Establishing data reliability groups within a geographically distributed data storage environment

Information

  • Patent Grant
  • 11592993
  • Patent Number
    11,592,993
  • Date Filed
    Wednesday, August 5, 2020
    4 years ago
  • Date Issued
    Tuesday, February 28, 2023
    2 years ago
Abstract
Establishing data reliability groups within a geographically distributed data storage environment is presented herein. A system can comprise a processor; and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations, comprising: partitioning geographically distributed data storage zones into reliability groups, in which a reliability group of the reliability groups comprises a group of storage zones comprising a defined amount of the geographically distributed data storage zones; and facilitating a replication of data of the group of storage zones using a portion of remaining data of the group of storage zones.
Description
TECHNICAL FIELD

The subject disclosure generally relates to embodiments for establishing data reliability groups within a geographically distributed data storage environment.


BACKGROUND

Conventional storage technologies facilitate remote storage and access of data via the cloud. However, as the demand for such storage and access has increased, so too has the risk of storage failures and costs associated with recovering from such failures. Consequently, conventional storage technologies have had some drawbacks, some of which may be noted with reference to the various embodiments described herein below.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting embodiments of the subject disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified:



FIG. 1 illustrates a block diagram of a cloud-based storage environment comprising a data recovery system for establishing data reliability groups within geographically distributed data storage, in accordance with various example embodiments;



FIG. 2 illustrates a block diagram of a data recovery system, in accordance with various example embodiments;



FIG. 3 illustrates a block diagram of zones of data storage within a cloud-based geographically distributed data storage environment, in accordance with various example embodiments;



FIG. 4 illustrates a cloud-based geographically distributed data storage environment that has been partitioned into data reliability groups comprising zones of data storage, in accordance with various example embodiments;



FIG. 5 illustrates another cloud-based geographically distributed data storage environment that that has been partitioned into a defined number of data reliability groups, in accordance with various example environments;



FIGS. 6-8 illustrate zones of data storage of a data reliability group during data backup of the data storage, in accordance with various example embodiments;



FIGS. 9-12 illustrate zones of data storage of a data reliability group during data recovery of the data storage, in accordance with various example embodiments;



FIG. 13 illustrates a flow chart of a method associated with establishing data reliability groups within a geographically distributed data storage environment, in accordance with various example embodiments;



FIG. 14 illustrates a flowchart of a method for performing data backup of a zone of data storage, in accordance with various example embodiments;



FIG. 15 illustrates a flowchart of a method for performing data recovery of the zone of data storage, in accordance with various example embodiments; and



FIG. 16 illustrates a block diagram representing an illustrative non-limiting computing system or operating environment in which one or more aspects of various embodiments described herein can be implemented.





DETAILED DESCRIPTION

Aspects of the subject disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which example embodiments are shown. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. However, the subject disclosure may be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein.


As described above, conventional storage technologies have had some drawbacks with respect to managing risk of storage failures in a geographically distributed data storage environment and reducing data recovery costs corresponding to such failures. On the other hand, various embodiments disclosed herein can limit risks of multiple data failures associated with an increased amount of geographically distributed data storage, and limit costs associated with data recovery by splitting large clusters of geographically distributed data storage into reliability groups, and restricting replication of data of a reliability group to zones of the reliability group.


For example, a system, e.g., a data recovery system, can comprise a processor, and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations, comprising: partitioning, dividing, splitting, sorting, etc. geographically distributed data storage zones, clusters, etc. (e.g., within a cloud-based data storage environment) into reliability groups. In this regard, in one embodiment, an equal amount of data storage zones of the geographically distributed data storage zones can be included in each of the reliability groups. In another embodiment, different amounts of data storage zones can be included in respective reliability groups of the reliability groups.


In yet another embodiment, the data recovery system can employ a “clustering” technique to select, from the geographically distributed data storage zones, data storage zones to be included in a reliability group. In this regard, in one embodiment, the data storage zones can be selected for the reliability group based on a defined similarity between the data storage zones, e.g., with respect to a data transfer bandwidth, throughput, etc.


In another embodiment, the data storage zones can be selected for the reliability group according to an “anti-clustering” technique, e.g., based on a defined dissimilarity between the data storage zones, e.g., with respect to a geological condition, hazard, risk, etc. (e.g., earthquake risk, flood risk, hurricane risk, etc.). In yet another embodiment, the data storage zones can be selected for the reliability group based on a defined probability of a single storage failure within the reliability group; a required use efficiency (e.g., defined amount of utilization) of the reliability group, etc.


Further, the operations can comprise facilitating a replication of data of the group of storage zones using a portion of remaining data of the group of storage zones. In this regard, in an embodiment, the facilitating of the replication of the data can comprise restricting the replication of the data outside of the group of storage zones, i.e., allowing, enabling, facilitating, etc. replication of data, user data, etc. inside, within, etc. a single reliability group solely utilizing storage zones belonging to the single reliability group.


In embodiment(s), the data of the group of storage zones can correspond to a source storage zone of the group of storage zones, and the portion of the remaining data of the group of storage zones can correspond to a protection set, e.g., of a target storage zone, for facilitating recovery of the data of the source storage zone.


For example, the protection set can comprise an exclusive-or (XOR) chunk/block that has been generated by performing an XOR operation on a copy of a data chunk/block of the source storage zone and a copy of a data chunk/block of the target storage zone. In an embodiment, data chunks/blocks of the group of storage zones comprise a defined number, e.g., 128 megabytes (MB), of data blocks.


In this regard, in response to determining that the data chunk/block of the source storage zone has been destroyed, removed, lost, erased, etc., the operations can further comprise performing an XOR operation on the XOR chunk/block and the copy of the data chunk/block of the target storage zone to obtain a backup copy of the data chunk/block of the source storage zone.


In one embodiment, a method can comprise: dividing, by a system comprising a processor, geographically distributed data storage zones into data reliability groups, in which a data reliability group of the data reliability groups comprises a group of storage zones comprising a defined number of the geographically distributed data storage zones; and facilitating, by the system, a replication of a storage zone of the group of storage zones using a portion of remaining storage zones of the group of storage zones.


In embodiment(s), the dividing of the geographically distributed data storage zones comprises selecting the defined number of the geographically distributed data storage zones for the data reliability group based on respective rates of data throughput, e.g., bandwidth, corresponding to the defined number of the geographically distributed data storage zones.


In other embodiment(s), the dividing of the geographically distributed data storage zones comprises selecting the defined number of the geographically distributed data storage zones for the data reliability group based on a defined condition with respect to geologically-based hazard(s), e.g., risk of earthquake, risk of flood, risk of hurricane, etc. corresponding to the defined number of the geographically distributed data storage zones.


In yet other embodiment(s), the facilitating of the replication of the data storage zone comprises: creating a first backup copy of a first data chunk of a source storage zone of the group of storage zones in a first target storage zone of the group of storage zones; creating a second backup copy of a second data chunk of the source storage zone in a second target storage zone of the group of storage zones; and creating a third backup copy of a third data chunk of the second target storage zone in the first target storage zone.


Further, the method can comprise performing, by the system, a first XOR operation on the first backup copy of the first data chunk and the third backup copy of the third data chunk to obtain an XOR result; and removing, by the system, the first backup copy and the third backup copy from the first target storage zone.


In turn, in other embodiment(s), the method can comprise: in response to determining that the first data chunk of the source storage zone has been destroyed, removed, lost, erased, etc., performing, by the system, a second XOR operation using the XOR result and the third data chunk to obtain, derive, etc. the first backup copy of the first data chunk.


One embodiment can comprise a computer-readable storage medium comprising instructions that, in response to execution, cause a system comprising a processor to perform operations, comprising: splitting a geographically distributed cluster of storage zones into a defined amount of storage reliability groups, wherein a storage reliability group of the defined amount of storage reliability groups comprises a defined amount of storage zones of the geographically distributed cluster of storage zones; and facilitating replication of a data chunk of a first storage zone of the storage reliability group using data of a second storage zone of the storage reliability group.


In embodiment(s), the splitting of the geographically distributed cluster of storage zones comprises: forming the storage reliability group based on respective communication bandwidths of the defined amount of storage zones.


In other embodiment(s), the splitting of the geographically distributed cluster of storage zones comprises: forming the storage reliability group based on respective geological characteristics corresponding to the defined amount of storage zones.


In one embodiment, the facilitating the replication of the data chunk comprises: preventing replication of data chunks of the storage reliability group using data outside of the storage reliability group.


As described above, conventional network technologies have had some drawbacks with respect to being susceptible to increased risks of storage failures and costs associated with recovering from such failures. For example, assuming that a statistical probability of a failure in a storage system is constant, a probability of a dual, triple, etc. data failure, e.g., loss of data, etc. of a storage group of a storage system increases as a total number of storage groups of the storage system increases. Further, although the storage system can recover lost data of a storage group using remaining storage groups of the storage system, data recovery costs increase as the total number of storage groups increases.


