010 | A1 |
20100299541 | Ishikawa et al. | Nov 2010 | A1 |
20100312871 | Desantis et al. | Dec 2010 | A1 |
20100325727 | Neystadt et al. | Dec 2010 | A1 |
20100329149 | Singh et al. | Dec 2010 | A1 |
20100329643 | Kuang | Dec 2010 | A1 |
20110010690 | Howard et al. | Jan 2011 | A1 |
20110010722 | Matsuyama | Jan 2011 | A1 |
20110023026 | Oza | Jan 2011 | A1 |
20110029970 | Arasaratnam | Feb 2011 | A1 |
20110029984 | Norman et al. | Feb 2011 | A1 |
20110040812 | Phillips | Feb 2011 | A1 |
20110055378 | Ferris et al. | Mar 2011 | A1 |
20110055396 | DeHaan | Mar 2011 | A1 |
20110055683 | Jiang | Mar 2011 | A1 |
20110078679 | Bozek et al. | Mar 2011 | A1 |
20110099204 | Thaler | Apr 2011 | A1 |
20110099551 | Fahrig et al. | Apr 2011 | A1 |
20110131572 | Elyashev et al. | Jun 2011 | A1 |
20110134761 | Smith | Jun 2011 | A1 |
20110141124 | Halls et al. | Jun 2011 | A1 |
20110153541 | Koch et al. | Jun 2011 | A1 |
20110153727 | Li | Jun 2011 | A1 |
20110153838 | Belkine et al. | Jun 2011 | A1 |
20110154353 | Theroux et al. | Jun 2011 | A1 |
20110173637 | Brandwine et al. | Jul 2011 | A1 |
20110179162 | Mayo et al. | Jul 2011 | A1 |
20110184993 | Chawla et al. | Jul 2011 | A1 |
20110225277 | Freimuth et al. | Sep 2011 | A1 |
20110231680 | Padmanabhan et al. | Sep 2011 | A1 |
20110247005 | Benedetti et al. | Oct 2011 | A1 |
20110258603 | Wisnovsky et al. | Oct 2011 | A1 |
20110265067 | Schulte et al. | Oct 2011 | A1 |
20110265164 | Lucovsky | Oct 2011 | A1 |
20110271276 | Ashok et al. | Nov 2011 | A1 |
20110276945 | Chasman et al. | Nov 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110296412 | Banga | Dec 2011 | A1 |
20110314465 | Smith et al. | Dec 2011 | A1 |
20110321033 | Kelkar et al. | Dec 2011 | A1 |
20110321051 | Rastogi | Dec 2011 | A1 |
20120011496 | Shimamura | Jan 2012 | A1 |
20120011511 | Horvitz et al. | Jan 2012 | A1 |
20120016721 | Weinman | Jan 2012 | A1 |
20120041970 | Ghosh et al. | Feb 2012 | A1 |
20120054744 | Singh et al. | Mar 2012 | A1 |
20120072762 | Atchison et al. | Mar 2012 | A1 |
20120072914 | Ota | Mar 2012 | A1 |
20120072920 | Kawamura | Mar 2012 | A1 |
20120079004 | Herman | Mar 2012 | A1 |
20120096271 | Ramarathinam et al. | Apr 2012 | A1 |
20120096468 | Chakravorty et al. | Apr 2012 | A1 |
20120102307 | Wong | Apr 2012 | A1 |
20120102333 | Wong | Apr 2012 | A1 |
20120102481 | Mani et al. | Apr 2012 | A1 |
20120102493 | Allen et al. | Apr 2012 | A1 |
20120110155 | Adlung et al. | May 2012 | A1 |
20120110164 | Frey et al. | May 2012 | A1 |
20120110570 | Jacobson et al. | May 2012 | A1 |
20120110588 | Bieswanger et al. | May 2012 | A1 |
20120131379 | Tameshige et al. | May 2012 | A1 |
20120144290 | Goldman et al. | Jun 2012 | A1 |
20120166624 | Suit et al. | Jun 2012 | A1 |
20120192184 | Burckart et al. | Jul 2012 | A1 |
20120197795 | Campbell et al. | Aug 2012 | A1 |
20120197958 | Nightingale et al. | Aug 2012 | A1 |
20120198442 | Kashyap et al. | Aug 2012 | A1 |
20120198514 | McCune | Aug 2012 | A1 |
20120204164 | Castanos et al. | Aug 2012 | A1 |
