Field of the Invention
The present invention generally relates to wired and wireless communication networks and more particularly to establishing a mesh network with wired and wireless links.
Description of Related Art
A mesh network allows for communication of information through multiple nodes, which may be distributed over a wide area. The multiple nodes allow for an information packet to travel through multiple routes to a given receiving node or device. The nodes in a mesh network may communicate through wired (e.g. Ethernet) or wireless connections (e.g., IEEE 802.x).
In a lightweight mesh network, a single wired node may serve as an access point (e.g., a base station). The base station may be in communication with multiple wireless receiving nodes. Each node may have an internal mesh basic service set (MBSS). Each MBSS in the mesh network may have a unique basic service set identifier (BSSID) but share an identical service set identifier (SSID) and/or pre-shared key (PSK). A node may identify another node in the network by reference to that node's BSSID. The transmission of an information packet from one node to another may be referred to as a hop. Each of the nodes in a mesh network may connect with one another through one or more hops. For example, a first receiving node, or child node, receives information from a parent node via one hop.
A mesh network where all nodes are directly connected to one other may be referred to as a fully connected network. A mesh network where only some nodes are connected to all other or a subset of nodes may be referred to as a partially connected network. Information transmission in a fully connected network may take only one hop (e.g., from a originating node to a destination child node). In a partially connected mesh network, however, information transmission may require multiple hops through multiple nodes. If there is one node is not directly connected to a particular destination node, transmission of information from the origin to the destination may require passage through an intermediate node (or nodes) thereby invoking at least a two hop transmission.
In a network composed of wireless and wired links, an information packet may be transmitted to a receiving node or device through multiple nodes over wireless and/or wired connections. Where two nodes are connected by a wireless and a wired link (e.g., an 802.x and an Ethernet connection), the wired link may serve as an alternate route by which the information packet may travel; the wireless connection may be the primary means of packet delivery. The particular route taken by an information packet may be determined by various available routing algorithms at the originating and/or intermediate nodes. Routing algorithms generally seek to transmit and allow for the delivery of information packets to a destination node as quickly and efficiently as possible.
Determining a route in a partially connected network or wired and wireless connections presents a difficult optimization problem. Routing algorithms may have to determine how a node learns what other nodes are available, with which of the other node(s) to associate, which associations allow for the quickest and most efficient information transfer, and the reliability of those connections. Some routing algorithms may determine or require that a receiving node be associated with particular route(s) and/or particular parent node(s).
Various circumstances may nevertheless require that a route be changed for a given receiving node. For example, an intermediate transmission node may fail whereby the receiving node and/or parent node has to associate with a different intermediate node. Other circumstances requiring a change in routing may include changes in network traffic volume, changes in data rates, security requirements, and even changes in environmental conditions that might affect the network (e.g., the weather).
Another problem experienced by a mesh network is loop formation. A loop can form where two nodes are connected by both a wired and wireless link. Since an information packet can travel through any of the two links between the two nodes, it is possible that once a packet is transmitted to a receiving node via the wired link, the packet can be transmitted back to the sending node via the wireless link or vice versa. A loop may be formed resulting in data transmission that continually repeats between two nodes. The result is delays in data transmission and decreased network capacity.
In one exemplary embodiment, a system for hybrid mesh networking is described. The system includes a root node and a first node connected via a wired connection (i.e., Ethernet) to a second node. The root node acts as a wired backhaul gateway and provides nodes and devices in the hybrid mesh network with wireless access to another network such as the Internet. Upon the determination that the first node and the second node are connected via the Ethernet connection, wireless communication between the first node and the second node is suspended, and the second node commences communication with the root node by way of the Ethernet connection.
In another exemplary embodiment, a method for hybrid mesh networking is described. A first node detects the presence of a second node in the hybrid mesh network and then determines whether the first node and the second node are connected via an Ethernet connection. Upon the determination that the two nodes are connected via the Ethernet connection, wireless communication between the first node and second node is suspended. Further communication between the first node and the second node then commences by way of the wired connection.
Hybrid mesh network 100 may allow for the transmission of various electromagnetic waves, including wireless radio signals. Hybrid mesh network 100 may be an IEEE 802.11 (Wireless LAN), IEEE 802.16 (WiMax), or other IEEE standards based network. Hybrid mesh network 100 may be local, proprietary, or part of a larger wide-area or metropolitan area network (WAN or MAN). Certain security protocols or encryption methodologies may be used to ensure the security of data exchanges over network 100.
Root node 210 of
Root node 210 may be an access point, a proxy server, and/or a firewall server. Root node 210 may be implemented such that it can withstand a failure in its transmission path. For example, if the backhaul throughput of root node 210 fails, root node 210 may establish a wireless upstream connection with another root node (not shown) in the network 200 to maintain network connectivity for all downstream nodes and devices. If backhaul throughput is restored, root node 210 can then revert back to being a root node for optimal performance instead of wirelessly communicating with said other root node. Nodes 220A-220G may include a variety of wired and/or wireless transceiver devices distributed over a particular geographic area, which may be as local as the interior of a building or expansive as a metropolitan area and surrounding environs (e.g., the urban environment of
Each of nodes 220A-220G may receive information transmitted over a route including root node 210. For example, nodes 220A, 220B, 220F and 220G may receive information directly from root node 210 whereas information sent to node 220C may have to pass through node 220A or 220B. Wireless link 240 illustrates a wireless connection between node 220A and root node 210. Node 220A is, in turn, a parent node to node 220C through wireless link 250 as is node 220B by way of wireless link 255. Nodes 220A and 220B are connected via wired link 290 in addition to wireless link 245. Nodes 220A and 220B can receive and/or transmit information through either link.