Various embodiments described herein can limit the probability of dual, triple, etc. data failures within a geographically distributed, e.g., cloud-based, storage system by splitting, grouping, dividing, partitioning, etc. a large cluster of data storage zones of the geographically distributed storage system into reliability groups, e.g., preventing single storage, data, etc. failures within different reliability groups from causing a data loss.


Further, the various embodiments described herein can limit the cost of data recovery within the geographically distributed storage system by facilitating replication of data within a single reliability group—using, solely using, etc. storage zones belonging to the single reliability group.


Now referring to FIGS. 1-4, block diagrams of a cloud-based storage environment (100) comprising a data recovery system (110) for establishing data reliability groups within geographically distributed data storage (120); the data recovery system comprising a clustering component and a replication component; zones of data storage within a cloud-based geographically distributed data storage environment (300); and partitioning of the cloud-based geographically distributed data storage environment into data reliability groups comprising respective zones of the zones of data storage are illustrated, respectively, in accordance with various example embodiments.


Clustering component 210 can partition, divide, split, sort, etc. geographically distributed data storage zones, clusters, etc. (301, 302, 303, 304, 305, 306, 307, 308, 309) into reliability groups (410, 420, 430). In this regard, in an embodiment illustrated by FIG. 3, clustering component 210 can partition, divide, split, sort, etc. an equal amount of data storage zones of the geographically distributed data storage zones, clusters, etc. into each of the reliability groups. In another embodiment (not shown), different amounts of data storage zones can be included in respective reliability groups of the reliability groups.


In one embodiment, clustering component 210 can employ a “clustering” technique to select data storage zones from the geographically distributed data storage zones, clusters, etc. to be included in respective reliability groups. In this regard, in one embodiment, clustering component 210 can select data storage zones for a reliability group based on a defined similarity between the data storage zones, e.g., with respect to the data storage zones satisfying a defined condition representing respective distances between the data storage zones being less than or equal to a defined number of miles, kilometers, etc.; with respect to the data storage zones satisfying a defined condition representing respective data transfer bandwidths of the data storage zones being greater than or equal to a defined rate of data transfer, etc. For example, clustering component 210 can select data storage zones that have similar data transfer, bandwidth, etc. capabilities for the reliability group.


Now referring to another embodiment illustrated by FIG. 5, clustering component 210 can select data storage zones for a reliability group according to an “anti-clustering” technique, e.g., based on a defined dissimilarity between the data storage zones, e.g., with respect to a geological condition, hazard, risk, etc. (e.g., earthquake risk, flood risk, hurricane risk, etc.). In this regard, clustering component 210 can select respective data storage zones for reliability groups 510, 520, and 530 in response to determining that data storage zones of a reliability group satisfy a defined condition representing that the data storage zones are associated with disparate risks of geological hazard, e.g., earthquake, flood, hurricane, etc. For example, as illustrated by FIG. 5, data storage zones 302 and 303 of South America can be included in different reliability groups (520, 530) in response to determinations by clustering component 210 that: data storage zones 302 and 303 are associated with a similar earthquake risk; and data storage zones (305 and 308)/(307 and 309) of reliability group 520/530 are associated with respective earthquake risks different from the similar earthquake risk of data storage zone 303/302.


In yet another embodiment, clustering component 210 can select data storage zones for a reliability group based on a defined probability of a single storage failure within the reliability group; a required use efficiency (e.g., defined amount of utilization) of the reliability group, etc.


Referring now to FIG. 2, replication component 220 can facilitate a replication of data of a group of storage zones of a reliability group using a portion of remaining data of the group of storage zones of the reliability group. In this regard, in an embodiment, replication component 220 can facilitate the replication of the data by restricting replication of the data outside of the group of storage zones of the reliability group, i.e., allowing, enabling, facilitating, etc. replication of the data within the reliability group solely utilizing storage zones belonging to the reliability group.


In this regard, and now referring to FIGS. 6-8, zones of data storage of a data reliability group during stages of data backup of the zones of data storage are illustrated, in accordance with various example embodiments. Initially, each data storage zone (301, 302, 303) of reliability group 410 comprises two data chunks/blocks (“Chunk A1” and “Chunk A2” of data storage zone 301; “Chunk B1 and “Chunk B2” of data storage zone 302; and “Chunk C1” and “Chunk C2” of data storage zone 303). In an embodiment, a data chunk/block comprises 128 MB.


As illustrated by FIG. 6, replication component 220 can create, store, etc. a backup copy of respective data chunks/blocks of each data storage zone of reliability group 410 in other data storage zones of reliability group 410. In an embodiment, each data storage zone of reliability group 410 can communicate, transfer data, etc. with each other, and replication component can facilitate, initiate, etc. such communication, data transfer, etc. to perform operations, e.g., data storage/retrieval, XOR operations, etc. described herein.


In the embodiment illustrated by FIG. 6, replication component 220 stores a first data chunk/block of each data storage zone in another data storage zone in a clockwise manner. Further, replication component 220 stores a second data chunk/block of each data storage zone in the other data storage zone in a counterclockwise manner. In other embodiment(s), such replication is performed in an opposite, e.g., counterclockwise and clockwise, manner.


Referring now to FIG. 7, replication component 220 can derive, or facilitate derivation by respective data storage zones, an XOR chunk/block for each storage zone. In this regard, the XOR chunk/block is obtained by performing an XOR operation on the data chunks/blocks that have been copied, stored, etc. in the storage zone, e.g., XOR CB=Chunk C1′⊕Chunk B2′. In embodiment(s), a protection set of the storage zone comprises the XOR chunk/block and the data chunks/blocks that were used to generate, derive, etc. the XOR chunk/block. As illustrated by FIG. 8, after the XOR chunk/block has been created, replication component 220, or the respective data storage zones, can delete the data chunks/blocks that were used to generate the XOR chunk/block.


Now referring to FIGS. 9-12, zones of data storage of a data reliability group during stages of data recovery of the data storage are illustrated, in accordance with various example embodiments. As illustrated by FIG. 9, replication component 220, and/or data storage zone 301 and/or data storage zone 302, can determine a failure, e.g., comprising a loss of data, of data storage zone 303. In turn, in an embodiment illustrated by FIG. 10, data storage zones 301 and 302 can cease communications with data storage zone 303. Further, replication component 220 can initiate recovery, e.g., via data storage zoned 301 and 302, of the data chunks/blocks of data storage zone 303.


In this regard, as illustrated by FIG. 11, replication component 220 can facilitate, initiate, etc. retrieval of copies of data chunks/blocks, which were used to generate respective XOR chunks/blocks of data storage zones 301 and 302, into data storage zones 301 and 302, e.g., retrieving a copy of Chunk B2/Chunk A1 into data storage zone 301/302.


In turn, as illustrated by FIG. 12, replication component 220 can facilitate, initiate, etc. restoration of the data chunks/blocks of data storage zone 303. In this regard, replication component 220, and/or data storage zones 301/302, can perform XOR operations on respective XOR chunks/blocks of data storage zones 301/302, and respective copies of the data chunks/blocks that were used to generate the respective XOR chunks/blocks, to derive, obtain, restore a copy, backup copy, etc. of the data chunks/blocks of data storage zone 303. In this regard, the XOR operation to derive Chunk C1=XOR CB⊕Chunk B2′, and the XOR operation to derive Chunk C2=XOR AC⊕Chunk A1′.



FIGS. 13-15 illustrate methodologies for performing operations corresponding to data recovery system 110, in accordance with various example embodiments. For simplicity of explanation, the methodologies are depicted and described as a series of acts. It is to be understood and appreciated that various embodiments disclosed herein are not limited by the acts illustrated and/or by the order of acts. For example, acts can occur in various orders and/or concurrently, and with other acts not presented or described herein. Furthermore, not all illustrated acts may be required to implement the methodologies in accordance with the disclosed subject matter. In addition, those skilled in the art will understand and appreciate that the methodologies could alternatively be represented as a series of interrelated states via a state diagram or events. Additionally, it should be further appreciated that the methodologies disclosed hereinafter and throughout this specification are capable of being stored on an article of manufacture to facilitate transporting and transferring such methodologies to computers. The term article of manufacture, as used herein, is intended to encompass a computer program accessible from any computer-readable device, carrier, or media.



FIG. 13 illustrates a flow chart (1300) of a method associated with establishing data reliability groups within a geographically distributed data storage environment, in accordance with various example embodiments. At 1310, a system comprising a processor, e.g., data recovery system 110, can divide, partition, split, etc. geographically distributed data storage zones, e.g., within a cloud-based data storage environment, into data reliability groups—a data reliability group of the data reliability groups comprising a group of storage zones comprising a defined number of the geographically distributed data storage zones. At 1320, the system can facilitate a replication of a storage zone of the group of storage zones using a portion of remaining storage zones of the group of storage zones.


In embodiment(s), the system can divide, partition, split, etc. the geographically distributed data storage zones by selecting the defined number of the geographically distributed data storage zones for the data reliability group based on respective rates, e.g., similar (e.g., within 10%), of data throughput, e.g., bandwidth, corresponding to the defined number of the geographically distributed data storage zones.