20120209947 | Glaser | Aug 2012 | A1 |
20120222038 | Katragadda et al. | Aug 2012 | A1 |
20120233464 | Miller et al. | Sep 2012 | A1 |
20120324236 | Srivastava et al. | Dec 2012 | A1 |
20120331113 | Jain et al. | Dec 2012 | A1 |
20130014101 | Ballani et al. | Jan 2013 | A1 |
20130042234 | DeLuca et al. | Feb 2013 | A1 |
20130054804 | Jana et al. | Feb 2013 | A1 |
20130054927 | Raj et al. | Feb 2013 | A1 |
20130055262 | Lubsey et al. | Feb 2013 | A1 |
20130061208 | Tsao et al. | Mar 2013 | A1 |
20130061212 | Krause et al. | Mar 2013 | A1 |
20130061220 | Gnanasambandam et al. | Mar 2013 | A1 |
20130067484 | Sonoda et al. | Mar 2013 | A1 |
20130067494 | Srour et al. | Mar 2013 | A1 |
20130080641 | Lui et al. | Mar 2013 | A1 |
20130091387 | Bohnet et al. | Apr 2013 | A1 |
20130097601 | Podvratnik et al. | Apr 2013 | A1 |
20130111032 | Alapati et al. | May 2013 | A1 |
20130111469 | B et al. | May 2013 | A1 |
20130124807 | Nielsen et al. | May 2013 | A1 |
20130132942 | Wang | May 2013 | A1 |
20130132953 | Chuang et al. | May 2013 | A1 |
20130139152 | Chang et al. | May 2013 | A1 |
20130139166 | Zhang et al. | May 2013 | A1 |
20130145354 | Bruening | Jun 2013 | A1 |
20130151587 | Takeshima et al. | Jun 2013 | A1 |
20130151648 | Luna | Jun 2013 | A1 |
20130151684 | Forsman et al. | Jun 2013 | A1 |
20130152047 | Moorthi | Jun 2013 | A1 |
20130167147 | Corrie et al. | Jun 2013 | A1 |
20130179574 | Calder et al. | Jul 2013 | A1 |
20130179881 | Calder et al. | Jul 2013 | A1 |
20130179894 | Calder et al. | Jul 2013 | A1 |
20130179895 | Calder et al. | Jul 2013 | A1 |
20130185719 | Kar et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191924 | Tedesco | Jul 2013 | A1 |
20130198319 | Shen et al. | Aug 2013 | A1 |
20130198743 | Kruglick | Aug 2013 | A1 |
20130198748 | Sharp et al. | Aug 2013 | A1 |
20130198763 | Kunze et al. | Aug 2013 | A1 |
20130205092 | Roy et al. | Aug 2013 | A1 |
20130219390 | Lee et al. | Aug 2013 | A1 |
20130227097 | Yasuda et al. | Aug 2013 | A1 |
20130227534 | Ike et al. | Aug 2013 | A1 |
20130227563 | McGrath | Aug 2013 | A1 |
20130227641 | White | Aug 2013 | A1 |
20130227710 | Barak et al. | Aug 2013 | A1 |
20130232190 | Miller et al. | Sep 2013 | A1 |
20130232480 | Winterfeldt et al. | Sep 2013 | A1 |
20130239125 | Iorio | Sep 2013 | A1 |
20130246944 | Pandiyan et al. | Sep 2013 | A1 |
20130262556 | Xu et al. | Oct 2013 | A1 |
20130263117 | Konik et al. | Oct 2013 | A1 |
20130274006 | Hudlow et al. | Oct 2013 | A1 |
20130275376 | Hudlow et al. | Oct 2013 | A1 |
20130275958 | Ivanov et al. | Oct 2013 | A1 |
20130275969 | Dimitrov | Oct 2013 | A1 |
20130275975 | Masuda et al. | Oct 2013 | A1 |
20130283141 | Stevenson et al. | Oct 2013 | A1 |
20130283176 | Hoole et al. | Oct 2013 | A1 |
20130290538 | Gmach et al. | Oct 2013 | A1 |
20130291087 | Kailash et al. | Oct 2013 | A1 |
20130297964 | Hegdal et al. | Nov 2013 | A1 |
20130298183 | McGrath et al. | Nov 2013 | A1 |
20130311650 | Brandwine et al. | Nov 2013 | A1 |
20130326506 | McGrath et al. | Dec 2013 | A1 |
