The present invention relates to an escalator according to the preamble of claim 1 or the preamble of claim 2.
The term escalator should comprise both escalators with steps, as they are used in department stores, for example, and moving sidewalks with pallets, as they are used in airports, for example.
Furthermore, an entry angle φ is shown at the bottom side of the chain wheel in
A momentary angle of wrap υ is indicated in
Furthermore, at the top of the chain wheel R, an effective lever arm Heff is indicated, which corresponds to the vertical distance between the effective line W of force, in particular tensile force of the pintle chain G and the rotary axis D of the chain wheel R. Like the momentary angle of wrap D, the effective lever arm Heff also varies during the movement of the pintle chain due to the detachment of the pintle chain one link at a time, in particular due to the polygonal contact of the chain on the chain wheel. At the bottom side of the chain wheel R, the effective lever arm Heff′ is a bit shorter, while due to the slightly inclined effective line W of force of the pintle chain G, the effective lever arm Heff′ does no longer extend through the detachment point A.
In escalators or moving sidewalks, their steps or pallets, are usually driven by drive chains, in particular on both sides, formed as so-called step chains or pallet chains, and are also attached to the latter. Usually the drive chains have 3 or 4 subdivisions, i.e. 3 or 4 links per step. The chain wheels used have about 16 to 25 teeth. This relatively high number is chosen to minimize the so-called polygonal effect.
The polygonal effect comes about by the variations in the effective lever arm Heff (see
In practice, this problem is usually solved by reducing the chain pitch and increasing the number of teeth. As the pitch is reduced and the number of teeth is increased, the polygonal effect is reduced, until a degree is reached, where the polygonal effect is so low in practice, i.e. the movement of the chains/steps/pallets is so uniform, that the polygonal effect causes practically no problem, but is still present.
Also, guides have been installed in the area of the chain wheels, which effect tangential entry of the chain onto the chain wheels. The primary aim of this measure is to reduce the entry noise of the chain on the chain wheels. Also, the polygonal effect is reduced hereby, but not compensated.
The conventional structure with relatively small chain pitch and a relatively high number of teeth of the chain wheels has substantial drawbacks, however.
First of all, the high cost of the chain for the steps or pallets is to be mentioned. The more subdivisions (the smaller the pitch) for the latter, the more links per step or per meter, and the higher its cost. Moreover, there is a higher number of positions per step/pallet, subject to wear. Over the period of operation of the escalator, adherence to the maximum admissible spacing between steps/pallets for as long as possible, is a very important criterion.
Due to the high number of teeth, the chain wheels have a relatively great diameter and need a large structural space, in particular for the drive station. This is how valuable space is lost in buildings. Due to great diameters, high driving moments are necessary, which entails higher cost for the drives.
An escalator of the initially mentioned type is known from European Patent Application EP 1 344 740 A1. The escalator described there has a chain wheel driven in a manner polygonally compensated by the upper strand, wherein a pintle chain partially wraps around the chain wheel. The chain wheel has an odd number of teeth. Due to the odd number of teeth, the lower strand does not run in a polygonally-compensated manner, but rather irregularly. Since the lower strand has also masses applied to it, such as the masses of chains, wheels, axles and steps or pallets, forces result from this irregularity, which are transmitted to the steps or pallets in the upper strand. Such an escalator may run comparatively smoothly in a heavily loaded state, due to the large quotient between the mass in the upper strand and the mass in the lower strand. In the unloaded state, or loaded with only few people, however, the upper strand will also run in a very uneven manner.
The problem on which the present invention is based, is the creation of an apparatus of the initially mentioned type, which runs comparatively smoothly even with a relatively low number of teeth on the at least one chain wheel.
This is achieved according to the present invention by the escalator of the initially mentioned type having the characterizing features of any one of claims 1 or 2 or 3. The dependent claims refer to preferred embodiments of the invention.
According to claim 1, it is provided that the effective lever arm of the chain at the at least one chain wheel in the upper strand is essentially equal to the effective lever arm of the chain at the at least one chain wheel in the lower strand. In the polygonal compensation configured for the upper strand, for example, this results not only in a constant velocity of the running of the upper strand, but also of the lower strand. The solution according to the present invention allows step or pallet chains with substantially increased pitch, such as chain pitch equal to half of the step pitch or a chain pitch equal to the step pitch, to be used and/or to reduce the structural space required.
