The present application claims priority from Korean Patent Application No. 10-2011-0144489 filed on Dec. 28, 2011, the entire subject matter of which is incorporated herein by reference.
The present disclosure generally relates to ultrasound systems, and more particularly to estimating the motion of at least one particle by using vector Doppler in an ultrasound system.
An ultrasound system has become an important and popular diagnostic tool since it has a wide range of applications. Specifically, due to its non-invasive and non-destructive nature, the ultrasound system has been extensively used in the medical profession. Modern high-performance ultrasound systems and techniques are commonly used to produce two-dimensional or three-dimensional ultrasound images of internal features of target objects (e.g., human organs).
The ultrasound system may provide ultrasound images of various modes including a brightness mode image representing reflection coefficients of ultrasound signals (i.e., ultrasound echo signals) reflected from a target object of a living body with a two-dimensional image, a Doppler mode image representing velocity of a moving target object with spectral Doppler by using a Doppler effect, a color Doppler mode image representing velocity of the moving target object with colors by using the Doppler effect, an elastic image representing mechanical characteristics of tissues before and after applying compression thereto, etc.
The ultrasound system may transmit ultrasound signals to the living body including a moving target object (e.g., blood flow) and receive ultrasound signals (i.e., ultrasound echo signals) from the living body. The ultrasound system may further form the color Doppler mode image representing velocities of the target object with colors based on the ultrasound echo signals. The color Doppler image may be used to diagnose disease of a blood vessel, a heart and the like. However, the color Doppler image cannot represent an accurate motion of the target object since the respective colors in the color Doppler image indicate the velocity of the target object, which moves forward in a transmission direction of the ultrasound signals and backward in the transmission direction of the ultrasound signals.
To resolve this problem, vector Doppler methods capable of obtaining motion (i.e., velocity and direction) of the target object are used. A cross beam-based method of the vector Doppler methods acquires velocity components of the target object from at least two different directions, and combines the velocity components to form vector information including two-dimensional or three-dimensional direction information and velocity information.
There are provided embodiments for estimating the motion of at least one particle by using vector Doppler.
In one embodiment, by way of non-limiting example, an ultrasound system comprises: a processing unit configured to form vector information of a target object based on ultrasound data corresponding to the target object, form a plurality of Doppler mode images based on the vector information, set at least one particle on the Doppler mode images based on input information of a user, and estimate a motion of the at least one particle based on the vector information.
In another embodiment, there is provided a method of estimating the motion of at least one particle, comprising: a) forming vector information of a target object based on ultrasound data corresponding to the target object; b) forming a plurality of Doppler mode images based on the vector information; c) setting at least one particle on the Doppler mode images based on input information of a user; and d) estimating a motion of the at least one particle based on the vector information.
The Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in determining the scope of the claimed subject matter.
A detailed description may be provided with reference to the accompanying drawings. One of ordinary skill in the art may realize that the following description is illustrative only and is not in any way limiting. Other embodiments of the present invention may readily suggest themselves to such skilled persons having the benefit of this disclosure.
Referring to
The user input unit 110 may be configured to receive input information from a user. In one embodiment, the input information may include first input information for setting a region of interest ROI on a brightness mode image BI, as shown in
The ultrasound system 100 may further include an ultrasound data acquiring unit 120. The ultrasound data acquiring unit 120 may be configured to transmit ultrasound signals to a living body. The living body may include moving target objects (e.g., blood vessel, heart, blood flow, etc). The ultrasound data acquiring unit 120 may be further configured to receive ultrasound signals (i.e., ultrasound echo signals) from the living body to acquire ultrasound data corresponding to an ultrasound image.
The ultrasound probe 310 may include a plurality of elements 311 (see
The ultrasound data acquiring unit 120 may further include a transmitting section 320. The transmitting section 320 may be configured to control the transmission of the ultrasound signals. The transmitting section 320 may be further configured to generate electrical signals (hereinafter, referred to as “transmission signals”) in consideration of the elements 311.