20130326507 | McGrath et al. | Dec 2013 | A1 |
20130339950 | Ramarathinam et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20130346946 | Pinnix | Dec 2013 | A1 |
20130346952 | Huang et al. | Dec 2013 | A1 |
20130346964 | Nobuoka et al. | Dec 2013 | A1 |
20130346987 | Raney et al. | Dec 2013 | A1 |
20130346994 | Chen et al. | Dec 2013 | A1 |
20130347095 | Barjatiya et al. | Dec 2013 | A1 |
20140007097 | Chin et al. | Jan 2014 | A1 |
20140019523 | Heymann et al. | Jan 2014 | A1 |
20140019735 | Menon et al. | Jan 2014 | A1 |
20140019965 | Neuse et al. | Jan 2014 | A1 |
20140019966 | Neuse et al. | Jan 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140040857 | Trinchini et al. | Feb 2014 | A1 |
20140040880 | Brownlow et al. | Feb 2014 | A1 |
20140058871 | Marr et al. | Feb 2014 | A1 |
20140059209 | Alnoor | Feb 2014 | A1 |
20140059226 | Messerli et al. | Feb 2014 | A1 |
20140059552 | Cunningham et al. | Feb 2014 | A1 |
20140068568 | Wisnovsky | Mar 2014 | A1 |
20140068608 | Kulkarni | Mar 2014 | A1 |
20140068611 | McGrath et al. | Mar 2014 | A1 |
20140073300 | Leeder et al. | Mar 2014 | A1 |
20140081984 | Sitsky et al. | Mar 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082201 | Shankari et al. | Mar 2014 | A1 |
20140101643 | Inoue | Apr 2014 | A1 |
20140101649 | Kamble et al. | Apr 2014 | A1 |
20140108722 | Lipchuk et al. | Apr 2014 | A1 |
20140109087 | Jujare et al. | Apr 2014 | A1 |
20140109088 | Dournov et al. | Apr 2014 | A1 |
20140129667 | Ozawa | May 2014 | A1 |
20140130040 | Lemanski | May 2014 | A1 |
20140137110 | Engle et al. | May 2014 | A1 |
20140173614 | Konik et al. | Jun 2014 | A1 |
20140173616 | Bird et al. | Jun 2014 | A1 |
20140180862 | Certain et al. | Jun 2014 | A1 |
20140189677 | Curzi et al. | Jul 2014 | A1 |
20140189704 | Narvaez et al. | Jul 2014 | A1 |
20140201735 | Kannan et al. | Jul 2014 | A1 |
20140207912 | Thibeault | Jul 2014 | A1 |
20140214752 | Rash et al. | Jul 2014 | A1 |
20140215073 | Dow et al. | Jul 2014 | A1 |
20140229221 | Shih et al. | Aug 2014 | A1 |
20140245297 | Hackett | Aug 2014 | A1 |
20140279581 | Devereaux | Sep 2014 | A1 |
20140280325 | Krishnamurthy et al. | Sep 2014 | A1 |
20140282418 | Wood et al. | Sep 2014 | A1 |
20140282559 | Verduzco et al. | Sep 2014 | A1 |
20140282615 | Cavage et al. | Sep 2014 | A1 |
20140282629 | Gupta et al. | Sep 2014 | A1 |
20140283045 | Brandwine et al. | Sep 2014 | A1 |
20140289286 | Gusak | Sep 2014 | A1 |
20140298295 | Overbeck | Oct 2014 | A1 |
20140304246 | Helmich et al. | Oct 2014 | A1 |
20140304698 | Chigurapati et al. | Oct 2014 | A1 |
20140304815 | Maeda | Oct 2014 | A1 |
20140317617 | O'Donnell | Oct 2014 | A1 |
20140337953 | Banatwala et al. | Nov 2014 | A1 |
20140344457 | Bruno, Jr. et al. | Nov 2014 | A1 |
20140344736 | Ryman et al. | Nov 2014 | A1 |
20140359093 | Raju et al. | Dec 2014 | A1 |
20140365781 | Dmitrienko | Dec 2014 | A1 |
20140372489 | Jaiswal | Dec 2014 | A1 |
20140372533 | Fu et al. | Dec 2014 | A1 |
20140380085 | Rash et al. | Dec 2014 | A1 |
20150033241 | Jackson et al. | Jan 2015 | A1 |