Some nodes in network 200 may automatically associate with root node 210. Alternatively, nodes may associate with a parent node based on, for example, uplink throughput. For example, node 220C may consider associating with various candidate nodes in an effort to communicate with root node 210. The candidate nodes for such a communications link include nodes 220A and 220B. Using information concerning both backhaul and local throughput for each of the candidate nodes, node 220C may calculate an uplink throughput for each candidate node. An uplink throughput of a candidate node is an approximate throughput from the root node 210 to the calculating node (e.g., node 220C) if that node were to associate with a particular candidate node. Based on the uplink throughput calculated for each candidate node, the calculating node seeking an uplink association (e.g., node 220C) may determine which of the candidate nodes offers optimal uplink throughput, which may be representative of the highest uplink throughput.
Network nodes 220A-220G may also be used to transmit information to a user device. User devices 230A-B may be used by end users to receive information transmitted through network 200. User devices 230A-B may include wireless enabled devices such as laptops and smart phones. Information from another network, such as the Internet, may be transmitted through mesh network 200 to a user device, such as user device 230A. For example, root node 210 can transmit information from the Internet to user device 230A through nodes 220A and 220C. To transmit information from root node 210 to user device 230A through the aforementioned hops would require using wireless link 240 to node 220A, then wireless link 250 to node 220C, and finally, wireless link 260 to user device 230A. Other user devices (e.g., user device 230B) may receive information through different routes. As illustrated in
Node 220A may include a plurality of individually selectable antenna elements 310A-K like those disclosed in U.S. Pat. No. 7,292,198 for a “System and Method for an Omnidirectional Planar Antenna Apparatus,” the disclosure of which is incorporated herein by reference. When selected, each of the individual antenna elements produces a directional radiation pattern with gain (as compared to an omni-directional antenna). Although antenna elements 310A-K are symmetrically positioned along the outer edges of node 220A in
Antenna elements 310A-K may include a variety of antenna systems used to receive and transmit data packets wirelessly. The antenna element 310A can receive packet data, Transmission Control Protocol (TCP) data, User Datagram Protocol (UDP) data, as well as feedback and other informational data from another node using an IEEE 802.xx wireless protocol. One or more wireless links may be created by antenna element 310A to allow for data transmission between node 220A and various other nodes in hybrid mesh network 100. For example, node 220A may be associated with one or more parent node(s); further, node 220A may act as a parent node with associated receiving nodes. In some embodiments, node 220A may be associated with only one parent node. Node 220A may operate similarly to those wireless devices disclosed in U.S. patent publication number 2006-0040707 for a “System and Method for Transmission Parameter Control for an Antenna Apparatus with Selectable Elements,” the disclosure of which is incorporated by reference.
Node 220A learns about various candidate nodes in a network by using antenna elements 310A-K to periodically send out background traffic. For example, antenna element 310A may send out probe requests, which may be received by various candidate nodes. Where node 220A is already associated with a parent node, antenna element 310A may send out probe requests only to certain candidate nodes, such as candidate nodes highly ranked in memory 330 (described below). Antenna element 310A may also limit the probe requests to those candidate nodes whose backhaul throughput is the same or higher than the backhaul throughput of the parent node.
The candidate nodes may send probe responses, which may be received by antenna element 310A. A candidate node in a network may advertise backhaul throughput information concerning the throughput between the candidate node and the root node 210. Receiving the backhaul information in response to its probe request, antenna element 310A may then provide such information concerning the candidate node to memory 330 and/or processor 320. In addition, antenna element 310A may request and receive local throughput information. Local throughput is an approximate measure of the throughput between the candidate node and node 220A. Antenna element 310A may use a signal, such as TxCtrl, to provide local throughput information based on results of transmission attempts to a candidate node.
Antenna element 310A may further emit a beacon to advertise the backhaul throughput of node 220A to other nodes in hybrid mesh network 100. Other nodes in hybrid mesh network 100 attempting to learn about mesh traffic can send out their own probe requests which may be received by antenna element 310A. In some embodiments, antenna element 310A may be provided with an uplink throughput associated with the parent node of node 220A. Antenna element 310A may then advertise that uplink throughput as the backhaul throughput of node 220A. The other nodes may receive that backhaul information in response to their own probe requests and may use that backhaul information to determine whether to associate with node 220A.
Processor 320 may execute a routing algorithm to calculate the uplink throughput by using local and backhaul throughput information. The uplink throughput may be ranked in memory 330; memory 330 may also receive updated information concerning the other nodes. Updated information concerning local or backhaul throughput, for example, may result in updated uplink throughput.
Other information may be stored in memory 330 and subsequently used. For example, information concerning optimal or detrimental antenna configurations, attempted transmissions, successful transmissions, success ratio, received signal strength indicator (RSSI), and various associations between the same may be stored in memory 330 and used in conjunction with or instead of pure throughput calculations to determine an optimized mesh network connection. Information concerning noise floor, channel, transmission or round-trip delay, channel utilization, and interference levels may also be used.
Processor 320 executes a variety of operations. The processor 320 may comprise a microcontroller, a microprocessor, or an application-specific integrated circuit (ASIC). The processor 320 may execute programs stored in the memory 330. Using the information in memory 330, processor 320 executes the appropriate routing and/or other algorithms determines with which of the candidate nodes to associate with node 220A. The determination may be based on the uplink throughput of the candidate nodes. For example, processor 320 may determine uplink throughputs for each candidate node in hybrid mesh network 100. Uplink throughput may be closely approximated using backhaul and local throughput information. An approximation may be derived using the following formula: 1/(1/local throughput+1/backhaul throughput). The uplink throughput determined for each candidate node may also be stored in memory 330. By comparing the uplink throughput information, processor 320 determines which candidate node to associate with node 220A. For example, the candidate node with the highest uplink throughput may be chosen to be parent node to node 220A.