According to claim 2, it is provided that the first chain wheel and the second chain wheel are operated in a manner offset with respect to each other in such a way that, with a minimal effective lever arm at the first chain wheel in the same strand, the effective lever arm on the second chain wheel is not minimal, preferably deviates by ±20% or less of the difference between the maximum and minimum values from the maximum value, and is maximal, in particular. For this purpose, for example, the angular position of the first chain wheel can differ from that of the second chain wheel by at least ±30%, preferably by at least ±40% of the angular pitch, in particular by half of the angular pitch. This opposition in phase of the two chain wheels results in a reciprocating movement of the second chain wheel, configured as an idler wheel, for example, being reduced.
According to claim 3 it is provided that the escalator has at least one guide, which can influence the entry angle of the chain on the first and/or the second chain wheel, wherein the at least one guide is arranged in such a way that the entry angle with the minimum effective lever arm is smaller than with the maximum effective lever arm. Such an arrangement of the guide has the result that the oscillating movement of the redirecting station approaches zero when the machine is running, which has a positive effect on running smoothness. Moreover, this arrangement of the at least one guide has the effect that the wheels are only minimally loaded. This means that it is possible to use relatively cheap wheels.
Further features and advantages of the present invention will become clear in the following description of preferred exemplary embodiments with reference to the accompanying drawings, wherein:
The escalator as shown in
The first chain wheel 2 is driven in a manner free of the polygonal effect, or polygonally compensated, by a drive motor 7 via a drive chain 8. This can be achieved, for example, in the exemplary embodiment shown, by a non-circular wheel 9 engaging the drive chain 8. Further possibilities of a polygonally-compensated drive are known from the WO 03/036129 A1, which is explicitly incorporated herein by reference. The polygonally-compensated drive allows the first chain wheel 2 to be driven with a non-constant angular velocity in such a way that the driven chain 1 is running at a constant, or near-constant, velocity.
The hand rail 4 is driven by the drive motor 7, wherein the hand rail 4 is driven at a constant angular velocity. The second chain wheel 3 is supported by means of a moveable support 10 in a displaceable manner.
In the view according to
This difference in the angular positions of chain wheels 2, 3 has the result that precisely at the point, where the chain 1 applies a minimum effective lever arm 16, 16′ on the first chain wheel 2, the chain 1 applies a maximum effective lever arm 17, 17′ on the second chain wheel 3 (see
Further, it can be seen from
Guides 18, 19 as seen from
In the embodiment according to
A further partially functional description of the exemplary embodiments can be derived from the following.
The chain wheels 2, 3 used have an even number of teeth. This applies in the case that the angle of wrap of the chain 1 is about 180°, which is the normal case for escalators/moving sidewalks. What is crucial is that the effective lever arm on the side of the upper strand is always essentially identical to the effective lever arm on the side of the lower strand. This has the effect, in a polygonal compensation configured for the upper strand, that not only the upper strand runs at a constant velocity, but also the lower strand (in the case of an odd number of teeth and with a angle of wrap of 180° the lower strand would run with about double the irregularity as a conventional, i.e. not polygonally-compensated drive).
The angle of wrap can also deviate from 180° under the condition that the effective lever arms are identical for the upper and lower strands. This means that the number of teeth and the angle of wrap must be adapted for this case. When this condition is fulfilled, uniform chain velocities will result in the upper and the lower strand, which are requisite for smooth running of the escalator/the moving sidewalk.
The same rule also applies to the non-driven redirecting or idler station (with escalators it is usually the lower landing station) as to the driven chain wheel 2. Again, it is crucial to provide for identical effective lever arms. This also applies in the case where a chain wheel 3 is not used for redirecting, but a non-toothed, stationary-mounted or spring-loaded/elastically-mounted redirecting arc 20 is used. This means that the radii or diameters of the redirecting arc must be configured in such a way while also taking the diameter of the chain wheels into account, that the link center points of the chain 1 run on a corresponding pitch circle corresponding to that of a chain wheel having the corresponding number of teeth.
Since the chain wheels 2, 3 do not run at a constant angular velocity and this effect becomes greater the smaller the number of teeth, care must be taken that they are configured to be as light as possible, i.e. having only a small moment of inertia, so that the disturbing forces exerted by them on the chains/steps/pallets, are as small as possible. In particular, weight optimization must be observed for the points further removed from the pivot point, and weight reduction recesses or the like must be provided, if necessary.