In other embodiment(s), the system can divide, partition, split, etc. the geographically distributed data storage zones by selecting the defined number of the geographically distributed data storage zones for the data reliability group based on a defined condition with respect to geologically-based hazard(s), e.g., risk of earthquake, risk of flood, risk of hurricane, etc. corresponding to the defined number of the geographically distributed data storage zones.


Referring now to FIG. 14, a flowchart (1400) of a method for performing data backup of a zone of data storage is illustrated, in accordance with various example embodiments. At 1410, the system, i.e., corresponding to FIG. 13, can create a first backup copy of a first data chunk of a source storage zone of the group of storage zones in a first target storage zone of the group of storage zones. At 1420, the system can create a second backup copy of a second data chunk of the source storage zone in a second target storage zone of the group of storage zones.


At 1430, the system can create a third backup copy of a third data chunk of the second target storage zone in the first target storage zone. At 1440, the system can perform an XOR operation on the first backup copy and the third backup copy to obtain an XOR result. At 1450, the system can remove the first backup copy and the third backup copy from the first target storage zone.


Now referring to FIG. 15, a flowchart (1500) of a method for performing data recovery of the zone of data storage corresponding to FIG. 14 is illustrated, in accordance with various example embodiments. At 1510, it can be determined whether the first data chunk of the source storage zone has been lost. In this regard, in response to a determination that the first data chunk of the source storage zone has been lost, flow continues to 1520, at which the system can retrieve a copy of the third data chunk into the first target storage zone; otherwise flow returns to 1510. At 1530, the system can perform an XOR operation on the XOR result and the copy of the third data chunk to obtain a copy of the first data chunk of the source storage zone.


Reference throughout this specification to “one embodiment,” or “an embodiment,” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment,” or “in an embodiment,” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the appended claims, such terms are intended to be inclusive—in a manner similar to the term “comprising” as an open transition word—without precluding any additional or other elements. Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.


As utilized herein, the terms “logic,” “logical,” “logically,” and the like are intended to refer to any information having the form of instruction signals and/or data that may be applied to direct the operation of a processor. Logic may be formed from signals stored in a device memory. Software is one example of such logic. Logic may also be comprised by digital and/or analog hardware circuits, for example, hardware circuits comprising logical AND, OR, XOR, NAND, NOR, and other logical operations. Logic may be formed from combinations of software and hardware. On a network, logic may be programmed on a server, or a complex of servers. A particular logic unit is not limited to a single logical location on the network.


As utilized herein, terms “component,” “system,” and the like are intended to refer to a computer-related entity, hardware, software (e.g., in execution), and/or firmware. For example, a component can be a processor, a process running on a processor, an object, an executable, a program, a storage device, and/or a computer. By way of illustration, an application running on a server, client, etc. and the server, client, etc. can be a component. One or more components can reside within a process, and a component can be localized on one computer and/or distributed between two or more computers.


Further, components can execute from various computer readable media having various data structures stored thereon. The components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network, e.g., the Internet, with other systems via the signal).


As another example, a component can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic circuitry; the electric or electronic circuitry can be operated by a software application or a firmware application executed by one or more processors; the one or more processors can be internal or external to the apparatus and can execute at least a part of the software or firmware application. In yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts; the electronic components can comprise one or more processors therein to execute software and/or firmware that confer(s), at least in part, the functionality of the electronic components.


Aspects of systems, apparatus, and processes explained herein can constitute machine-executable instructions embodied within a machine, e.g., embodied in a computer readable medium (or media) associated with the machine. Such instructions, when executed by the machine, can cause the machine to perform the operations described. Additionally, the systems, processes, process blocks, etc. can be embodied within hardware, such as an application specific integrated circuit (ASIC) or the like. Moreover, the order in which some or all of the process blocks appear in each process should not be deemed limiting. Rather, it should be understood by a person of ordinary skill in the art having the benefit of the instant disclosure that some of the process blocks can be executed in a variety of orders not illustrated.


Furthermore, the word “exemplary” and/or “demonstrative” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” and/or “demonstrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art having the benefit of the instant disclosure.


The disclosed subject matter can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, computer-readable carrier, or computer-readable media. For example, computer-readable media can comprise, but are not limited to: random access memory (RAM); read only memory (ROM); electrically erasable programmable read only memory (EEPROM); flash memory or other memory technology (e.g., card, stick, key drive, thumb drive, smart card); solid state drive (SSD) or other solid-state storage technology; optical disk storage (e.g., compact disk (CD) read only memory (CD ROM), digital video/versatile disk (DVD), Blu-ray disc); cloud-based (e.g., Internet based) storage; magnetic storage (e.g., magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices); a virtual device that emulates a storage device and/or any of the above computer-readable media; or other tangible and/or non-transitory media which can be used to store desired information. In this regard, the terms “tangible” or “non-transitory” herein as applied to storage, memory, or computer-readable media, are to be understood to exclude only propagating transitory signals per se as modifiers and do not relinquish rights to all standard storage, memory or computer-readable media that are not only propagating transitory signals per se.


Artificial intelligence based systems, e.g., utilizing explicitly and/or implicitly trained classifiers, can be employed in connection with performing inference and/or probabilistic determinations and/or statistical-based determinations as in accordance with one or more aspects of the disclosed subject matter as described herein. For example, an artificial intelligence system can be used, via data recovery system 110, to partition geographically distributed storage zones into reliability groups, facilitate a replication of data of a storage zone of a reliability group of the reliability groups using a portion of remaining data of the storage zone, etc. as described herein.


A classifier can be a function that maps an input attribute vector, x=(x1, x2, x3, x4, xn), to a confidence that the input belongs to a class, that is, f(x)=confidence (class). Such classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to infer an action that a user desires to be automatically performed. In the case of communication systems, for example, attributes can be information received from access points, servers, components of a wireless communication network, etc., and the classes can be categories or areas of interest (e.g., levels of priorities). A support vector machine is an example of a classifier that can be employed. The support vector machine operates by finding a hypersurface in the space of possible inputs, which the hypersurface attempts to split the triggering criteria from the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical to training data. Other directed and undirected model classification approaches include, e.g., naïve Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein can also be inclusive of statistical regression that is utilized to develop models of priority.


In accordance with various aspects of the subject specification, artificial intelligence based systems, components, etc. can employ classifiers that are explicitly trained, e.g., via a generic training data, etc. as well as implicitly trained, e.g., via observing characteristics of communication equipment, e.g., a server, etc., receiving reports from such communication equipment, receiving operator preferences, receiving historical information, receiving extrinsic information, etc. For example, support vector machines can be configured via a learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) can be used by an artificial intelligence system to automatically learn and perform a number of functions, e.g., performed by data recovery system 110.


As used herein, the term “infer” or “inference” refers generally to the process of reasoning about, or inferring states of, the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit data, explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states of interest based on a consideration of data and events, for example.


Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources. Various classification schemes and/or systems (e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, and data fusion engines) can be employed in connection with performing automatic and/or inferred action in connection with the disclosed subject matter.


As it is employed in the subject specification, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions and/or processes described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of mobile devices. A processor may also be implemented as a combination of computing processing units.


In the subject specification, terms such as “store,” “data store,” “data storage,” “database,” “storage medium,” “socket”, and substantially any other information storage component relevant to operation and functionality of a system, component, and/or process, can refer to “memory components,” or entities embodied in a “memory,” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can comprise both volatile and nonvolatile memory.


By way of illustration, and not limitation, nonvolatile memory, for example, can be included in data recovery system 110, geographically distributed data storage 120, non-volatile memory 1622 (see below), disk storage 1624 (see below), and/or memory storage 1646 (see below). Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory 1620 can comprise random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.


In order to provide a context for the various aspects of the disclosed subject matter, FIG. 16, and the following discussion, are intended to provide a brief, general description of a suitable environment in which the various aspects of the disclosed subject matter can be implemented. While the subject matter has been described above in the general context of computer-executable instructions of a computer program that runs on a computer and/or computers, those skilled in the art will recognize that various embodiments disclosed herein can be implemented in combination with other program modules. Generally, program modules comprise routines, programs, components, data structures, etc. that perform particular tasks and/or implement particular abstract data types.


Moreover, those skilled in the art will appreciate that the various systems can be practiced with other computer system configurations, comprising single-processor or multiprocessor computer systems, computing devices, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, watch), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communication network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.


With reference to FIG. 16, a block diagram of a computing system 1600, e.g., data recovery system 110, operable to execute the disclosed systems and methods is illustrated, in accordance with an embodiment. Computer 1612 comprises a processing unit 1614, a system memory 1616, and a system bus 1618. System bus 1618 couples system components comprising, but not limited to, system memory 1616 to processing unit 1614. Processing unit 1614 can be any of various available processors. Dual microprocessors and other multiprocessor architectures also can be employed as processing unit 1614.