Processor 320 may also include a centralized management controller (not shown). The centralized management controller may be integrated or operate in conjunction with processor 320 albeit physically separate from the same. The controller may monitor a feature or aspect of the network or node including but not limited to how network topology changes over time, overall network performance, and node failure events. A node may report to the controller and the controller can in turn monitor radio channel assignment and various metrics including but not limited to the number of hops from a candidate node to a root node, route speed, route bandwidth, and load associated with the node. Information about a particular node or aspect of the network may be stored in memory 330 and processed by processor 320. The information stored in memory 330 may further include each node's BSSID, SNR, and local and backhaul throughput or may include load information, the number of hops from a candidate node to the root node, and radio channel information. The controller can also control network topology and form an arbitrary topology.
The centralized management controller may also monitor and control radio channel assignment. A first node in the network may be assigned to a radio channel that is different than a channel assigned to a second node. The option of assigning different radio channels to different nodes can improve network capacity by reducing co-channel interference.
A change in radio channel may be implemented on a root node and propagated down the topology in a matter of seconds according to standard protocols. The centralized management controller may also automatically scan and monitor different radio channels to determine an optimal radio channel. Once the controller finds an optimal radio channel, the change is implemented at the root node and propagated downwards. A user or client may also access the controller and manually select an optimal radio channel for a particular root node.
Memory 330 may store various executable instructions, algorithms, and programs. Memory 330 stores information concerning local throughput between wnode 220A and various candidate nodes in hybrid mesh network 100. The information stored in memory 330 may be used to determine an approximate uplink throughput from the root node 210 to node 220A. An exemplary memory 330 may detail information concerning a candidate node including BSSID, signal-to-noise ratio (SNR) of last probe response, local throughput, backhaul throughput, and determined uplink throughput. In some embodiments, the stored information may be ranked, for example, by uplink throughputs from highest to lowest. Memory 330 may be dynamic due to accumulation of information.
Information in memory 330 may be updated such that processor 320 may determine that another candidate node has a higher uplink throughput. As a result, processor 320 may direct antenna element 310A to disconnect from a current parent node and to connect instead to the other candidate node with the higher uplink throughput. In some embodiments, the uplink throughput of the other candidate node must exceed the uplink throughput of the current parent by a certain amount before processor 320 will instruct antenna element 310A to re-associate with the new candidate node. Heuristics may also be involved in determining whether disassociation/re-association occurs.
The memory 330 may also store transmission schedules, which may specify transmit instructions including physical layer transmission rates for a communication device 340 and antenna configurations for the antenna element 310A. The transmissions schedule may also include additional information such as transmit power. The transmission schedule may be embodied as a program for execution by low-level hardware or firmware. The transmission schedule may also be embodied as a set of transmission metrics that allow for ‘tuning’ of transmission and retransmission processes in a more efficient manner.
Node 220A may also include a communication device 340 for converting data at a physical data rate and for generating and/or receiving a corresponding RF signal. The communication device 340 may include, for example, one or more radio modulator/demodulators for converting data received by the node 220A (e.g., from a router) into the RF signal for transmission to one or more of the receiving user devices 230A-B. The communication device 340 may also comprise circuitry for receiving data packets of video from the router and circuitry for converting the data packets into 802.11 compliant RF signals. Various other hardware and/or software devices and/or elements may be integrated with communication device 340 (e.g., physical integration or a communicative coupling) as to allow for the processing and/or conversion of various other data formats into 802.xx compliant RF signals.
The processor 320 controls the communication device 340 to select a physical data rate (i.e., one of the multiple physical data rates). The processor 320 controls the physical data rate at which the communication device 340 converts data bits into RF signals for transmission via the antenna element 310A. The selection of a physical data rate may be associated with a particular antenna configuration, and/or other transmission parameters (e.g., transmit power) in the context of a transmission schedule.
Antenna element selector device 350 operates to selectively couple one or more of the antenna elements 310A-K to the communication device 340. Various embodiments of an antenna elements 310A-K and the antenna element selector device 350 are disclosed in U.S. patent application Ser. Nos. 11/010,076; 11/022,080; and 11/041,145, the disclosures of which are incorporated herein by reference.
The antenna element selector device 350 may be coupled to the processor 320 to allow, for example, selection from among multiple radiation patterns. The processor 320 controls the antenna element selector device 350 to select an antenna configuration (i.e., one of the multiple radiation patterns) of the antenna element 310A. The antenna selector device 350 may accept and respond to information (instructions) related to a transmission schedule with regard to the selection of a particular antenna configuration.
At step 410, a first node detects the presence of a second node in the hybrid mesh network through the Ethernet connection. The second node may be a root node, upstream node, parent node or ancestor node. Wired nodes (or nodes with a wired connection) send periodic broadcasts (wired beacons) over their corresponding Ethernet connection. A first node detects a second node on the Ethernet if the first node receives wired beacons from the second node. An embodiment of the present invention may encapsulate wired beacons within a standard VLAN frame with a pre-configured VLAN_ID. Wired beacons could be encapsulated in other types of packets as long as they could be transported over the Ethernet and could be identified by the access point as wired beacons to be consumed by the access point and not be forwarded over the wireless link.
At step 420, the first node determines whether the first node and the second node are connected via an Ethernet connection. Once the second node is detected, it may be automatically assumed to be connected, and proceed to step 430 to suspend the wireless connection. Embodiments of the present invention may recognize that the Ethernet link may not be the best connection available for optimal performance. For example, an Ethernet connection may support 10 Mbps whereas a wireless 802.11n link can support up to 300 Mbps. In such an instance, the access points may suspend the Ethernet link in favor of the wireless link due to better throughput estimate.
Even if the Ethernet link is suspended, the first node may continue to receive wired beacons. The suspension could be achieved by suspending the necessary packet forwarding logic between the wired and wireless interfaces to break loops. Through such an implementation, an access point can keep listening to the Ethernet interface(s) and listen for wired beacons.
At step 430, wireless communication between the first node and the second node is suspended based on the determination that the first node and the second node are connected via the Ethernet connection. Communication between the first node and the second node then commences by way of the Ethernet connection. The suspension of wireless communication between the first node and second node prevents loop formation. Suspension of wireless communication may also occur upon the detection through the Ethernet of a gateway in the network, a root node, a parent or ancestor node, or the appearance of a source packet on multiple ports.