In one embodiment, the transmitting section 320 may be configured to generate transmission signals (hereinafter, referred to as “brightness mode transmission signals”) for obtaining the brightness mode image BI in consideration of the elements 311. Thus, the ultrasound probe 310 may be configured to convert the brightness mode transmission signals provided from the transmitting section 320 into the ultrasound signals, transmit the ultrasound signals to the living body, and receive the ultrasound echo signals from the living body to output reception signals (hereinafter, referred to as “brightness mode reception signals”).
The transmitting section 320 may be further configured to generate transmission signals (hereinafter, referred to as “Doppler mode transmission signals”) corresponding to an ensemble number in consideration of the elements 311 and at least one transmission direction of the ultrasound signals (i.e., transmission beam). Thus, the ultrasound probe 310 may be configured to convert the Doppler mode transmission signals provided from the transmitting section 320 into the ultrasound signals, transmit the ultrasound signals to the living body in the at least one transmission direction, and receive the ultrasound echo signals from the living body to output reception signals (hereinafter, referred to as “Doppler mode reception signals”). The ensemble number may represent the number of transmitting and receiving the ultrasound signals to/from a target object.
As one example, the transmitting section 320 may be configured to generate the Doppler mode transmission signals corresponding to the ensemble number in consideration of a transmission direction Tx and the elements 311, as shown in
As another example, the transmitting section 320 may be configured to generate first Doppler mode transmission signals corresponding to the ensemble number in consideration of a first transmission direction Tx1 and the elements 311, as shown in
In another embodiment, the transmitting section 320 may be configured to generate the brightness mode transmission signals for obtaining the brightness mode image BI in consideration of the elements 311. Thus, the ultrasound probe 310 may be configured to convert the brightness mode transmission signals provided from the transmitting section 320 into the ultrasound signals, transmit the ultrasound signals to the living body, and receive the ultrasound echo signals from the living body to output the brightness mode reception signals.
The transmitting section 320 may be further configured to generate the Doppler mode transmission signals corresponding to the ensemble number in consideration of the at least one transmission direction and the elements 311. Thus, the ultrasound probe 310 may be configured to convert the Doppler mode transmission signals provided from the transmitting section 320 into the ultrasound signals, transmit the ultrasound signals to the living body, and receive the ultrasound echo signals from the living body to output the Doppler mode reception signals. The ultrasound signals may be transmitted in an interleaved transmission scheme. The interleaved transmission scheme will be described below in detail.
For example, the transmitting section 320 may be configured to generate the first Doppler mode transmission signals in consideration of the first transmission direction Tx1 and the elements 311, as shown in
Thereafter, the transmitting section 320 may be configured to generate the first Doppler mode transmission signals based on the pulse repeat interval, as shown in
As described above, the transmitting section 320 may be configured to generate the first Doppler mode transmission signals and the second Doppler mode transmission signals corresponding to the ensemble number.
In yet another embodiment, the transmitting section 320 may be configured to generate the brightness mode transmission signals for obtaining the brightness mode image BI in consideration of the elements 311. Thus, the ultrasound probe 310 may be configured to convert the brightness mode transmission signals provided from the transmitting section 320 into the ultrasound signals, transmit the ultrasound signals to the living body, and receive the ultrasound echo signals from the living body to output the brightness mode reception signals.
The transmitting section 320 may be further configured to generate the Doppler mode transmission signals corresponding to the ensemble number in consideration of the at least one transmission direction and the elements 311. Thus, the ultrasound probe 310 may be configured to convert the Doppler mode transmission signals provided from the transmitting section 320 into the ultrasound signals, transmit the ultrasound signals to the living body, and receive the ultrasound echo signals from the living body to output the Doppler mode reception signals. The ultrasound signals may be transmitted according to the pulse repeat interval.
For example, the transmitting section 320 may be configured to generate the first Doppler mode transmission signals in consideration of the first transmission direction Tx1 and the elements 311 based on the pulse repeat interval, as shown in
As described above, the transmitting section 320 may be configured to generate the first Doppler mode transmission signals and the second Doppler mode transmission signals corresponding to the ensemble number based on the pulse repeat interval.