System bus 1618 can be any of several types of bus structure(s) comprising a memory bus or a memory controller, a peripheral bus or an external bus, and/or a local bus using any variety of available bus architectures comprising, but not limited to, industrial standard architecture (ISA), micro-channel architecture (MSA), extended ISA (EISA), intelligent drive electronics (IDE), VESA local bus (VLB), peripheral component interconnect (PCI), card bus, universal serial bus (USB), advanced graphics port (AGP), personal computer memory card international association bus (PCMCIA), Firewire (IEEE 1394), small computer systems interface (SCSI), and/or controller area network (CAN) bus used in vehicles.


System memory 1616 comprises volatile memory 1620 and nonvolatile memory 1622. A basic input/output system (BIOS), containing routines to transfer information between elements within computer 1612, such as during start-up, can be stored in nonvolatile memory 1622. By way of illustration, and not limitation, nonvolatile memory 1622 can comprise ROM, PROM, EPROM, EEPROM, or flash memory. Volatile memory 1620 comprises RAM, which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as SRAM, dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), Rambus direct RAM (RDRAM), direct Rambus dynamic RAM (DRDRAM), and Rambus dynamic RAM (RDRAM).


Computer 1612 also comprises removable/non-removable, volatile/non-volatile computer storage media. FIG. 16 illustrates, for example, disk storage 1624. Disk storage 1624 comprises, but is not limited to, devices like a magnetic disk drive, floppy disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card, or memory stick. In addition, disk storage 1624 can comprise storage media separately or in combination with other storage media comprising, but not limited to, an optical disk drive such as a compact disk ROM device (CD-ROM), CD recordable drive (CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM drive (DVD-ROM). To facilitate connection of the disk storage devices 1624 to system bus 1618, a removable or non-removable interface is typically used, such as interface 1626.


It is to be appreciated that FIG. 16 describes software that acts as an intermediary between users and computer resources described in suitable operating environment 1600. Such software comprises an operating system 1628. Operating system 1628, which can be stored on disk storage 1624, acts to control and allocate resources of computer system 1612. System applications 1630 take advantage of the management of resources by operating system 1628 through program modules 1632 and program data 1634 stored either in system memory 1616 or on disk storage 1624. It is to be appreciated that the disclosed subject matter can be implemented with various operating systems or combinations of operating systems.


A user can enter commands or information into computer 1612 through input device(s) 1636. Input devices 1636 comprise, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, cellular phone, user equipment, smartphone, and the like. These and other input devices connect to processing unit 1614 through system bus 1618 via interface port(s) 1638. Interface port(s) 1638 comprise, for example, a serial port, a parallel port, a game port, a universal serial bus (USB), a wireless based port, e.g., Wi-Fi, Bluetooth, etc. Output device(s) 1640 use some of the same type of ports as input device(s) 1636.


Thus, for example, a USB port can be used to provide input to computer 1612 and to output information from computer 1612 to an output device 1640. Output adapter 1642 is provided to illustrate that there are some output devices 1640, like display devices, light projection devices, monitors, speakers, and printers, among other output devices 1640, which use special adapters. Output adapters 1642 comprise, by way of illustration and not limitation, video and sound devices, cards, etc. that provide means of connection between output device 1640 and system bus 1618. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 1644.


Computer 1612 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 1644. Remote computer(s) 1644 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device, or other common network node and the like, and typically comprises many or all of the elements described relative to computer 1612.


For purposes of brevity, only a memory storage device 1646 is illustrated with remote computer(s) 1644. Remote computer(s) 1644 is logically connected to computer 1612 through a network interface 1648 and then physically and/or wirelessly connected via communication connection 1650. Network interface 1648 encompasses wire and/or wireless communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies comprise fiber distributed data interface (FDDI), copper distributed data interface (CDDI), Ethernet, token ring and the like. WAN technologies comprise, but are not limited to, point-to-point links, circuit switching networks like integrated services digital networks (ISDN) and variations thereon, packet switching networks, and digital subscriber lines (DSL).


Communication connection(s) 1650 refer(s) to hardware/software employed to connect network interface 1648 to bus 1618. While communication connection 1650 is shown for illustrative clarity inside computer 1612, it can also be external to computer 1612. The hardware/software for connection to network interface 1648 can comprise, for example, internal and external technologies such as modems, comprising regular telephone grade modems, cable modems and DSL modems, wireless modems, ISDN adapters, and Ethernet cards.


The computer 1612 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, cellular based devices, user equipment, smartphones, or other computing devices, such as workstations, server computers, routers, personal computers, portable computers, microprocessor-based entertainment appliances, peer devices or other common network nodes, etc. The computer 1612 can connect to other devices/networks by way of antenna, port, network interface adaptor, wireless access point, modem, and/or the like.


The computer 1612 is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, user equipment, cellular base device, smartphone, any piece of equipment or location associated with a wirelessly detectable tag (e.g., scanner, a kiosk, news stand, restroom), and telephone. This comprises at least Wi-Fi and Bluetooth wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.


Wi-Fi allows connection to the Internet from a desired location (e.g., a vehicle, couch at home, a bed in a hotel room, or a conference room at work, etc.) without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., mobile phones, computers, etc., to send and receive data indoors and out, anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect communication devices (e.g., mobile phones, computers, etc.) to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, at an 11 Mbps (802.11a) or 54 Mbps (802.11b) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.


The above description of illustrated embodiments of the subject disclosure, comprising what is described in the Abstract, is not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various modifications are possible that are considered within the scope of such embodiments and examples, as those skilled in the relevant art can recognize.


In this regard, while the disclosed subject matter has been described in connection with various embodiments and corresponding Figures, where applicable, it is to be understood that other similar embodiments can be used or modifications and additions can be made to the described embodiments for performing the same, similar, alternative, or substitute function of the disclosed subject matter without deviating therefrom. Therefore, the disclosed subject matter should not be limited to any single embodiment described herein, but rather should be construed in breadth and scope in accordance with the appended claims below.

Claims
  • 1. A method, comprising: dividing, by a system comprising a processor, geographically distributed data storage zones into data reliability groups, wherein a data reliability group of the data reliability groups comprises a group of data storage zones comprising a defined number of the geographically distributed data storage zones; andfacilitating, by the system, a replication of a target data storage zone of the group of data storage zones using respective exclusive-or (XOR) results that have been stored in respective source data storage zones of the group of data storage zones and respective copies of respective data chunks that have been stored in the respective source data storage zones.
  • 2. The method of claim 1, wherein the dividing of the geographically distributed data storage zones comprises: in response to the group of data storage zones being determined to satisfy a defined condition representing that respective distances between the data storage zones are less than or equal to a defined distance, selecting the group of data storage zones for the data reliability group.
  • 3. The method of claim 1, wherein the dividing of the geographically distributed data storage zones comprises: in response to the group of data storage zones being determined to satisfy a defined condition representing that respective data transfer bandwidths of the data storage zones are greater than or equal to a defined rate of data transfer, selecting the group of data storage zones for the data reliability group.
  • 4. The method of claim 1, wherein the dividing of the geographically distributed data storage zones comprises: in response to the group of data storage zones being determined to satisfy a defined condition with respect to a geologically-based hazard corresponding to the data storage zones, selecting the group of data storage zones for the data reliability group.
  • 5. The method of claim 4, wherein the defined condition represents that the data storage zones are associated with disparate risks of geological hazard.
  • 6. The method of claim 1, wherein the dividing of the geographically distributed data storage zones comprises: selecting the group of data storage zones for the data reliability group based on a defined probability of a single storage failure within the data reliability group.
  • 7. The method of claim 1, wherein the dividing of the geographically distributed data storage zones comprises: selecting the group of data storage zones for the data reliability group based on a defined data use efficiency of the data reliability group.
  • 8. The method of claim 1, wherein the facilitating of the replication of the target data storage zone further comprises: creating a first copy of the respective copies in a first source data storage zone of the respective source data storage zones; andcreating a second copy of the respective copies in a second source data storage zone of the respective source data storage zones.
  • 9. The method of claim 8, further comprising: performing, by the system, a first XOR operation on the first copy to obtain a first XOR result representing a first replication of a first data chunk of the target data storage zone.
  • 10. The method of claim 9, further comprising: performing, by the system, a second XOR operation on the second copy to obtain a second XOR result representing a second replication of a second data chunk of the target data storage zone.
  • 11. The method of claim 1, further comprising: in response to determining that a first data chunk of the target data storage zone has been lost, ceasing, by the system, communication with the target data storage zone.
  • 12. The method of claim 11, wherein the facilitating of the replication further comprises: in response to the ceasing of the communication with the target data storage zone, initiating the replication of the target data storage zone.
  • 13. A system, comprising: a processor; anda memory that stores executable instructions that, when executed by the processor, facilitate performance of operations, comprising: partitioning geographically distributed storage zones into groups of storage zones comprising a group of storage zones; andfacilitating a replication of a first storage zone of the group of storage zones using a first exclusive-or (XOR) result that has been stored in a second storage zone of the group of storage zones, a second XOR result that has been stored in a third storage zone of the group of storage zones, a first data chunk that has been stored in the second storage zone, and a second data chunk that has been stored in the third storage zone.
  • 14. The system of claim 13, wherein the partitioning of the geographically distributed storage zones comprises: forming the group of storage zones based on a defined similarity between the storage zones.
  • 15. The system of claim 14, wherein the forming of the group of storage zones comprises: forming the group of storage zones in response to determining that respective distances between the storage zones are less than or equal to a defined distance.
  • 16. The system of claim 14, wherein the forming of the group of storage zones comprises: forming the group of storage zones in response to determining that respective data bandwidths of the storage zones are greater than or equal to a defined data bandwidth.
  • 17. The system of claim 14, wherein the forming of the group of storage zones comprises: forming the group of storage zones in response to determining that the data storage zones are associated with dissimilar risks of geological hazard.
  • 18. The system of claim 13, wherein the facilitating of the replication of the first storage zone further comprises: generating a copy of the second data chunk that has been stored in the third storage zone; andperforming an XOR operation using the first XOR result that has been stored in the second storage zone and the copy of the second data chunk.
  • 19. A non-transitory machine-readable medium comprising instructions that, in response to execution, cause a system comprising a processor to perform operations, comprising: splitting geographically distributed data storage zones into data reliability groups comprising a group of data storage zones; andfacilitating a replication of a first data storage zone of the group of data storage zones by performing an exclusive-or (XOR) operation on a copy of a data chunk corresponding to a second data storage zone of the group of data storage zones and an XOR result that has been stored in a third data storage zone of the group of data storage zones, wherein the XOR result has been computed using the data chunk corresponding to the second data storage zone.
  • 20. The non-transitory machine-readable medium of claim 19, wherein the XOR operation is a first XOR operation, wherein the copy of the data chunk is a first copy of a first data chunk, wherein the XOR result is a first XOR result, and wherein the operations further comprise: performing a second XOR operation on a second XOR result that has been stored in the second data storage zone and a second copy of a second data chunk corresponding to the third data storage zone.
RELATED APPLICATION