Wireless communication may also be suspended upon the determination that a particular node in the LAN or within a cluster of nodes has the highest approximation of uplink throughput to the root node. For example, a first node and second may be connected by a wired and wireless link. The approximation of uplink throughput information of the second node may be received by the first node as a result of a probe request. The first node may alternatively receive the approximation of uplink throughput of the second node via a broadcast, multicast or unicast addressing, or any other method of disseminating throughput information. Such message or broadcast could be sent on a periodic basis or according to a schedule. The first node may compare the received approximation of uplink throughput to local throughput and the node with the optimal (or highest) approximation of uplink throughput is determined.
The processor 320 may determine that the second node has a lesser approximation of uplink throughput to the root node than the approximation of uplink throughput of the first node to the root node. In such scenario, the first node has the highest approximation of uplink throughput between the two nodes and the first node suspends wireless communication with the second node. The first node may then send a message or broadcast to all other nodes in the LAN or within a cluster of nodes that it has the highest approximation of uplink throughput to the root node.
At step 440, wired communication between the first node and second node commences by way of the wired connection.
At step 510, a node may send out a message (e.g., using Address Resolution Protocol) to a gateway via a wired connection. For example, a first node may use a gateway detection mechanism to send out a message to the gateway to elicit a response from it. The message or broadcast could be sent on a periodic basis or according to any other schedule.
At step 520, the node determines whether the node has direct or indirect connection with the gateway based on the gateway response to the message and a detectable presence of a wired beacon on the Ethernet connection. The gateway may or may not send a response and the node may or may not receive a response from the gateway. In any instance where the node receives a response from the gateway or where the presence of a wire beacon is detected, such response or information may be stored in memory 330 and processed by processor 320. If the node does not receive a response from the gateway within a certain period of time, the node determines that there is an indirect connection between the node and the gateway (e.g. the transmission path to the gateway traverses at least one hop). The node may then communicate with the gateway via an uplink connection with another node at step 530.
If the node receives a response from the gateway and a wired beacon is detected, the node may determine that there is an indirect connection between the node and the gateway. The node may communicate with the gateway via an uplink connection with another node at step 530. If the node receives a response from the gateway and a wired beacon is not detected, the node may determine that there is a direct connection between the node and gateway (e.g. the transmission path to the gateway does not traverse a hop). The node may then communicate with the gateway without requiring an uplink connection to another node at step 540.
In step 540, wireless communication between the second node and an upstream node is suspended after the processor 320 determines that the second node has a lesser approximation of uplink throughput to the root node than the approximation of uplink throughput of the first node to the root node.
The present invention may be implemented in the context of core and access networks. A hybrid mesh may be an access network that provides wireless clients communication access to the core network, which then provides access to other networks such as the Internet. A root node in such a network provides wireless access to the core network. A gateway in the core network then provides access to another network such as the Internet. The core network may include backhaul links, which could be wired (Ethernet) or wireless (microwave or point to point), or even another independent hybrid mesh network. Chains of hybrid mesh networks can be created to establish more than two levels thereby extending core v. access heirarchys in the network.
Other network routes may be used besides wired and 802.x wireless networks. For example, in addition to multiple 802.x radios (e.g., a 5 GHz and a 2 GHz radio), other point-to-point links may used such as microwave, Bluetooth, and fiber. Such links could be used to improve capacity and/or serve as a redundant link for failovers.
While the present invention has been described in connection with a series of illustrative embodiments, these descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.