Referring back to
In one embodiment, the receiving section 330 may be configured to perform the analog-digital conversion upon the brightness mode reception signals provided from the ultrasound probe 310 to form sampling data (hereinafter, referred to as “brightness mode sampling data”). The receiving section 330 may be further configured to perform the reception beam-forming upon the brightness mode sampling data to form reception-focused data (hereinafter, referred to as “brightness mode reception-focused data”).
The receiving section 330 may be further configured to perform the analog-digital conversion upon the Doppler mode reception signals provided from the ultrasound probe 310 to form sampling data (hereinafter, referred to as “Doppler mode sampling data”). The receiving section 330 may be further configured to perform the reception beam-forming upon the Doppler mode sampling data to form reception-focused data (hereinafter, referred to as “Doppler mode reception-focused data”) corresponding to the at least one reception direction of the ultrasound echo signals (i.e., reception beam).
As one example, the receiving section 330 may be configured to perform the analog-digital conversion upon the Doppler mode reception signals provided from the ultrasound probe 310 to form the Doppler mode sampling data. The receiving section 330 may be further configured to perform the reception beam-forming upon the Doppler mode sampling data to form first Doppler mode reception-focused data corresponding to the first reception direction Rx1 and second Doppler mode reception-focused data corresponding to the second reception direction Rx2, as shown in
As another example, the receiving section 330 may be configured to perform the analog-digital conversion upon the first Doppler mode reception signals provided from the ultrasound probe 310 to form first Doppler mode sampling data corresponding to the first transmission direction Tx1, as shown in
The reception beam-forming may be described with reference to the accompanying drawings.
In one embodiment, the receiving section 330 may be configured to perform the analog-digital conversion upon the reception signals provided through a plurality of channels CHk, wherein 1≦k≦N, from the ultrasound probe 310 to form sampling data wherein the i and j are a positive integer, as shown in
For example, the receiving section 330 may be configured to set a curve (hereinafter, referred to as “reception beam-forming curve”) CV6,3 for selecting pixels that the sampling data S6,3 are used as the pixel data thereof, during the reception beam-forming based on the positions of the elements 311 and the orientation of the respective pixels of the ultrasound image UI with respect to the elements 311, as shown in
Thereafter, the receiving section 330 may be configured to set a reception beam-forming curve CV6,4 for selecting pixels that the sampling data S6,4 are used as the pixel data thereof, during the reception beam-forming based on the positions of the elements 311 and the orientation of the respective pixels of the ultrasound image UI with respect to the elements 311, as shown in
The receiving section 330 may be configured to perform the reception beam-forming (i.e., summing) upon the sampling data which are cumulatively assigned to the respective pixels Pa,b of the ultrasound image UI to form the reception-focused data.
In another embodiment, the receiving section 330 may be configured to perform the analog-digital conversion upon the reception signals provided through the plurality of channels CHk from the ultrasound probe 310 to form the sampling data as shown in
For example, the receiving section 330 may be configured to set the reception beam-forming curve CV6,3 for selecting pixels that the sampling data S6,3 are used as the pixel data thereof, during the reception beam-forming based on the positions of the elements 311 and the orientation of the respective pixels of the ultrasound image UI with respect to the elements 311, as shown in
The receiving section 330 may be configured to perform the reception beam-forming upon the sampling data which are cumulatively assigned to the respective pixels Pa,b of the ultrasound image UI to form the reception-focused data.
In yet another embodiment, the receiving section 330 may be configured to perform the analog-digital conversion upon the reception signals provided through the plurality of channels CHk from the ultrasound probe 310 to form the sampling data Si,j, as shown in
For example, the receiving section 330 may be configured to set the sampling data S1,1, S1,4, . . . S1,t, S2,1, S2,4, . . . S2,t, . . . Sp,t as the sampling data set (denoted by a box) for selecting the pixels that the sampling data Si,j are used as the pixel data thereof, during the reception beam-forming, as shown in
The receiving section 330 may be further configured to detect the pixels corresponding to the respective sampling data of the sampling data set based on the positions of the elements 311 and the orientation of the respective pixels of the ultrasound image UI with respect to the elements 311. That is, the receiving section 330 may select the pixels that the respective sampling data of the sampling data set are used as the pixel data thereof, during the reception beam-forming based on the positions of the elements 311 and the orientation of the respective pixels of the ultrasound image UI with respect to the elements 311. The receiving section 330 may be further configured to cumulatively assign the sampling data to the selected pixels in the same manner with the above embodiments. The receiving section 330 may be further configured to perform the reception beam-forming upon the sampling data which are cumulatively assigned to the respective pixels of the ultrasound image UI to form the reception-focused data.