The subject patent application is a divisional of, and claims priority to, U.S. patent application Ser. No. 15/651,504, filed Jul. 17, 2017, and entitled “ESTABLISHING DATA RELIABILITY GROUPS WITHIN A GEOGRAPHICALLY DISTRIBUTED DATA STORAGE ENVIRONMENT” (now U.S. Pat. No. 10,761,743), the entirety of which application is hereby incorporated by reference herein.

US Referenced Citations (316)
Number Name Date Kind
5675802 Allen et al. Oct 1997 A
5805788 Johnson Sep 1998 A
5950225 Kleiman Sep 1999 A
6065020 Dussud May 2000 A
6073218 Dekoning et al. Jun 2000 A
6108684 Dekoning et al. Aug 2000 A
6233696 Kedem May 2001 B1
6240527 Schneider et al. May 2001 B1
6502243 Thomas Dec 2002 B1
6549921 Ofek Apr 2003 B1
7007044 Rafert et al. Feb 2006 B1
7103884 Fellin et al. Sep 2006 B2
7389393 Karr et al. Jun 2008 B1
7577091 Antal et al. Aug 2009 B2
7631051 Fein et al. Dec 2009 B1
7636814 Karr et al. Dec 2009 B1
7664839 Karr et al. Feb 2010 B1
7680875 Shopiro et al. Mar 2010 B1
7694191 Bono et al. Apr 2010 B1
7721044 Chatterjee et al. May 2010 B1
7653792 Shimada et al. Jun 2010 B2
7752403 Weinman, Jr. Jul 2010 B1
7895394 Nakajima et al. Feb 2011 B2
8125406 Jensen et al. Feb 2012 B1
8261033 Slik et al. Sep 2012 B1
8370542 Lu et al. Feb 2013 B2
8429514 Goel Apr 2013 B1
8479037 Chatterjee et al. Jul 2013 B1
8495465 Anholt et al. Jul 2013 B1
8504518 Ghemawat et al. Aug 2013 B1
8540625 Miyoshi Sep 2013 B2
8683205 Resch et al. Mar 2014 B2
8725986 Goel May 2014 B1
8751599 Tran et al. Jun 2014 B2
8751740 De Forest et al. Jun 2014 B1
8751897 Borthakur et al. Jun 2014 B2
8799746 Baker et al. Aug 2014 B2
8832234 Brooker et al. Sep 2014 B1
8856619 Cypher Oct 2014 B1
8856624 Paniconi Oct 2014 B1
8892938 Sundaram et al. Nov 2014 B1
8972478 Storer et al. Mar 2015 B1
9003086 Schuller et al. Apr 2015 B1
9021296 Kiselev et al. Apr 2015 B1
9037825 Donlan et al. May 2015 B1
9052942 Barber et al. Jun 2015 B1
9063838 Boyle et al. Jun 2015 B1
9098447 Donlan et al. Aug 2015 B1
9128910 Dayal et al. Sep 2015 B1
9208009 Resch et al. Dec 2015 B2
9218135 Miller et al. Dec 2015 B2
9244761 Yekhanin et al. Jan 2016 B2
9268783 Shilane et al. Feb 2016 B1
9274903 Garlapati et al. Mar 2016 B1
9280430 Sarfare et al. Mar 2016 B2
9405483 Wei et al. Aug 2016 B1
9411717 Goss et al. Aug 2016 B2
9442802 Hung Sep 2016 B2
9477682 Bent et al. Oct 2016 B1
9495241 Flynn et al. Nov 2016 B2
9619256 Natanzon et al. Apr 2017 B1
9641615 Robins et al. May 2017 B1
9665428 Vairavanathan et al. May 2017 B2
9747057 Ramani et al. Aug 2017 B1
9817713 Gupta et al. Nov 2017 B2
9864527 Srivastav et al. Jan 2018 B1
9942084 Sorenson, III Apr 2018 B1
9971649 Dhuse et al. May 2018 B2
10001947 Chatterjee et al. Jun 2018 B1
10007561 Pudipeddi et al. Jun 2018 B1
10055145 Danilov et al. Aug 2018 B1
10061668 Lazier et al. Aug 2018 B1
10089026 Puhov et al. Oct 2018 B1
10097659 Rao Oct 2018 B1
10108819 Donlan et al. Oct 2018 B1
10127234 Krishnan et al. Nov 2018 B1
10216770 Kulesza et al. Feb 2019 B1
10242022 Jain et al. Mar 2019 B1
10282262 Panara et al. May 2019 B2
10289488 Danilov et al. May 2019 B1
10331516 Danilov et al. Jun 2019 B2
10361810 Myung et al. Jul 2019 B2
10387546 Duran et al. Aug 2019 B1
10496330 Bernat et al. Dec 2019 B1
10503611 Srivastav et al. Dec 2019 B1
10567009 Yang et al. Feb 2020 B2
10579490 Danilov et al. Mar 2020 B2
10613780 Naeni et al. Apr 2020 B1
10628043 Chatterjee et al. Apr 2020 B1
10644408 Sakai et al. May 2020 B2
10671431 Dolan et al. Jun 2020 B1
10705911 Vishnumolakala et al. Jul 2020 B2
10733053 Miller et al. Aug 2020 B1
10740183 Blaum et al. Aug 2020 B1
10761931 Goyal et al. Sep 2020 B2
10797863 Chen et al. Oct 2020 B2
10846003 Danilov et al. Nov 2020 B2
10951236 Chen et al. Mar 2021 B2
11023331 Danilov et al. Jun 2021 B2
20020049883 Schneider et al. Apr 2002 A1
20020166026 Ulrich et al. Nov 2002 A1
20020191311 Ulrich et al. Dec 2002 A1
20030016596 Chiquoine et al. Jan 2003 A1
20050027938 Burkey Feb 2005 A1
20050071546 Delaney et al. Mar 2005 A1
20050080982 Vasilevsky et al. Apr 2005 A1
20050088318 Liu et al. Apr 2005 A1
20050108775 Bachar et al. May 2005 A1
20050140529 Choi et al. Jun 2005 A1
20050234941 Watanabe Oct 2005 A1
20060047896 Nguyen et al. Mar 2006 A1
20060075007 Anderson et al. Apr 2006 A1
20060143508 Mochizuki et al. Jun 2006 A1
20060212744 Benner et al. Sep 2006 A1
20060265211 Canniff et al. Nov 2006 A1
20070076321 Takahashi et al. Apr 2007 A1
20070239759 Shen et al. Oct 2007 A1
20070250674 Findberg et al. Oct 2007 A1
20080222480 Huang et al. Sep 2008 A1
20080222481 Huang et al. Sep 2008 A1
20080244353 Dholakia et al. Oct 2008 A1
20080320061 Aszmann et al. Dec 2008 A1
20090070771 Yuyitung et al. Mar 2009 A1
20090113034 Krishnappa et al. Apr 2009 A1
20090132543 Chatley et al. May 2009 A1
20090172464 Byrne et al. Jul 2009 A1
20090183056 Aston Jul 2009 A1
20090204959 Anand et al. Aug 2009 A1
20090240880 Kawaguchi Sep 2009 A1
20090259882 Shellhamer Oct 2009 A1
20100031060 Chew et al. Feb 2010 A1
20100094963 Zuckerman et al. Apr 2010 A1
20100174968 Charles et al. Jul 2010 A1
20100218037 Swartz et al. Aug 2010 A1
20100293348 Ye et al. Nov 2010 A1
20100332748 Van der Goot et al. Dec 2010 A1
20110029836 Dhuse et al. Feb 2011 A1
20110040937 Augenstein et al. Feb 2011 A1
20110066882 Walls et al. Mar 2011 A1
20110106972 Grube et al. May 2011 A1
20110107165 Resch et al. May 2011 A1
20110138148 Friedman et al. Jun 2011 A1
20110161712 Athalye et al. Jun 2011 A1
20110191536 Mizuno et al. Aug 2011 A1
20110196833 Drobychev et al. Aug 2011 A1
20110246503 Bender et al. Oct 2011 A1
20110292054 Boker et al. Dec 2011 A1
20120023291 Zeng et al. Jan 2012 A1
20120096214 Lu et al. Apr 2012 A1
20120191675 Kim et al. Jul 2012 A1
20120191901 Norair Jul 2012 A1
20120204077 D'Abreu et al. Aug 2012 A1
20120233117 Holt et al. Sep 2012 A1
20120311395 Leggette et al. Dec 2012 A1
20120317234 Bohrer et al. Dec 2012 A1
20120321052 Morrill et al. Dec 2012 A1
20130013564 Ben-Or et al. Jan 2013 A1
20130047187 Frazier et al. Feb 2013 A1
20130054822 Mordani et al. Feb 2013 A1
20130067159 Mehra Mar 2013 A1
20130067187 Moss et al. Mar 2013 A1
20130088501 Fell Apr 2013 A1
20130097470 Hwang et al. Apr 2013 A1
20130145208 Yen et al. Jun 2013 A1
20130238932 Resch Sep 2013 A1
20130246876 Manssour et al. Sep 2013 A1
20130290482 Leggette Oct 2013 A1
20130305365 Rubin et al. Nov 2013 A1