Due to the polygonal contact of chain 1, in particular with large links, on the chain wheels 2, 3, usually the axle distance between the chain wheels 2, 3 changes from tooth engagement to tooth engagement. The chain 1 always has a constant length, apart from elastic expansion. The drive chain wheels are usually mounted in a stationary manner, and the idler chain wheels are resilient and linearly moveable on the fixture 10. The idler chain wheels therefore make a linear movement from pitch to pitch. This is the larger the greater the chain pitch and the smaller the number of teeth on the chain wheel.
In conventional escalators having a relatively small chain pitch and a relatively large number of teeth, as the case may be, this problem does not need to be addressed.
Since the pitch may be very large in an escalator (or moving sidewalk) according to the present invention, namely 1/1 or 1/2 of the step/pallet pitch, and the number of teeth may be very small, namely up to 6 or 4, the linear movement of the second chain wheel 3 acting as the idler wheel or the redirecting arc 20 can be so large that it will develop into a component disruptive for the smooth running of the escalator/the moving sidewalk. Disturbing mass forces result from this large linear movement of the redirecting station, and disturbing noises may also arise. The constellation is particularly disadvantageous if the drive and idler chain wheels have the same angular position (measured, for example, by angle α or β of a chain wheel corner relative to the horizontal).
This is why the relative angular position α, β of the chain wheels 2, 3 must be observed, i.e., it should be opposed in phase: about half of a pitch angle (±20%) must be between the angular position of the first chain wheel 2 and that of the second chain wheel 3 (pitch angle=360° divided by the number of teeth). This means that the axle distance, the lifting height and the length of the chains must be adapted to each other.
Further, the first and second chain wheels 2, 3 should have the same number of teeth, if possible. Deviations from the same number of teeth within a range of ±30% are tolerable.
Furthermore, guiding of the chains is important. The guides 18, 19 used in an exemplary embodiment of the escalator according to the present invention have the effect that the chain 1 runs onto the chain wheels 2, 3 a little above the minimum effective lever arm. Furthermore, they are optionally curved at their ends, which has the effect that a velocity component in a radial direction is applied to the chain 1 shortly before contacting the chain wheels 2, 3, or after running off the chain wheels 2, 3. The impact component of the chain link points into the tooth spaces of the chain wheels, or onto the guides 18, 19 is therefore substantially reduced, which leads to considerably lower noise and more advantageous running properties.
Chain guides which cause the chains to run tangentially onto the chain wheels and therefore reduce entry noise (chain on chain wheel) cannot be used in an escalator according to the present invention, because due to the low number of teeth of the chain wheels and the resulting ratios of angles the stresses for the wheels become too great, or the wheels would have to be dimensioned for these stresses, which would make them very expensive. Moreover, a large oscillating movement of the redirecting station would result from this arrangement of the guides, which would lead to the above mentioned drawbacks.
In an escalator according to the present invention, the correct height of the guides 18, 19 between the minimum and maximum effective lever arm is near the minimum lever arm. If they are set at the correct height, the result is that the oscillating movement of the redirecting station approaches zero when the machine is running, which greatly improves smooth running. Moreover, the wheels are only slightly stressed with this arrangement of the guides. This means that relatively cheap wheels can be used.
The optimum height of the chain guides is determined as follows: The chain links are pivoted about a predetermined angle, when they leave the guides 18, 19. It is possible to draw or conceive small rectangular triangles there, the hypotenuse of which is the chain link in question, wherein one of the small sides is formed by the horizontal. All quantities may also be calculated with the aid of the angular functions. The sum of the horizontal small sides is now formed and various angular positions of the chain wheels are determined within a pitch angle. It is now imagined that the chains continue running another little bit and the chain wheels rotate further until they have rotated about a pitch angle. A pitch angle of about 60°, for example, is thus subdivided into 20 steps of 3° each, for example. The height of the guides is now changed until the sum of the horizontal small sides results in a value which is as constant as possible over the various angular positions. Where these deviations have reached their minimum, the linear movement of the idler chain wheels/the redirecting station is also at its minimum.
In real escalators, polygonal effects would also have to be taken into account, if any, which result in the transitions from horizontal to inclined portions (redirecting radii) when the chains run through the chain guides.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 036 353.1 | Aug 2006 | DE | national |
10 2007 034 628.1 | Jul 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/06676 | 7/27/2007 | WO | 00 | 4/22/2009 |