The present disclosure, according to one embodiment, relates to electrostatic discharge (ESD) protection of electronic circuits, more particularly, to ESD protection of input-out (I/O) circuits that may have to withstand higher operating voltages then normal integrated circuit logic voltages.
Multiple circuits for controlling and sensing various functions in, for example but not limited to, vehicles are being replaced by bus interface devices at each electromechanical control/sensor in a vehicle. Having bus interfaces, e.g., Local Interconnect Network (LIN), Controller Area Network (CAN) and the like, greatly simplifies vehicle wiring and improves diagnostic troubling shooting of the vehicle's subsystems and operating components.
However, with any type of electromechanical interface, voltage spikes, over voltages and polarity changes must be dealt with by protecting the electronic input-output (I/O) portions of the bus interface. Additionally, vehicle electrical systems are going to higher operating voltages, e.g., 42 volts, because of the increased usage of electrical accessories in the vehicle. While integrated circuits are operating at lower and lower voltages because of smaller device elements resulting from improved miniaturization of the integrated circuit fabrication process.
According to a specific example embodiment of the present disclosure, an electrostatic discharge (ESD) structure having increased voltage withstand at an output terminal of an s integrated circuit may comprise at least one first metal oxide semiconductor (MOS) device having a thin gate oxide layer, wherein the at least one first MOS device is controlled by low voltage; at least one second MOS device having a thicker gate oxide layer than the thin gate oxide layer of the at least one first MOS device; an output terminal of an integrated circuit wherein the at least one second MOS device is coupled between the at least one first MOS device and the output terminal of the integrated circuit; wherein the at least one first and second MOS devices are interdigitated to form a parasitic bipolar transistor for electrostatic discharge protection at the output terminal.
According to another specific example embodiment of the present disclosure, an integrated circuit having at least one output terminal with an electrostatic discharge (ESD) structure having increased voltage withstand at the output terminal may comprise a bipolar transistor coupled to an output terminal of an integrated circuit; at least one first metal oxide semiconductor (MOS) device having a thin gate oxide layer, wherein the at least one first MOS device is controlled by a low voltage; at least one second MOS device having a thicker gate oxide layer than the thin gate oxide layer of the at least one first MOS device, wherein the at least one second MOS device is coupled between the at least one first MOS device and the bipolar transistor; wherein the at least one first and second MOS devices are interdigitated to form a parasitic bipolar transistor for electrostatic discharge protection at the bipolar transistor.
According to yet another specific example embodiment of the present disclosure, a method of fabricating in an integrated circuit an electrostatic discharge (ESD) structure having increased voltage withstand at an output terminal of the integrated circuit, said method may comprise forming at least one first metal oxide semiconductor (MOS) device having a thin gate oxide layer; forming at least one second MOS device having a thicker gate oxide layer than the thin gate oxide layer of the at least one first MOS device, wherein the at least one first and second MOS devices are interdigitated to form a parasitic bipolar transistor for electrostatic discharge protection of an output terminal.
According to still another specific example embodiment of the present disclosure, a method of fabricating in an integrated circuit an electrostatic discharge (ESD) structure having increased voltage withstand at an output terminal of the integrated circuit, said method may comprise forming a bipolar transistor; coupling the bipolar transistor to an output of an integrated circuit; forming at least one first metal oxide semiconductor (MOS) device having a thin gate oxide layer; forming at least one second MOS device having a thicker gate oxide layer than the thin gate oxide layer of the at least one first MOS device, wherein the at least one first and second MOS devices are interdigitated to form a parasitic bipolar transistor for electrostatic discharge protection of at the bipolar transistor.
A more complete understanding of the present disclosure thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawing, wherein:
While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims.
Referring now to the drawings, the details of example embodiments are schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower case letter suffix.
Referring to
Referring to
Referring now to
Referring to
Referring to
Referring now to
This disclosure teaches MOS device structures that may be used in any application to increase the voltage that the MOS device structure may sustain. However, the circuits according to the teachings of this disclosure may also be useful in any analog type output where high drive is needed in a linear region. For example, the thin gate oxide device 206 may have a higher drive capability in a smaller space than does the thicker gate oxide device 204. Further, if the gate of the thin gate oxide device 206 is controlled in the linear region, it will have even more gain as compared to the thicker gate oxide device 204. The thin gate oxide device 206, however, may not be used directly connected to a high voltage output 202 which also needs ESD protection. Thus the teachings of this disclosure may solve the problem of higher interface output operating voltage by adding the thicker gate oxide device 204, and ESD protection with the parasitic bipolar transistor 210 in one simple to fabricate integrated circuit MOS structure. A further improvement is shown in
While embodiments of this disclosure have been depicted, described, and are defined by reference to example embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and are not exhaustive of the scope of the disclosure.
This application claims priority to commonly owned U.S. Provisional Patent Application Ser. No. 60/697,187; filed Jul. 7, 2005; entitled “Mixed-Thickness Oxide ESD Structure,” by Randy L. Yach and Philippe Deval; which is hereby incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
60697187 | Jul 2005 | US |