The present application claims the priority benefit of U.S. provisional application No. 61/261,612 filed Nov. 16, 2009, the disclosure of which incorporate herein by reference. The present application is related to U.S. patent application Ser. No. 12/008,715 filed Jan. 11, 2008 and entitled “Determining Associations in a Mesh Network.” The disclosure of the aforementioned applications is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1653664 | Kirkup | Dec 1927 | A |
4176356 | Foster et al. | Nov 1979 | A |
4193077 | Greenburg | Mar 1980 | A |
4253193 | Kennard | Feb 1981 | A |
4305052 | Baril et al. | Dec 1981 | A |
4513412 | Cox | Apr 1985 | A |
4814777 | Monser | Mar 1989 | A |
5097484 | Akaiwa | Mar 1992 | A |
5117430 | Berglund | May 1992 | A |
5173711 | Takeuchi et al. | Dec 1992 | A |
5203010 | Felix | Apr 1993 | A |
5220340 | Shafai | Jun 1993 | A |
5220678 | Feei | Jun 1993 | A |
5361256 | Doeringer | Nov 1994 | A |
5373548 | McCarthy | Dec 1994 | A |
5408465 | Gusella et al. | Apr 1995 | A |
5507035 | Bantz | Apr 1996 | A |
5559800 | Mousseau et al. | Sep 1996 | A |
5570366 | Baker | Oct 1996 | A |
5608726 | Virgile | Mar 1997 | A |
5636213 | Eastmond et al. | Jun 1997 | A |
5754145 | Evans | May 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5802312 | Lazaridis et al. | Sep 1998 | A |
5867109 | Wiedeman | Feb 1999 | A |
5930259 | Katsube | Jul 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5964830 | Durett | Oct 1999 | A |
5970410 | Carney et al. | Oct 1999 | A |
5974034 | Chin et al. | Oct 1999 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6088570 | Komara et al. | Jul 2000 | A |
6094177 | Yamamoto | Jul 2000 | A |
6132306 | Trompower | Oct 2000 | A |
6181697 | Nurenberg | Jan 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6266537 | Kashitani et al. | Jul 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6307524 | Britain | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6326922 | Hegendoerfer | Dec 2001 | B1 |
6337628 | Campana, Jr. | Jan 2002 | B2 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339404 | Johnson et al. | Jan 2002 | B1 |
6345043 | Hsu | Feb 2002 | B1 |
6356242 | Ploussios | Mar 2002 | B1 |
6356243 | Schneider et al. | Mar 2002 | B1 |
6356553 | Nagami et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6377227 | Zhu et al. | Apr 2002 | B1 |
6392610 | Braun et al. | May 2002 | B1 |
6393261 | Lewis | May 2002 | B1 |
6404386 | Proctor, Jr. et al. | Jun 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6407719 | Ohira et al. | Jun 2002 | B1 |
6414955 | Clare et al. | Jul 2002 | B1 |
6418138 | Cerf et al. | Jul 2002 | B1 |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6445688 | Garces et al. | Sep 2002 | B1 |
6493679 | Rappaport et al. | Dec 2002 | B1 |
6498589 | Horii | Dec 2002 | B1 |
6499006 | Rappaport et al. | Dec 2002 | B1 |
6505253 | Chiu | Jan 2003 | B1 |
6507321 | Oberschmidt et al. | Jan 2003 | B2 |
6570883 | Wong | May 2003 | B1 |
6584080 | Ganz et al. | Jun 2003 | B1 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6674459 | Ben-Shachar et al. | Jan 2004 | B2 |
6701522 | Rubin et al. | Mar 2004 | B1 |
6704301 | Chari et al. | Mar 2004 | B2 |
6714551 | Le-Ngoc | Mar 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6728514 | Bandeira et al. | Apr 2004 | B2 |
6753814 | Killen et al. | Jun 2004 | B2 |
6762723 | Nallo et al. | Jul 2004 | B2 |
6778517 | Lou et al. | Aug 2004 | B1 |
6779004 | Zintel | Aug 2004 | B1 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6836481 | Hotta | Dec 2004 | B1 |
6873627 | Miller | Mar 2005 | B1 |
6876280 | Nakano | Apr 2005 | B2 |
6888504 | Chiang et al. | May 2005 | B2 |
6888893 | Li et al. | May 2005 | B2 |
6892230 | Gu et al. | May 2005 | B1 |
6906678 | Chen | Jun 2005 | B2 |
6910068 | Zintel et al. | Jun 2005 | B2 |
6924768 | Wu et al. | Aug 2005 | B2 |
6931429 | Gouge et al. | Aug 2005 | B2 |
6941143 | Mathur | Sep 2005 | B2 |
6950019 | Bellone et al. | Sep 2005 | B2 |
6957042 | Williams | Oct 2005 | B2 |
6957277 | Yagyu et al. | Oct 2005 | B2 |
6961028 | Joy et al. | Nov 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6975834 | Forster | Dec 2005 | B1 |
6996086 | Wolfe et al. | Feb 2006 | B2 |
7034770 | Yang et al. | Apr 2006 | B2 |
7043277 | Pfister | May 2006 | B1 |
7050809 | Lim | May 2006 | B2 |
7053853 | Merenda et al. | May 2006 | B2 |
7064717 | Kaluzni et al. | Jun 2006 | B2 |
7076274 | Jollota et al. | Jul 2006 | B2 |
7085814 | Gandhi et al. | Aug 2006 | B1 |
7089307 | Zintel et al. | Aug 2006 | B2 |
7113519 | Hammel et al. | Sep 2006 | B2 |
7130895 | Zintel et al. | Oct 2006 | B2 |
7136655 | Skafidas et al. | Nov 2006 | B2 |
7149197 | Garahi et al. | Dec 2006 | B2 |
7157757 | Parekh et al. | Jan 2007 | B2 |
7161934 | Buchsbaum | Jan 2007 | B2 |
7164667 | Rayment et al. | Jan 2007 | B2 |
7171223 | Herscovich et al. | Jan 2007 | B2 |
7171475 | Weisman et al. | Jan 2007 | B2 |
7187925 | Abhishek | Mar 2007 | B2 |
7203508 | Ohkubo et al. | Apr 2007 | B2 |
7269174 | Olson et al. | Sep 2007 | B2 |
7283494 | Hammel et al. | Oct 2007 | B2 |
7289505 | Sanchez | Oct 2007 | B2 |
7292617 | Beasley et al. | Nov 2007 | B2 |
7321571 | Schnack et al. | Jan 2008 | B2 |