In yet another embodiment, the receiving section 330 may be configured to perform a down-sampling upon the reception signals provided through the plurality of channels CHk from the ultrasound probe 310 to form down-sampling data. As described above, the receiving section 330 may be further configured to detect the pixels corresponding to the respective sampling data, based on the positions of the elements 311 and the orientation of the respective pixels of the ultrasound image UI with respect to the elements 311. That is, the receiving section 330 may select the pixels that the respective sampling data are used as the pixel data thereof, during the reception beam-forming based on the positions of the elements 311 and the orientation of the pixels of the ultrasound image UI with respect to the elements 311. The receiving section 330 may be further configured to cumulatively assign the respective sampling data to the selected pixels in the same manner of the above embodiments. The receiving section 330 may be further configured to perform the reception beam-forming upon the sampling data which are cumulatively assigned to the respective pixels of the ultrasound image UI to form the reception-focused data.
However, it should be noted herein that the reception beam-forming may not be limited thereto.
Referring back to
In one embodiment, the ultrasound data forming section 340 may be configured to form ultrasound data (hereinafter, referred to as “brightness mode ultrasound data”) corresponding to the brightness mode image based on the brightness mode reception-focused data provided from the receiving section 330. The brightness mode ultrasound data may include radio frequency data.
The ultrasound data forming section 340 may be further configured to form ultrasound data (hereinafter, referred to as “Doppler mode ultrasound data”) corresponding to the region of interest ROI based on the Doppler mode reception-focused data provided from the receiving section 330. The Doppler mode ultrasound data may include in-phase/quadrature data. However, it should be noted herein that the Doppler mode ultrasound data may not be limited thereto.
For example, the ultrasound data forming section 340 may form first Doppler mode ultrasound data based on the first Doppler mode reception-focused data provided from the receiving section 330. The ultrasound data forming section 340 may further form second Doppler mode ultrasound data based on the second Doppler mode reception-focused data provided from the receiving section 330.
Referring back to
The processing unit 130 may be configured to set the region of interest ROI on the brightness mode image BI based on the input information (i.e., first input information) provided from the user input unit 110, at step S1504 in
The processing unit 130 may be configured to form vector information based on the Doppler mode ultrasound data provided from the ultrasound data acquiring unit 120, at step S1506 in
Generally, when the transmission direction of the ultrasound signals is equal to the reception direction of the ultrasound echo signals and a Doppler angle is θ, the following relationship may be established:
In Equation 1, X represents a reflector velocity (i.e., velocity of target object), C0 represents a sound speed in the living body, fd represents a Doppler shift frequency, and f0 represents an ultrasound frequency.
The Doppler shift frequency fd may be calculated by the difference between a frequency of the ultrasound signals (i.e., transmission beam) and a frequency of the ultrasound echo signals (i.e., reception beam). Also, the velocity component X cos θ projected to the transmission direction may be calculated by Equation 1.
When the transmission direction of the ultrasound signals (i.e., transmission beam) is different from the reception direction of the ultrasound echo signals (i.e., reception beam), the following relationship may be established:
In Equation 2, θT represents an angle between the ultrasound signals (i.e., transmission beam) and the blood flow, and θR represents an angle between the ultrasound echo signals (i.e., reception beam) and the blood flow.
{right arrow over (α1)}{right arrow over (X)}=α11x1+α12x2=y1=X cos θ (3)
In Equation 3, {right arrow over (α1)}=(α11,α12) represents a unit vector of the first direction D1, {right arrow over (X)}=(x1, x2) represents variables, and y1 is calculated by Equation 1.