20150039891 | Ignatchenko et al. | Feb 2015 | A1 |
20150040229 | Chan et al. | Feb 2015 | A1 |
20150046926 | Kenchammana-Hosekote et al. | Feb 2015 | A1 |
20150052258 | Johnson et al. | Feb 2015 | A1 |
20150058914 | Yadav | Feb 2015 | A1 |
20150067019 | Balko | Mar 2015 | A1 |
20150067830 | Johansson et al. | Mar 2015 | A1 |
20150074659 | Madsen et al. | Mar 2015 | A1 |
20150074661 | Kothari et al. | Mar 2015 | A1 |
20150074662 | Saladi et al. | Mar 2015 | A1 |
20150081885 | Thomas et al. | Mar 2015 | A1 |
20150095822 | Feis et al. | Apr 2015 | A1 |
20150106805 | Melander et al. | Apr 2015 | A1 |
20150120928 | Gummaraju et al. | Apr 2015 | A1 |
20150121391 | Wang | Apr 2015 | A1 |
20150134626 | Theimer et al. | May 2015 | A1 |
20150135287 | Medeiros et al. | May 2015 | A1 |
20150142747 | Zou | May 2015 | A1 |
20150142952 | Bragstad et al. | May 2015 | A1 |
20150143374 | Banga | May 2015 | A1 |
20150143381 | Chin | May 2015 | A1 |
20150154046 | Farkas et al. | Jun 2015 | A1 |
20150161384 | Gu | Jun 2015 | A1 |
20150163231 | Sobko et al. | Jun 2015 | A1 |
20150178110 | Li et al. | Jun 2015 | A1 |
20150186129 | Apte et al. | Jul 2015 | A1 |
20150188775 | Van Der Walt et al. | Jul 2015 | A1 |
20150199218 | Wilson et al. | Jul 2015 | A1 |
20150205596 | Hiltegen et al. | Jul 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150229645 | Keith et al. | Aug 2015 | A1 |
20150235144 | Gusev et al. | Aug 2015 | A1 |
20150242225 | Muller et al. | Aug 2015 | A1 |
20150254248 | Burns et al. | Sep 2015 | A1 |
20150256621 | Noda et al. | Sep 2015 | A1 |
20150261578 | Greden et al. | Sep 2015 | A1 |
20150264014 | Budhani et al. | Sep 2015 | A1 |
20150269494 | Kardes et al. | Sep 2015 | A1 |
20150289220 | Kim et al. | Oct 2015 | A1 |
20150309923 | Iwata et al. | Oct 2015 | A1 |
20150319160 | Ferguson et al. | Nov 2015 | A1 |
20150324174 | Bromley et al. | Nov 2015 | A1 |
20150324182 | Barros et al. | Nov 2015 | A1 |
20150324229 | Valine | Nov 2015 | A1 |
20150332048 | Mooring et al. | Nov 2015 | A1 |
20150332195 | Jue | Nov 2015 | A1 |
20150334173 | Coulmeau et al. | Nov 2015 | A1 |
20150350701 | Lemus et al. | Dec 2015 | A1 |
20150356294 | Tan et al. | Dec 2015 | A1 |
20150363181 | Alberti et al. | Dec 2015 | A1 |
20150363304 | Nagamalla et al. | Dec 2015 | A1 |
20150370560 | Tan et al. | Dec 2015 | A1 |
20150370591 | Tuch | Dec 2015 | A1 |
20150370592 | Tuch | Dec 2015 | A1 |
20150371244 | Neuse et al. | Dec 2015 | A1 |
20150378762 | Saladi et al. | Dec 2015 | A1 |
20150378764 | Sivasubramanian et al. | Dec 2015 | A1 |
20150378765 | Singh et al. | Dec 2015 | A1 |
20150379167 | Griffith et al. | Dec 2015 | A1 |
20160011901 | Hurwitz et al. | Jan 2016 | A1 |
20160012099 | Tuatini et al. | Jan 2016 | A1 |
20160019081 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019082 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019536 | Ortiz et al. | Jan 2016 | A1 |
20160026486 | Abdallah | Jan 2016 | A1 |
20160048606 | Rubinstein et al. | Feb 2016 | A1 |