7336642 | Rich et al. | Feb 2008 | B2 |
7355997 | Quian | Apr 2008 | B2 |
7362737 | Behroozi | Apr 2008 | B2 |
7369510 | Wong | May 2008 | B1 |
7489932 | Chari et al. | Feb 2009 | B2 |
7496680 | Canright | Feb 2009 | B2 |
7505426 | Srikrishna et al. | Mar 2009 | B2 |
7505447 | Kish et al. | Mar 2009 | B2 |
7515589 | Bacher et al. | Apr 2009 | B2 |
7522731 | Klemba et al. | Apr 2009 | B2 |
7546126 | Beasley et al. | Jun 2009 | B2 |
7551562 | Srikrishna et al. | Jun 2009 | B2 |
7586879 | Chari et al. | Sep 2009 | B2 |
7672274 | Bims | Mar 2010 | B2 |
7697504 | Chari et al. | Apr 2010 | B2 |
7715395 | Ginchereau et al. | May 2010 | B2 |
7733833 | Kalika et al. | Jun 2010 | B2 |
7787436 | Kish et al. | Aug 2010 | B2 |
7852837 | Au | Dec 2010 | B1 |
7853829 | Younger et al. | Dec 2010 | B2 |
7916684 | Henderson et al. | Mar 2011 | B2 |
7974223 | Zellig et al. | Jul 2011 | B2 |
8089869 | Kisela et al. | Jan 2012 | B2 |
8089949 | Kish et al. | Jan 2012 | B2 |
8125975 | Kish et al. | Feb 2012 | B2 |
8355343 | Kish et al. | Jan 2013 | B2 |
8547899 | Kish | Oct 2013 | B2 |
8619662 | Kish | Dec 2013 | B2 |
8634402 | Kish | Jan 2014 | B2 |
8638708 | Kish | Jan 2014 | B2 |
8688834 | Fujimoto et al. | Apr 2014 | B2 |
8780760 | Kish | Jul 2014 | B2 |
8824357 | Kish et al. | Sep 2014 | B2 |
9019886 | Kish | Apr 2015 | B2 |
9066152 | Kish | Jun 2015 | B2 |
9071942 | Kish | Jun 2015 | B2 |
9240868 | Kish | Jan 2016 | B2 |
20010047474 | Takagi et al. | Nov 2001 | A1 |
20010055312 | Negus | Dec 2001 | A1 |
20020001310 | Mai | Jan 2002 | A1 |
20020031130 | Tsuchiya et al. | Mar 2002 | A1 |
20020036996 | Ozluturk et al. | Mar 2002 | A1 |
20020045435 | Fantaske | Apr 2002 | A1 |
20020047800 | Proctor, Jr. et al. | Apr 2002 | A1 |
20020080767 | Lee | Jun 2002 | A1 |
20020084942 | Tsai et al. | Jul 2002 | A1 |
20020105471 | Kojima et al. | Aug 2002 | A1 |
20020112058 | Weisman et al. | Aug 2002 | A1 |
20020114317 | Dorenbosch | Aug 2002 | A1 |
20020114330 | Cheung et al. | Aug 2002 | A1 |
20020143951 | Khan | Oct 2002 | A1 |
20020158798 | Chiang et al. | Oct 2002 | A1 |
20020158801 | Crilly, Jr. et al. | Oct 2002 | A1 |
20020164963 | Tehrani et al. | Nov 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20020194367 | Nakamura et al. | Dec 2002 | A1 |
20030003917 | Copley et al. | Jan 2003 | A1 |
20030026240 | Eyuboglu et al. | Feb 2003 | A1 |
20030026268 | Nava | Feb 2003 | A1 |
20030030588 | Kalis et al. | Feb 2003 | A1 |
20030043786 | Kall | Mar 2003 | A1 |
20030063591 | Leung et al. | Apr 2003 | A1 |
20030122714 | Wannagot et al. | Jul 2003 | A1 |
20030129978 | Akiyama | Jul 2003 | A1 |
20030133458 | Sato et al. | Jul 2003 | A1 |
20030169330 | Ben-Schachar et al. | Sep 2003 | A1 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20030189514 | Miyano et al. | Oct 2003 | A1 |
20030189521 | Yamamoto et al. | Oct 2003 | A1 |
20030189523 | Ojantakanen et al. | Oct 2003 | A1 |
20030210207 | Suh et al. | Nov 2003 | A1 |
20030227414 | Saliga et al. | Dec 2003 | A1 |
20030228857 | Maeki | Dec 2003 | A1 |
20030231593 | Bauman et al. | Dec 2003 | A1 |
20040008663 | Srikrishna | Jan 2004 | A1 |
20040014432 | Boyle | Jan 2004 | A1 |
20040017310 | Runkle et al. | Jan 2004 | A1 |
20040017860 | Liu | Jan 2004 | A1 |
20040027291 | Zhang et al. | Feb 2004 | A1 |
20040027304 | Chiang et al. | Feb 2004 | A1 |
20040028006 | Kayama | Feb 2004 | A1 |
20040032378 | Volman et al. | Feb 2004 | A1 |
20040036651 | Toda | Feb 2004 | A1 |
20040036654 | Hsieh | Feb 2004 | A1 |
20040041732 | Aikawa et al. | Mar 2004 | A1 |
20040048593 | Sano | Mar 2004 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040061653 | Webb et al. | Apr 2004 | A1 |
20040070543 | Masaki | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040085993 | Wentink | May 2004 | A1 |
20040095278 | Kanemoto et al. | May 2004 | A1 |
20040114535 | Hoffman et al. | Jun 2004 | A1 |
20040125777 | Doyle et al. | Jul 2004 | A1 |
20040190477 | Olson et al. | Sep 2004 | A1 |
20040260800 | Gu et al. | Dec 2004 | A1 |
20040264463 | Fukushima | Dec 2004 | A1 |
20050002395 | Kondo | Jan 2005 | A1 |
20050009523 | Pekonen | Jan 2005 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050032531 | Gong et al. | Feb 2005 | A1 |
20050041739 | Li et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050074018 | Zintel et al. | Apr 2005 | A1 |
20050074019 | Handforth et al. | Apr 2005 | A1 |
20050074108 | Zintel et al. | Apr 2005 | A1 |
20050097503 | Zintel et al. | May 2005 | A1 |
20050135480 | Li et al. | Jun 2005 | A1 |
20050138137 | Encarnacion et al. | Jun 2005 | A1 |
20050138193 | Encarnacion et al. | Jun 2005 | A1 |
20050153720 | White et al. | Jul 2005 | A1 |
20050180381 | Retzer et al. | Aug 2005 | A1 |
20050185666 | Raya et al. | Aug 2005 | A1 |
20050188193 | Kuehnel et al. | Aug 2005 | A1 |
20050226239 | Nishida et al. | Oct 2005 | A1 |
20050232179 | daCosta et al. | Oct 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050250544 | Grant et al. | Nov 2005 | A1 |
20050267935 | Ghandi et al. | Dec 2005 | A1 |
20050271070 | Mikami et al. | Dec 2005 | A1 |
20060018335 | Koch | Jan 2006 | A1 |