20140040417 Galdwin et al. Feb 2014 A1
20140064048 Cohen et al. Mar 2014 A1
20140082414 Olster Mar 2014 A1
20140115182 Sabaa et al. Apr 2014 A1
20140122745 Singh et al. May 2014 A1
20140149794 Shetty et al. May 2014 A1
20140164430 Hadjieleftheriou et al. Jun 2014 A1
20140164694 Storer Jun 2014 A1
20140172930 Molaro et al. Jun 2014 A1
20140250450 Yu et al. Sep 2014 A1
20140280375 Rawson et al. Sep 2014 A1
20140281804 Resch Sep 2014 A1
20140297955 Yamazaki et al. Oct 2014 A1
20140304460 Carlson, Jr. et al. Oct 2014 A1
20140331100 Dhuse et al. Nov 2014 A1
20140351633 Grube et al. Nov 2014 A1
20140358972 Guarrier et al. Dec 2014 A1
20140359244 Chambliss et al. Dec 2014 A1
20140380088 Bennett et al. Dec 2014 A1
20140380093 Molaro et al. Dec 2014 A1
20140380125 Calder et al. Dec 2014 A1
20140380126 Yekhanin et al. Dec 2014 A1
20150006846 Youngworth Jan 2015 A1
20150074065 Christ et al. Mar 2015 A1
20150112951 Narayanamurthy et al. Apr 2015 A1
20150134626 Theimer et al. May 2015 A1
20150142863 Yuen et al. May 2015 A1
20150160872 Chen Jun 2015 A1
20150178007 Moisa et al. Jun 2015 A1
20150186043 Kesselman et al. Jul 2015 A1
20150254150 Gordon et al. Sep 2015 A1
20150269025 Krishnamurthy et al. Sep 2015 A1
20150303949 Jafarkhani et al. Oct 2015 A1
20150331766 Sarfare et al. Nov 2015 A1
20150370656 Tsafrir et al. Dec 2015 A1
20150378542 Saito et al. Dec 2015 A1
20160011935 Luby Jan 2016 A1
20160011936 Luby Jan 2016 A1
20160055054 Patterson, III et al. Feb 2016 A1
20160085645 Buzzard et al. Mar 2016 A1
20160162378 Garlapati et al. Jun 2016 A1
20160169692 Gupta Jun 2016 A1
20160170668 Mehra Jun 2016 A1
20160217104 Kamble et al. Jul 2016 A1
20160232055 Vairavanathan et al. Aug 2016 A1
20160239384 Slik Aug 2016 A1
20160253400 McAlister et al. Sep 2016 A1
20160277497 Bannister et al. Sep 2016 A1
20160292429 Bannister et al. Sep 2016 A1
20160294419 Sandell et al. Oct 2016 A1
20160328295 Baptist et al. Nov 2016 A1
20160357443 Li et al. Dec 2016 A1
20160357649 Karrotu et al. Dec 2016 A1
20160371145 Akutsu et al. Dec 2016 A1
20160378624 Jenkins, Jr. et al. Dec 2016 A1
20160380650 Calder et al. Dec 2016 A1
20170003880 Fisher Jan 2017 A1
20170004044 Tormasov et al. Jan 2017 A1
20170010944 Saito et al. Jan 2017 A1
20170017671 Baptist et al. Jan 2017 A1
20170031945 Sarab et al. Feb 2017 A1
20170097875 Jess et al. Apr 2017 A1
20170102993 Hu et al. Apr 2017 A1
20170115903 Franke et al. Apr 2017 A1
20170116088 Anami et al. Apr 2017 A1
20170123914 Li et al. May 2017 A1
20170153946 Baptist et al. Jun 2017 A1
20170185331 Gao et al. Jun 2017 A1
20170187398 Trusov Jun 2017 A1
20170187766 Zheng et al. Jun 2017 A1
20170206025 Viswanathan Jul 2017 A1
20170206135 Zeng Jul 2017 A1
20170212680 Waghulde Jul 2017 A1
20170212845 Conway Jul 2017 A1
20170220662 Barton Aug 2017 A1
20170235507 Sinha et al. Aug 2017 A1
20170262187 Manzanares et al. Sep 2017 A1
20170268900 Nicolaas et al. Sep 2017 A1
20170272209 Yanovsky et al. Sep 2017 A1
20170285952 Danilov et al. Oct 2017 A1
20170286009 Danilov et al. Oct 2017 A1
20170286436 Neporada et al. Oct 2017 A1
20170286516 Horowitz et al. Oct 2017 A1
20170288701 Slik et al. Oct 2017 A1
20170344285 Choi et al. Nov 2017 A1
20180032279 Davis et al. Feb 2018 A1
20180052744 Chen et al. Feb 2018 A1
20180063213 Bevilacqua-Linn et al. Mar 2018 A1
20180074753 Ober Mar 2018 A1
20180074881 Burden Mar 2018 A1
20180088857 Gao et al. Mar 2018 A1
20180107415 Motwani et al. Apr 2018 A1
20180121286 Sipos May 2018 A1
20180129417 Sivasubramanian et al. May 2018 A1
20180129600 Ishiyama et al. May 2018 A1
20180181324 Danilov et al. Jun 2018 A1
20180181475 Danilov et al. Jun 2018 A1
20180181612 Danilov et al. Jun 2018 A1
20180217888 Colgrove et al. Aug 2018 A1
20180246668 Sakashita et al. Aug 2018 A1
20180267856 Hayasaka et al. Sep 2018 A1
20180267985 Badey et al. Sep 2018 A1
20180293017 Curley Oct 2018 A1
20180306600 Nicolaas et al. Oct 2018 A1
20180307560 Vishnumolakala et al. Oct 2018 A1
20180341662 He Nov 2018 A1
20180375936 Chirammal et al. Dec 2018 A1
20190028179 Kalhan Jan 2019 A1
20190034084 Nagarajan et al. Jan 2019 A1
20190043201 Strong et al. Feb 2019 A1
20190043351 Yang et al. Feb 2019 A1
20190050301 Juniwal et al. Feb 2019 A1
20190065092 Shah et al. Feb 2019 A1
20190065310 Rozas Feb 2019 A1
20190102103 Ari et al. Apr 2019 A1
20190114223 Pydipaty et al. Apr 2019 A1
20190129644 Gao et al. May 2019 A1
20190188079 Kohli Jun 2019 A1
20190205437 Larson et al. Jul 2019 A1
20190215017 Danilov et al. Jul 2019 A1
20190220207 Lingarajappa Jul 2019 A1
20190266062 Borlick et al. Aug 2019 A1
20190342418 Eda et al. Nov 2019 A1
20190356416 Yanovsky et al. Nov 2019 A1
20190384500 Danilov et al. Dec 2019 A1
20190386683 Danilov et al. Dec 2019 A1
20200004447 Danilov et al. Jan 2020 A1
20200026810 Subramaniam et al. Jan 2020 A1
20200034339 Gershaneck et al. Jan 2020 A1
20200034471 Danilov et al. Jan 2020 A1
20200042178 Danilov et al. Feb 2020 A1
20200050510 Chien et al. Feb 2020 A1
20200104377 Earnesty, Jr. et al. Apr 2020 A1
20200117547 Danilov et al. Apr 2020 A1
20200117556 Zou et al. Apr 2020 A1
20200145511 Gray et al. May 2020 A1
20200151353 Struttmann May 2020 A1
20200204198 Danilov et al. Jun 2020 A1
20210019067 Miller et al. Jan 2021 A1
20210019093 Karr et al. Jan 2021 A1
20210019237 Karr et al. Jan 2021 A1
20210034268 Hara et al. Feb 2021 A1
20210096754 Danilov et al. Apr 2021 A1
20210132851 Danilov et al. May 2021 A1
20210133049 Danilov et al. May 2021 A1
20210218420 Danilov et al. Jul 2021 A1
20210255791 Shimada et al. Aug 2021 A1
20210273660 Danilov et al. Sep 2021 A1
Non-Patent Literature Citations (128)
Entry
Notice of Allowance received for U.S. Appl. No. 16/726,428 dated Jun. 14, 2021, 34 pages.
Non-Final Office Action received for U.S. Appl. No. 16/698,096 dated May 24, 2021, 62 pages.
Non-Final Office Action received for U.S. Appl. No. 16/745,855 dated May 13, 2021, 71 pages.
Non-Final Office Action received for U.S. Appl. No. 16/834,649 dated Jun. 24, 2021, 61 pages.
Non-Final Office Action received for U.S. Appl. No. 16/179,486 dated May 12, 2021, 50 pages.
Non-Final Office Action received for U.S. Appl. No. 16/570,657 dated May 12, 2021, 79 pages.
Non-Final Office Action received for U.S. Appl. No. 16/670,765 dated Jul. 20, 2021, 79 pages.