20160070714 | D'Sa et al. | Mar 2016 | A1 |
20160072727 | Leafe et al. | Mar 2016 | A1 |
20160077901 | Roth et al. | Mar 2016 | A1 |
20160092251 | Wagner | Mar 2016 | A1 |
20160092320 | Baca | Mar 2016 | A1 |
20160092493 | Ko et al. | Mar 2016 | A1 |
20160098285 | Davis et al. | Apr 2016 | A1 |
20160100036 | Lo et al. | Apr 2016 | A1 |
20160103739 | Huang et al. | Apr 2016 | A1 |
20160117163 | Fukui et al. | Apr 2016 | A1 |
20160117254 | Susarla et al. | Apr 2016 | A1 |
20160124665 | Jain et al. | May 2016 | A1 |
20160124978 | Nithrakashyap et al. | May 2016 | A1 |
20160140180 | Park et al. | May 2016 | A1 |
20160150053 | Janczuk et al. | May 2016 | A1 |
20160191420 | Nagarajan et al. | Jun 2016 | A1 |
20160203219 | Hoch et al. | Jul 2016 | A1 |
20160212007 | Alatorre et al. | Jul 2016 | A1 |
20160226955 | Moorthi et al. | Aug 2016 | A1 |
20160282930 | Ramachandran et al. | Sep 2016 | A1 |
20160285906 | Fine et al. | Sep 2016 | A1 |
20160292016 | Bussard et al. | Oct 2016 | A1 |
20160294614 | Searle et al. | Oct 2016 | A1 |
20160306613 | Busi et al. | Oct 2016 | A1 |
20160315910 | Kaufman | Oct 2016 | A1 |
20160350099 | Suparna et al. | Dec 2016 | A1 |
20160357536 | Firlik et al. | Dec 2016 | A1 |
20160364265 | Cao et al. | Dec 2016 | A1 |
20160364316 | Bhat et al. | Dec 2016 | A1 |
20160371127 | Antony et al. | Dec 2016 | A1 |
20160371156 | Merriman | Dec 2016 | A1 |
20160378449 | Khazanchi et al. | Dec 2016 | A1 |
20160378547 | Brouwer et al. | Dec 2016 | A1 |
20160378554 | Gummaraju et al. | Dec 2016 | A1 |
20170004169 | Merrill et al. | Jan 2017 | A1 |
20170041144 | Krapf et al. | Feb 2017 | A1 |
20170041309 | Ekambaram et al. | Feb 2017 | A1 |
20170060615 | Thakkar et al. | Mar 2017 | A1 |
20170060621 | Whipple et al. | Mar 2017 | A1 |
20170068574 | Cherkasova et al. | Mar 2017 | A1 |
20170075749 | Ambichl et al. | Mar 2017 | A1 |
20170083381 | Cong et al. | Mar 2017 | A1 |
20170085447 | Chen et al. | Mar 2017 | A1 |
20170085591 | Ganda et al. | Mar 2017 | A1 |
20170093684 | Jayaraman et al. | Mar 2017 | A1 |
20170093920 | Ducatel et al. | Mar 2017 | A1 |
20170134519 | Chen et al. | May 2017 | A1 |
20170149740 | Mansour et al. | May 2017 | A1 |
20170161059 | Wood et al. | Jun 2017 | A1 |
20170177854 | Gligor | Jun 2017 | A1 |
20170188213 | Nirantar et al. | Jun 2017 | A1 |
20170230262 | Sreeramoju et al. | Aug 2017 | A1 |
20170230499 | Mumick et al. | Aug 2017 | A1 |
20170249130 | Smiljamic et al. | Aug 2017 | A1 |
20170264681 | Apte et al. | Sep 2017 | A1 |
20170272462 | Kraemer et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286187 | Chen et al. | Oct 2017 | A1 |
20170308520 | Beahan, Jr. et al. | Oct 2017 | A1 |
20170315163 | Wang et al. | Nov 2017 | A1 |
20170329578 | Iscen | Nov 2017 | A1 |
20170346808 | Anzai et al. | Nov 2017 | A1 |
20170353851 | Gonzalez et al. | Dec 2017 | A1 |
20170364345 | Fontoura et al. | Dec 2017 | A1 |
20170371703 | Wagner | Dec 2017 | A1 |
20170371706 | Wagner | Dec 2017 | A1 |
20170371720 | Basu et al. | Dec 2017 | A1 |
20170371724 | Wagner et al. | Dec 2017 | A1 |