20060045089 | Bacher et al. | Mar 2006 | A1 |
20060092864 | Gupta | May 2006 | A1 |
20060094371 | Nguyen | May 2006 | A1 |
20060098605 | Li | May 2006 | A1 |
20060098607 | Zeng et al. | May 2006 | A1 |
20060098613 | Kish et al. | May 2006 | A1 |
20060098616 | Kish et al. | May 2006 | A1 |
20060114881 | Chari et al. | Jun 2006 | A1 |
20060123124 | Weisman et al. | Jun 2006 | A1 |
20060123125 | Weisman et al. | Jun 2006 | A1 |
20060123455 | Pai et al. | Jun 2006 | A1 |
20060133341 | Chari et al. | Jun 2006 | A1 |
20060165029 | Melpignano et al. | Jul 2006 | A1 |
20060168159 | Weisman et al. | Jul 2006 | A1 |
20060184660 | Rao et al. | Aug 2006 | A1 |
20060184661 | Weisman et al. | Aug 2006 | A1 |
20060184693 | Rao et al. | Aug 2006 | A1 |
20060187660 | Rao et al. | Aug 2006 | A1 |
20060224690 | Falkenburg et al. | Oct 2006 | A1 |
20060225107 | Seetharaman et al. | Oct 2006 | A1 |
20060227761 | Scott, III et al. | Oct 2006 | A1 |
20060239369 | Lee | Oct 2006 | A1 |
20060268881 | Moreton | Nov 2006 | A1 |
20060280131 | Rahman et al. | Dec 2006 | A1 |
20060291434 | Gu et al. | Dec 2006 | A1 |
20070002750 | Sang et al. | Jan 2007 | A1 |
20070010271 | Roy | Jan 2007 | A1 |
20070027622 | Cleron et al. | Feb 2007 | A1 |
20070030811 | Frei et al. | Feb 2007 | A1 |
20070072612 | Haraguchi et al. | Mar 2007 | A1 |
20070101020 | Lin et al. | May 2007 | A1 |
20070109961 | Liang | May 2007 | A1 |
20070135167 | Liu | Jun 2007 | A1 |
20070189283 | Agarwal et al. | Aug 2007 | A1 |
20070223451 | Ren et al. | Sep 2007 | A1 |
20070242602 | Pang et al. | Oct 2007 | A1 |
20070280168 | Shibata | Dec 2007 | A1 |
20080043638 | Ribiere | Feb 2008 | A1 |
20080069068 | Dean et al. | Mar 2008 | A1 |
20080137681 | Kish et al. | Jun 2008 | A1 |
20080137682 | Kish et al. | Jun 2008 | A1 |
20080159207 | Levine et al. | Jul 2008 | A1 |
20080225804 | Thubert | Sep 2008 | A1 |
20080247317 | Weil et al. | Oct 2008 | A1 |
20080247327 | Weil et al. | Oct 2008 | A1 |
20080267116 | Kang et al. | Oct 2008 | A1 |
20090019314 | Younger et al. | Jan 2009 | A1 |
20090028095 | Kish et al. | Jan 2009 | A1 |
20090040989 | Da Costa et al. | Feb 2009 | A1 |
20090067369 | Stamoulis | Mar 2009 | A1 |
20090073921 | Ji et al. | Mar 2009 | A1 |
20090080333 | Ozer et al. | Mar 2009 | A1 |
20090154359 | Strutt et al. | Jun 2009 | A1 |
20090180396 | Kish et al. | Jul 2009 | A1 |
20090207730 | Stamoulis et al. | Aug 2009 | A1 |
20090213730 | Zeng et al. | Aug 2009 | A1 |
20090225676 | Kisela et al. | Sep 2009 | A1 |
20090262677 | Banerjea et al. | Oct 2009 | A1 |
20100040056 | Kobayashi | Feb 2010 | A1 |
20100085916 | Yu et al. | Apr 2010 | A1 |
20100182944 | Kish et al. | Jul 2010 | A1 |
20110019653 | Seok | Jan 2011 | A1 |
20110096712 | Kish et al. | Apr 2011 | A1 |
20110119401 | Miu et al. | May 2011 | A1 |
20110130197 | Bytnar | Jun 2011 | A1 |
20110158233 | Namgung | Jun 2011 | A1 |
20110216685 | Kish et al. | Sep 2011 | A1 |
20120063379 | Kish et al. | Mar 2012 | A1 |
20130010775 | Kish et al. | Jan 2013 | A1 |
20130194969 | Kish et al. | Aug 2013 | A1 |
20140016563 | Kish | Jan 2014 | A1 |
20140071879 | Kish | Mar 2014 | A1 |
20140133385 | Kish | May 2014 | A1 |
20140175117 | Kish | Jun 2014 | A1 |
20150312727 | Kish | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1 965 598 | May 2007 | CN |
102763378 | Oct 2012 | CN |
0352787 | Jul 1989 | EP |
0534612 | Mar 1993 | EP |
1315311 | May 2003 | EP |
11450521 | Aug 2004 | EP |
1608108 | Dec 2005 | EP |
1 653 664 | May 2006 | EP |
2 350 863 | Aug 2015 | EP |
2306278 | Apr 1997 | GB |
3038933 | Jul 1989 | JP |
2008088633 | Feb 1996 | JP |
2001057560 | Feb 2002 | JP |
2005354249 | Dec 2005 | JP |
2006060408 | Mar 2006 | JP |
31159 | Oct 2012 | VN |
WO2002025967 | Mar 2002 | WO |
WO200249360 | Jun 2002 | WO |
WO2003079484 | Sep 2003 | WO |
WO 2004057817 | Jul 2004 | WO |
2005008938 | Jan 2005 | WO |
WO 2006052639 | May 2006 | WO |
WO 2007016326 | Feb 2007 | WO |
WO 2009088488 | Jul 2009 | WO |
WO 2011060454 | May 2011 | WO |
WO 2012061531 | May 2012 | WO |
Entry |
---|
Hirayama et al., Next-Generation Mobil-Access IP Network, Hitachi Review, vol. 49 (2000), No. 4, pp. 176-179. |
Hjalmtysson et al., Overcoming Last-Hop/First-Hop Problems in IP Multicast, Reykjavik University, Dept. of Computer Science, Ofanleiti 2, 103 Reykjavik, Iceland, (The Icelandic Centre for Research under grant No. 020500002.). |
Visoottiviseth et al., Sender-Initiated Multicast Forwarding Scheme, Telecommunications, 2003, ICT 2003 10th International Conference, pp. 334-339, downloaded on Mar. 26, 2009 from IEEE Xplore, 0-7803-7661 (c) 2003 IEEE. |
Tang et al., Mac Reliable Broadcast in Ad Hoc Networks, Computer Science Dept., University of California, Los Angeles, pp. 1008-1013, 0-7803-7225 (c) 2001 IEEE. |
Tsunekawa, Kouichi, “Diversity Antennas for Portable Telephones”, 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. 1, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA. |
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003. |
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001. |
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001. |