Thomasian et al., “Hierarchical RAID: Design, performance, reliability, and recovery”, J. Parallel Distrib. Comput. vol. 72 (2012) pp. 1753-1769.
Non-Final Office Action received for U.S. Appl. No. 16/231,018 dated May 8, 2020, 78 pages.
Notice of Allowance dated May 11, 2020 for U.S. Appl. No. 16/240,193, 24 pages.
Non-Final Office Action received for U.S. Appl. No. 16/228,624 dated Jun. 24, 2020, 65 pages.
Non-Final Office Action received for U.S. Appl. No. 16/240,272 dated Jun. 29, 2020, 64 pages.
Non-Final Office Action received for U.S. Appl. No. 16/228,612 dated Jun. 29, 2020, 62 pages.
Final Office Action received for U.S. Appl. No. 16/010,255 dated Jul. 23, 2020, 36 pages.
Office Action received for U.S. Appl. No. 16/010,246 dated Jul. 27, 2020 36 pages.
Office Action received for U.S. Appl. No. 16/177,278, dated Aug. 21, 2020, 53 pages.
Office Action received for U.S. Appl. No. 16/179,486, dated Aug. 13, 2020, 64 pages.
Guo et al., “GeoScale: Providing Geo-Elasticity in Distributed Clouds” 2016 IEEE International Conference on Cloud Engineering, 4 pages.
Guo et al., “Providing Geo-Elasticity in Geographically Distributed Clouds”. ACM Transactions on Internet Technology, vol. 18, No. 3, Article 38. Apr. 2018. 27 pages.
Office Action received for U.S. Appl. No. 16/254,073, dated Aug. 18, 2020, 62 pages.
Non-Final Office Action received for U.S. Appl. No. 16/526,142 dated Oct. 15, 2020, 21 pages.
Notice of Allowance received U.S. Appl. No. 16/228,612 date Oct. 20, 2020, 84 pages.
Zhou, et al. “Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques” Proceedings of the 17th Usenix Conference on File and Storage Technologies (FAST '19), [https://www.usenix.org/conference/fast19/presentation/zhou], Feb. 2019, Boston, MA, USA. 14 pages.
Non-Final Office Action received for U.S. Appl. No. 16/010,255 dated Oct. 29, 2020, 65 pages.
Final Office Action received for U.S. Appl. No. 16/240,272 dated Oct. 27, 2020, 42 pages.
Non-Final Office Action received for U.S. Appl. No. 16/399,902 dated Oct. 28, 2020, 83 pages.
Notice of Allowance received for U.S. Appl. No. 16/374,726 dated Nov. 20, 2020, 78 pages.
Final Office Action received for U.S. Appl. No. 16/228,624 dated Dec. 1, 2020, 63 pages.
Non-Final Office Action received for U.S. Appl. No. 16/570,657 dated Nov. 27, 2020, 75 pages.
Final Office Action received for U.S. Appl. No. 16/177,285 dated Dec. 30, 2020, 61 pages.
Final Office Action received for U.S. Appl. No. 16/511,161 dated Dec. 30, 2020, 61 pages.
Non-Final Office Action received for U.S. Appl. No. 16/399,895 dated Jan. 4, 2021, 64 pages.
Notice of Allowance received for U.S. Appl. No. 16/374,726 dated Jan. 6, 2021, 56 pages.
Non-Final Office Action received for U.S. Appl. No. 16/399,897 dated Feb. 19, 2021, 56 pages.
Non-Final Office Action received for U.S. Appl. No. 16/670,715 dated Mar. 31, 2021, 60 pages.
Final Office Action received for U.S. Appl. No. 16/177,278 dated Feb. 24, 2021, 109 pages.
EMC; “EMC ECS (Elastic Cloud Storage) Architectural Guide v2.x”, URL : https://www.dell.com/community/s/vjauj58549/attachments/vjauj58549/solutions-ch/477 /1/h14071-ecs-architectural-guide-wp.pdf,Jun. 2015, 21 pages.
Mohan et al., “Geo-aware erasure coding for high-performance erasure-coded storage clusters”, Springer Link, URL: https://link.springer.com/article/10.1007/s 12243-017-0623-2, Jan. 18, 2018.
Final Office Action received for U.S. Appl. No. 16/179,486 dated Jan. 28, 2021, 55 pages.
Non-Final Office Action received for U.S. Appl. No. 16/670,746 dated Feb. 16, 2021, 55 pages.
Dell Technologies, “ECS Overview and Architecture”, h14071.18, Feb. 2021, 55 Pages.
EMC; “EMC ECS (Elastic Cloud Storage) Architectural Guide v2.x”, URL : https://www.dell.eom/community/s/vjauj58549/attachments/vjauj58549/solutions-ch/477 /1/h14071-ecs-architectural-guide-wp.pdf,Jun. 2015, 21 pages.
Non-Final Office Action received for U.S. Appl. No. 16/177,285 dated Apr. 9, 2021, 41 pages.
Non-Final Office Action received for U.S. Appl. No. 16/779,208 dated Apr. 20, 2021, 71 pages.
Office Action dated Apr. 13, 2021 for U.S. Appl. No. 16/781,316, 21 pages.
Non-Final Office Action received for U.S. Appl. No. 16/670,715 dated Jan. 5, 2022, 22 pages.
Non-Final Office Action received for U.S. Appl. No. 16/834,649 dated Jan. 28, 2022, 26 pages.
Non-Final Office Action received for U.S. Appl. No. 16/698,096 dated Jan. 5, 2022, 21 pages.
Office Action dated Nov. 24, 2021 for U.S. Appl. No. 16/538,984, 30 pages.
Non-Final Office Action received for U.S. Appl. No. 16/584,800 dated Mar. 3, 2022, 90 pages.
Non-Final Office Action received for U.S. Appl. No. 16/403,417 dated Feb. 25, 2022, 100 pages.
Non-Final Office Action received for U.S. Appl. No. 17/153,602 dated Mar. 16, 2022, 40 pages.
Notice of Allowance received for U.S. Appl. No. 17/333,793 dated Mar. 9, 2022, 39 pages.
Sun et al., “Data Management across Geographically-Distributed Autonomous Systems: Architecture, Implementation, and Performance Evaluation,” IEEE Transactions on Industrial Informatics, 2019, 9 pages.
Notice of Allowance dated May 16, 2022 for U.S. Appl. No. 16/526,182, 54 pages.
Non-Final Office Action received for U.S. Appl. No. 16/209,185 dated Jun. 18, 2020, 22 pages.
Martin Hosken, Developing a Hyper-Converged Storage Strategy for VMware vCloud Director with VMware vSAN, Jan. 2018 (Year: 2018).
Non-Final Office Action received for U.S. Appl. No. 16/261,549 dated Apr. 15, 2020, 22 pages.
Non-Final Office Action received for U.S. Appl. No. 16/374,726 dated Jun. 2, 2020, 47 pages.
Matarajan, RAID 0, RAID 1, RAID 5, RAID 10 Explained with Diagrams, Aug. 10, 2010, thegeekstuff.com (18 pages).
Non-Final Office Action received for U.S. Appl. No. 16/177,285 dated Jul. 22, 2020, 31 pages.
Non-Final Office Action received for U.S. Appl. No. 16/261,547 dated Sep. 3, 2020, 26 pages.
Non-Final Office Action received for U.S. Appl. No. 16/261,548 dated Aug. 21, 2020, 42 pages.
Notice of Allowance received for U.S. Appl. No. 16/261,549 dated Jul. 17, 2020,40 pages.
Qiang et al., “Dynamics Process of Long-running Allocation/Collection in Linear Storage Space”, International Conference on Networking, Architecture, and Storage (NAS 2007), Guilin, 2007, pp. 209-216.
Non-Final Office Action received for U.S. Appl. No. 16/374,725 dated Aug. 19, 2020, 50 pages.
Non-Final Office Action received for U.S. Appl. No. 16/511,161 dated Jul. 10, 2020, 24 pages.