When the ultrasound signals (i.e., transmission beam) are transmitted in a second direction D2 and the ultrasound echo signals (i.e., reception beam) are received in a third direction D3, the following relationship may be established:
(α21+α31)x1+(α22+α32)x2=(y2+y3)=X cos θ2+X cos θ3 (4)
Equations 3 and 4 may be set to assume two-dimensional environment. Further, Equations 3 and 4 may be expanded to three-dimensional environment. That is, when expanding Equations 3 and 4 to the three-dimensional environment, the following relationship may be established:
α11x1+α12x2+α13x3=y (5)
In the case of the two-dimensional environment (i.e., two-dimensional vector), at least two equations are required to calculate the variables x1 and x2. For example, when the ultrasound signals (i.e., transmission beam) are transmitted in the third direction D3 and the ultrasound echo signals (i.e., reception beam) are received in the second direction D2 and a fourth direction D4 as shown in
(α31+α21)x1+(α32+α22)x2=(y3+y2)
(α31+α41)x1+(α32+α42)x2=(y3+y4) (6)
The vector {right arrow over (X)}=(x1,x2) may be calculated by the equations of Equation 6.
When the reception beam-forming is performed in at least two angles (i.e., at least two reception directions), at least two equations may be obtained and represented as the over-determined problem, as shown in
That is, M×N equations may be obtained by M transmission directions and the reception beam-forming of N reception directions at every transmission.
Referring back to
The processing unit 130 may be configured to set the at least one particle on the Doppler mode image DMIk based on the input information (i.e., second input information) provided from the user input unit 110, at step S1510 in
The processing unit 130 may be configured to estimate at least one streamline corresponding to motion of the at least one particle based on the vector information, at step S1512 in
Referring back to
Optionally, the processing unit 130 may further calculate the moving displacement of the at least one particle in inverse proportion to a weight corresponding to the at least one particle, wherein the weight may be set by a user.
The processing unit 130 may be configured to move the at least one particle by a distance corresponding to the calculated moving displacement along the streamline set on the Doppler mode image DMIk, at step S1516 in
In another embodiment, the processing unit 130 may readjust the number and position of the particle at every Doppler mode image DMIk. For example, the processing unit 130 may set the N particles on the ith Doppler mode image DMIi, wherein the N is an integer two or greater. The processing unit 130 may further detect at least one particle, which does not move (i.e., moving displacement is 0), from the (i+1)th Doppler mode image DMIi+1. The processing unit 130 may further remove the detected particle. The processing unit may further set the number of a new particle corresponding to the removed particle on the (i+1)th Doppler mode image DMIi+1. Thus, the N particles may be set on the Doppler mode image DMIk.
In yet another embodiment, the processing unit 130 may relocate the position of the at least one particle on a line at every predetermined frame (i.e., Doppler mode image). In this way, a profile pattern corresponding to blood flow may be provided by relocating the position of the at least one particle on the line.
In still yet another embodiment, the processing unit 130 may set the at least one particle on the Doppler mode image DMIi in synchronization with electrocardiogram signals. In this way, the motion of the at least one particle may be provided in synchronization with the electrocardiogram signals by setting the at least one particle in synchronization with the electrocardiogram signals.
In a further embodiment, the processing unit 130 may estimate the streamline corresponding to the at least one particle between the ith Doppler mode image DMIi and the (i+1)th Doppler mode image DMIi+1. That is, the processing unit 130 may further estimate the streamline by interpolating a vector field of the ith Doppler mode image DMIi and a vector field of the (i+1)th Doppler mode image DMIi+1.
In a still yet further embodiment, the processing unit 130 may estimate the motion of the at least one particle at every frame (i.e., Doppler mode image) or between the ith Doppler mode image DMIi and the (i+1)th Doppler mode image DMIi+1.
Referring back to
The ultrasound system 100 may further include the display unit 150. The display unit 150 may be configured to display the brightness mode image BI formed by the processing unit 130. The display unit 150 may be further configured to display the Doppler mode image formed by the processing unit 130. The display unit 150 may be further configured to display the at least one particle.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2011-0144489 | Dec 2011 | KR | national |