20170372142 | Bilobrov | Dec 2017 | A1 |
20180004555 | Ramanathan et al. | Jan 2018 | A1 |
20180004556 | Marriner et al. | Jan 2018 | A1 |
20180004572 | Wagner | Jan 2018 | A1 |
20180004575 | Marriner et al. | Jan 2018 | A1 |
20180046453 | Nair et al. | Feb 2018 | A1 |
20180046482 | Karve et al. | Feb 2018 | A1 |
20180060132 | Maru et al. | Mar 2018 | A1 |
20180060221 | Yim et al. | Mar 2018 | A1 |
20180060318 | Yang et al. | Mar 2018 | A1 |
20180067841 | Mahimkar | Mar 2018 | A1 |
20180067873 | Pikhur | Mar 2018 | A1 |
20180081717 | Li | Mar 2018 | A1 |
20180089232 | Spektor et al. | Mar 2018 | A1 |
20180095738 | Dürkop et al. | Apr 2018 | A1 |
20180121245 | Wagner et al. | May 2018 | A1 |
20180121665 | Anderson | May 2018 | A1 |
20180129684 | Wilson et al. | May 2018 | A1 |
20180143865 | Wagner et al. | May 2018 | A1 |
20180150339 | Pan et al. | May 2018 | A1 |
20180152401 | Tandon | May 2018 | A1 |
20180152405 | Kuo | May 2018 | A1 |
20180152406 | Kuo | May 2018 | A1 |
20180192101 | Bilobrov | Jul 2018 | A1 |
20180225096 | Mishra et al. | Aug 2018 | A1 |
20180239636 | Arora et al. | Aug 2018 | A1 |
20180253333 | Gupta | Sep 2018 | A1 |
20180268130 | Ghosh | Sep 2018 | A1 |
20180275987 | Vandeputte | Sep 2018 | A1 |
20180285101 | Yahav et al. | Oct 2018 | A1 |
20180300111 | Bhat et al. | Oct 2018 | A1 |
20180309819 | Thompson | Oct 2018 | A1 |
20180314845 | Anderson | Nov 2018 | A1 |
20180341504 | Kissell | Nov 2018 | A1 |
20190004866 | Du et al. | Jan 2019 | A1 |
20190028552 | Johnson, II | Jan 2019 | A1 |
20190043231 | Uzgin et al. | Feb 2019 | A1 |
20190072529 | Andrawes et al. | Mar 2019 | A1 |
20190079751 | Foskett | Mar 2019 | A1 |
20190102231 | Wagner | Apr 2019 | A1 |
20190108058 | Wagner et al. | Apr 2019 | A1 |
20190140831 | De Lima Junior et al. | May 2019 | A1 |
20190147085 | Pal et al. | May 2019 | A1 |
20190155629 | Wagner et al. | May 2019 | A1 |
20190171423 | Mishra et al. | Jun 2019 | A1 |
20190171470 | Wagner | Jun 2019 | A1 |
20190179725 | Mital et al. | Jun 2019 | A1 |
20190180036 | Shukla | Jun 2019 | A1 |
20190188288 | Holm et al. | Jun 2019 | A1 |
20190196884 | Wagner | Jun 2019 | A1 |
20190227849 | Wisniewski et al. | Jul 2019 | A1 |
20190235848 | Swiecki et al. | Aug 2019 | A1 |
20190238590 | Talukdar et al. | Aug 2019 | A1 |
20190250937 | Thomas et al. | Aug 2019 | A1 |
20190268152 | Sandoval | Aug 2019 | A1 |
20190286475 | Mani | Sep 2019 | A1 |
20190303117 | Kocberber et al. | Oct 2019 | A1 |
20190311115 | Lavi | Oct 2019 | A1 |
20190318312 | Foskett | Oct 2019 | A1 |
20190361802 | Li et al. | Nov 2019 | A1 |
20190363885 | Schiavoni et al. | Nov 2019 | A1 |
20190384647 | Reque et al. | Dec 2019 | A1 |
20190391834 | Mullen et al. | Dec 2019 | A1 |
20200007456 | Greenstein et al. | Jan 2020 | A1 |
20200026527 | Xu et al. | Jan 2020 | A1 |
20200028936 | Gupta et al. | Jan 2020 | A1 |
20200057680 | Marriner et al. | Feb 2020 | A1 |
20200065079 | Kocberber et al. | Feb 2020 | A1 |
20200073770 | Mortimore, Jr. et al. | Mar 2020 | A1 |