Notice of Allowance received for U.S. Appl. No. 15/862,547 dated Mar. 29, 2019 27 pages.
Non-Final Office Action received for U.S. Appl. No. 15/792,714 dated Apr. 4, 2019, 20 pages.
Final Office Action received for U.S. Appl. No. 15/792,714 dated Sep. 12, 2019, 43 pages.
Wikipedia “Garbage Collection”, URL: https://en.wikipedia.org/wiki/Garbage_collection_(computer science)#Availability (Year: 2017) retrieved using the WayBackMachine, Sep. 8, 2017, 8 pages.
Wikipedia “Erasure code”, URL: https://web.archive.org/web/20170908171158/https://en.wikipedia.org/wiki/Erasure_code (Year: 2017), retrieved using the WayBackMachine, Sep. 8, 2017, 5 pages.
Wikipedia “Front and back ends” URL: https://en.wikipedia.org/wiki/Front_and_back_ends (Year:2019), Sep. 6, 2019, 4 pages.
Notice of Allowance received for U.S. Appl. No. 15/792,714 dated Nov. 8, 2019, 31 pages.
Non-Final Office Action received for U.S. Appl. No. 15/791,390 dated Sep. 20, 2019, 27 pages.
Final Office Action received for U.S. Appl. No. 15/791,390 dated Feb. 6, 2020, 29 pages.
Non-Final Office Action received for U.S. Appl. No. 15/791,390 dated Apr. 30, 2020, 48 pages.
Huang et al., “Scale-RS: An Efficient Scaling Scheme for RS-Coded Storage Clusters,” in IEEE Transactions on Parallel and Distributed Systems, vol. 26, No. 6, pp. 1704-1717, Jun. 1, 2015.
Non-Final Office Action received for U.S. Appl. No. 16/457,615 dated Jul. 20, 2020, 34 pages.
Non-Final Office Action received for U.S. Appl. No. 15/651,504 dated Mar. 21, 2019, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 15/662,273 dated Nov. 16, 2018, 19 pages.
Final Office Action received for U.S. Appl. No. 15/662,273 dated May 15, 2019, 33 pages.
Non-Final Office Action received for U.S. Appl. No. 15/965,479 dated Apr. 15, 2019, 21 pages.
Non-Final Office Action received for U.S. Appl. No. 15/794,950 dated Jul. 9, 2019, 29 pages.
Final Office Action received for U.S. Appl. No. 15/651,504 dated Sep. 18, 2019, 15 pages.
Non-Final Office Action received for U.S. Appl. No. 15/952,179 dated Sep. 10, 2019, 42 pages.
Wikipedia, “Standard Raid Levels—RAID 6”, URL: https://en.wikipedia.org/wiki/Standard_RAID_levels#RAID_6, Oct. 18, 2019, 11 pages.
Non-Final Office Action received for U.S. Appl. No. 15/656,382 dated Nov. 1, 2019, 47 pages.
Final Office Action received for U.S. Appl. No. 15/952,179 dated Nov. 26, 2019, 53 pages.
Non Final Office Action received for U.S. Appl. No. 16/024,314 dated Nov. 25, 2019, 42 pages.
Non- Final Office Action received for U.S. Appl. No. 16/177, 278 dated Dec. 2, 2019, 55 pages.
Non-Final Office Action received for U.S. Appl. No. 15/651,504 dated Dec. 31, 2019, 18 pages.
Non-Final Office Action received for U.S. Appl. No. 16/010,246 dated Dec. 5, 2019, 67 pages.
Stonebreaker et al. “Distributed RAID—A New Multiple Copy Algorithm.”, IEEE ICDE, 1990, pp. 430-437.
Muralidhar et al. “f4: Facebook's Warm BLOB Storage System”, USENIX. OSDI, Oct. 2014, pp. 383-398.
Final Office Action dated Feb. 12, 2020 for U.S. Appl. No. 16/024,314, 29 pages.
Non-Final Office Action received for U.S. Appl. No. 16/010,255 dated Jan. 9, 2020, 31 pages.
Office Action dated Feb. 5, 2020 for U.S. Appl. No. 16/261,551, 30 pages.
Non-Final Office Action received for U.S. Appl. No. 16/228,612 dated Feb. 27, 2020, 49 pages.
Final Office Action received for U.S. Appl. No. 16/010,246 dated Mar. 16, 2020, 33 pages.
Final Office Action received for U.S. Appl. No. 15/656,382 dated Apr. 6, 2020, 31 pages.
Non-Final Office Action received for U.S. Appl. No. 15/582,167 dated Sep. 7, 2018, 19 pages.
Non-Final Office Action received for U.S. Appl. No. 15/952,179 dated Apr. 20, 2020, 68 pages.
Notice of Allowance received for U.S. Appl. No. 16/240,193, dated May 4, 2020, 46 pages.
Final Office Action received for U.S. Appl. No. 16/177,278, dated May 11, 2020, 53 pages.
Notice of Allowance received for U.S. Appl. No. 16/570,657 dated Sep. 7, 2021, 65 pages.
Ma et al., “An Ensemble of Replication and Erasure Codes for Cloud File Systems”, Proceedings—IEEE INFOCOM, Apr. 2013, pp. 1276-1284.
Final Office Action received for U.S. Appl. No. 16/698,096 dated Sep. 7, 2021, 24 pages.
Final Office Action received for U.S. Appl. No. 16/177,285 dated Sep. 14, 2021, 65 pages.
Final Office Action received for U.S. Appl. No. 16/670,715 dated Sep. 7, 2021, 35 pages.
Final Office Action received for U.S. Appl. No. 16/179,486 dated Oct. 20, 2021, 46 pages.
Notice of Allowance received for U.S. Appl. No. 16/745,855 dated Sep. 10, 2021, 37 pages.
Non-Final Office Action received for U.S. Appl. No. 16/526,182 dated Nov. 24, 2021, 83 pages.
Notice of Allowance received for U.S. Appl. No. 16/888,144 dated Nov. 22, 2021, 71 pages.
Office Action dated Sep. 3, 2021 for U.S. Appl. No. 16/803,913, 23 pages.
Office Action dated Jan. 25, 2022 for U.S. Appl. No. 16/803,913, 25 pages.
Office Action dated May 27, 2022 for U.S. Appl. No. 16/803,913, 24 pages.
RAID vs. non-RAID Storage—Difference & Comparison, https://www.fromdev.com/2014/01/raid-vs-non-raid-storage-difference.html, pp. 1-4, 2014. (Year: 2014).
Notice of Allowance received for U.S. Appl. No. 16/584,800 dated Jun. 27, 2022, 33 pages.
Notice of Allowance received for U.S. Appl. No. 16/179,486 dated Jun. 8, 2022, 67 pages.
Wu et al., “Improving I/O Performance of Clustered Storage Systems by Adaptive Request Distribution,” 2006 15th IEEE International Conference on High Performance Distributed Computing, 2006, pp. 207-217.
Final Office Action received for U.S. Appl. No. 17/153,602 dated Jul. 14, 2022, 34 pages.
Final Office Action dated Aug. 31, 2022 for U.S. Appl. No. 16/403,417, 37 pages.
Notice of Allowance received for U.S. Appl. No. 17/333,815 dated Jun. 27, 2022, 27 pages.
Non- Final Office Action received for U.S. Appl. No. 16/403,417 dated Dec. 6, 2022, 39 pages.
Non- Final Office Action received for U.S. Appl. No. 17/153,602 dated Oct. 25, 2022, 40 pages.
Final Office Action received for U.S. Appl. No. 16/803,913 dated Oct. 26, 2022, 102 pages.
Files Controlling User Accounts and Groups. https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/4, 2012, pp. 1-2. (Year: 2012).
Related Publications (1)
Number Date Country
20200363964 A1 Nov 2020 US
Divisions (1)
Number Date Country
Parent 15651504 Jul 2017 US
Child 16986222 US