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002. |
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003. |
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002. |
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004. |
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004. |
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003. |
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548. |
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598. |
Ian F. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology. |
Pat Calhoun et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html. |
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004. |
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004. |
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006. |
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006. |
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001. |
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003. |
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007. |
Gillham, Bruce et al. JUNOSe Internet Software for E-series Routing Platforms Policy and QoS Configuration Guide, Release 7.0x. |
Fair queuing, http://en.wikipedia.org/wiki/Fair_queuing. |
Weighted Fair Queuing, http://en.wikipedia.org/wiki/Weighted_fair_queuing. |
Weighted Round Robin, http://en.wikipedia.org/wiki/Weighted_round_robin. |
PCT Search Report and Written Opinion for PCT/US08/014148 dated Mar. 30, 2009. |
PCT Search Report and Written Opinion for PCT/US11/059019 dated Feb. 21, 2012. |
PCT Search Report and Written Opinion for PCT/US05/039760 dated Sep. 14, 2006. |
PCT Search Report and Written Opinion for PCT/US05/039760 dated May 3, 2011. |
U.S. Appl. No. 12/008,715, Office Action dated Sep. 2, 2011. |
U.S. Appl. No. 12/181,274, Final Office Action dated Jan. 18, 2012. |
U.S. Appl. No. 11/985,865, Office Action dated Dec. 20, 2010. |
U.S. Appl. No. 12/947,803, Office Action dated Aug. 27, 2012. |
CN Application No. 20058001629.7, Office Action dated Feb. 21, 2012. |
U.S. Appl. No. 12/181,274, Office Action dated Nov. 15, 2012. |
U.S. Appl. No. 12/938,316, Office Action dated Nov. 20, 2012. |
U.S. Appl. No. 12/947,800, Office Action dated Sep. 26, 2012. |
U.S. Appl. No. 14/160,402 Office Action dated Oct. 22, 2014. |
U.S. Appl. No. 14/080,488, Office Action dated Oct. 21, 2014. |
U.S. Appl. No. 11/267,477, Decision on Appeal mailed Nov. 11, 2014. |
U.S. Appl. No. 14/028,323, Office Action dated Oct. 14, 2014. |
U.S. Appl. No. 14/080,488, filed Nov. 14, 2013, William S.Kish, MAC Based Mapping in IP Based Communications. |
U.S. Appl. No. 14/028,323, filed Sep. 16, 2013, William S.Kish, Wireless Network Throughput Enhancement Through Channel Aware Scheduling. |
U.S. Appl. No. 14/106,514, filed Dec. 13, 2013, William S.Kish, Unicast to Multicast Conversion. |
Chinese Application No. 201080002467.X, Office Action dated Jul. 3, 2014. |
Chinese Application No. 20058001629.7, Office Action dated Aug. 6, 2014. |
U.S. Appl. No. 14/106,514, Office Action dated Sep. 22, 2014. |
Chinese Application No. 201080002467.X, Second Office Action dated Jan. 26, 2015. |
EP Application No. 10813061.8. Supplementary European Search Report dated Jul. 23, 2012. |
U.S. Appl. No. 13/736,017 Office Action dated Nov. 21, 2013. |
Chinese Application No. 20058001629.7, Office Action dated Jan. 21, 2014. |
EP Application No. 10813061.8. Supplementary European Search Report dated Oct. 13, 2011. |
TW Application No. 094138837, Office Action dated Apr. 25, 2013. |
TW Application No. 094138837, Office Action dated Nov. 28, 2011. |
U.S. Appl. No. 12/181,274, Final Office Action dated Jun. 19, 2013. |
U.S. Appl. No. 12/947,803, Final Office Action dated Jul. 17, 2013. |
U.S. Appl. No. 11/267,477, Office Action dated Apr. 8, 2015. |
U.S. Appl. No. 12/947,803, Office Action dated Mar. 12, 2015. |
U.S. Appl. No. 14/028,323, Final Office Action dated Jun. 12, 2015. |
U.S. Appl. No. 14/748,141, filed Jun. 23, 2015, William S. Kish, Distributed Access Point for IP Based Communications. |
Taiwan Application No. 103106913, Office Action dated May 28, 2015. |
Chinese Application No. 201080002467.X, Notice of Grant dated Jul. 30, 2015. |
European Application No. 10813061.8 Communication to Grant dated Mar. 10, 2015. |
U.S. Appl. No. 14/979,018, filed Dec. 22, 2015, William S. Kish, Increasing Reliable Data Throughput in a Wireless Network. |
Akyildiz et al., “Wireless mesh networks: a survey,” Computer Networks, 2005. |
Cato et al., “Method for Easier, Better, and Faster Site Surveys for Wireless Networks,” IBM Technical Disclosure Bulletin, vol. 40, No. 1, 1997. |
Chawla, “Design of a Wireless Backhaul Network for Microcells,” 1999. |
Johansson et al., “Relaying Access Points and Related Business Models for Low Cost Mobile Systems,” 2004. |
Yanikomeroglu, “Cellular Multihop Communications: Infrastructure—Based Relay Network Architecture for 4G Wireless Systems,” 2004. |
Number | Date | Country | |
---|---|---|---|
20110119360 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61261612 | Nov 2009 | US |