20200073987 | Perumala et al. | Mar 2020 | A1 |
20200081745 | Cybulski et al. | Mar 2020 | A1 |
20200104198 | Hussels et al. | Apr 2020 | A1 |
20200104378 | Wagner et al. | Apr 2020 | A1 |
20200110691 | Bryant et al. | Apr 2020 | A1 |
20200120120 | Cybulski | Apr 2020 | A1 |
20200142724 | Wagner et al. | May 2020 | A1 |
20200167208 | Floes et al. | May 2020 | A1 |
20200192707 | Brooker et al. | Jun 2020 | A1 |
20200327236 | Pratt | Oct 2020 | A1 |
20200341799 | Wagner et al. | Oct 2020 | A1 |
20200412707 | Siefker et al. | Dec 2020 | A1 |
20200412720 | Siefker et al. | Dec 2020 | A1 |
20200412825 | Siefker et al. | Dec 2020 | A1 |
20210117534 | Maximov | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
2975522 | Aug 2016 | CA |
1341238 | Mar 2002 | CN |
101002170 | Jul 2007 | CN |
101345757 | Jan 2009 | CN |
101496005 | Jul 2009 | CN |
2663052 | Nov 2013 | EP |
3201762 | Aug 2017 | EP |
3254434 | Dec 2017 | EP |
3201768 | Dec 2019 | EP |
2002287974 | Oct 2002 | JP |
2006-107599 | Apr 2006 | JP |
2007-538323 | Dec 2007 | JP |
2010-026562 | Feb 2010 | JP |
2011-065243 | Mar 2011 | JP |
2011-233146 | Nov 2011 | JP |
2011257847 | Dec 2011 | JP |
2013-156996 | Aug 2013 | JP |
2014-525624 | Sep 2014 | JP |
2017-534107 | Nov 2017 | JP |
2017-534967 | Nov 2017 | JP |
2018-503896 | Feb 2018 | JP |
2018-512087 | May 2018 | JP |
2018-536213 | Dec 2018 | JP |
WO 2008114454 | Sep 2008 | WO |
WO 2009137567 | Nov 2009 | WO |
WO 2012039834 | Mar 2012 | WO |
WO 2012050772 | Apr 2012 | WO |
WO 2013106257 | Jul 2013 | WO |
WO 2015078394 | Jun 2015 | WO |
WO 2015108539 | Jul 2015 | WO |
WO 2016053950 | Apr 2016 | WO |
WO 2016053968 | Apr 2016 | WO |
WO 2016053973 | Apr 2016 | WO |
WO 2016090292 | Jun 2016 | WO |
WO 2016126731 | Aug 2016 | WO |
WO 2016164633 | Oct 2016 | WO |
WO 2016164638 | Oct 2016 | WO |
WO 2017059248 | Apr 2017 | WO |
WO 2017112526 | Jun 2017 | WO |
WO 2017172440 | Oct 2017 | WO |
WO 2018005829 | Jan 2018 | WO |
WO 2018098445 | May 2018 | WO |
WO 2020005764 | Jan 2020 | WO |
WO 2020069104 | Apr 2020 | WO |
Entry |
---|
Search Query Report from IP.com (performed Dec. 2, 2020). (Year: 2020). |
Search Query Report from IP.com (performed May 27, 2021). (Year: 2021). |
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu (Year: 2009). |
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, 2012. (Year: 2012). |
Lagar-Cavilla, H. Andres, et al. “Snowflock: Virtual machine cloning as a first-class cloud primitive.” ACM Transactions on Computer Systems (TOCS) 29.1 (2011): 1-45. (Year: 2011). |
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47. |
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011). |
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338. |
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020. |
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020. |
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020. |
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020. |
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages. |
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019. |
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020. |
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017]. |
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 346 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages. |
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019. |
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Deis, Container, 2014, 1 page. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012. |
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014. |
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015. |
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages. |
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation. |
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages. |
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages. |
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages. |
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages. |
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Qian, H. and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Stack Overflow, Creating a database connection pool, 2009, 4 pages. |
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011. |
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages. |
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface. |
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019. |
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en.wikipedia.org/wiki/Recursion_(computer _science), 2015. |
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019. |
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages. |
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018. |
International Search Report and Written Opinion in PCT/US2015/064071dated Mar. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019. |
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019. |
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020. |
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages. |
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018. |
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018. |
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021. |
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018. |
Office Action in Indian Application No. 201717019903 dated May 18, 2020. |
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018. |
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018. |
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018. |
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020. |
Office Action in Indian Application No. 201717027369 dated May 21, 2020. |
First Examination Report for Indian Application No. 201717034806 dated Jun. 25, 2020. |
Office Action in European Application No. 201817013748 dated Nov. 20, 2020. |
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020. |
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020. |
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020. |
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020. |