The invention relates to surface acoustic wave (SAW) sensors and, more particularly, techniques for analyzing and interpreting the output of a SAW sensor.
Chemical and biological testing is commonly used to test for the presence or absence of chemical or biological agents. Testing for the presence of chemical or biological agents in blood, food or other materials is often performed to ensure safety or to facilitate diagnosis of medical conditions. For example, testing is used to identify chemicals, bacteria or other agents in blood samples taken from medical patients, laboratory samples developed for experimental purposes, food samples, or the like. In addition, chemical and biological testing is used to test for medical conditions such as pregnancy, diabetes, bacterial infection, and a wide variety of other conditions that may affect the patient's chemistry or biology.
One type of sensor that has been developed for chemical or biological sensing capabilities is a surface acoustic wave (SAW) sensor. One example of a SAW sensor is a Love mode shear-horizontal surface acoustic wave (SH-SAW) sensor. A SH-SAW sensor includes four main components: 1) a piezoelectric substrate; 2) an input inter-digitated transducer (IDT) on the substrate, which is used to excite an acoustic wave based on the piezoelectric effect; 3) an output IDT on the substrate, which receives the transmitted acoustic wave and generates electrical output by exploiting the piezoelectric effect; and 4) a wave-guide layer over the IDT's, which converts SH-type waves into waveguide Love modes for transmission from the input IDT to the output IDT. The presence of one or more materials on the surface of the SH-SAW sensor affects wave propagation through the waveguide layer in response to the presence of bacteria or other agents on the surface of the sensor, which facilitates detection of bacteria or other agents.
In general, techniques are described for estimating the propagation velocity, or equivalently, for estimating a time delay through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor.
In one embodiment, the invention provides a method comprising identifying a segment of phase frequency response of a surface acoustic wave sensor, and estimating a time delay associated with wave propagation through the surface acoustic wave sensor based on the identified frequency response.
In another embodiment, the invention provides a computer-readable comprising instructions that when executed in a processor identify a segment of phase frequency response of a surface acoustic wave sensor, and estimate a time delay associated with wave propagation through the surface acoustic wave sensor based on the identified frequency response.
In another embodiment, the invention provides a system comprising a surface acoustic wave sensor, a sensor analyzer to receive output of the surface acoustic wave sensor, and a processor to receive input from the sensor analyzer, identify a segment of phase frequency response of a surface acoustic wave sensor, and estimate a time delay associated with wave propagation through the surface acoustic wave sensor based on the identified segment of phase frequency response.
The invention may be capable of providing one or more advantages. In particular, use of change of propagation velocity of a surface acoustic wave sensor, as described herein, can improve detection of bacteria via the sensor, relative to conventional techniques that use phase shift as the basis for detection. Moreover, use of an estimated propagation velocity of a surface acoustic wave sensor as the basis for detection may allow for detection of bacterial concentration.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
In particular, Love wave sensors may include a substrate supporting a SH wave mode such as SSBW of ST quartz or the leaky wave of 36°YXLiTaO3. These modes may preferably be converted into a Love-wave mode by application of thin acoustic guiding layer or waveguide. These waves are frequency dependent and can be generated if the shear wave velocity of the waveguide layer is lower than that of the piezoelectric substrate.
In one example, sensor 10 comprises a Love mode shear-horizontal surface acoustic wave (SH-SAW) sensor.
SAW sensor 10 includes a substrate 12 which typically comprises a piezoelectric material. SAW sensor 10 also includes an input inter-digital transducer (IDT) 14 on substrate 12, which is used to excite an acoustic wave based on the piezoelectric effect. In addition, SAW sensor 10 includes an output IDT 16 on substrate 12, which receives the transmitted acoustic wave and generates electrical output by exploiting the piezoelectric effect. A wave-guide layer 18 is formed over the IDT's 14, 16. Wave-guide layer 18 converts SH-type waves into waveguide Love modes for transmission from input IDT 14 to output IDT 16.
A layer of material, such as a layer of antibodies is applied over waveguide layer 18. In operation, a fluid being tested for the presence of bacteria is brought into contact with waveguide layer 18. If bacteria is present in the fluid, the bacteria attaches to the antibodies on waveguide layer 18 and thereby affect wave propagation through waveguide layer 18. Accordingly, analysis of the wave propagation through waveguide layer 18 of SAW sensor 10 allows for bacterial detection or detection of other agents that may interact with a material coated on waveguide layer 18.
In some cases, SAW sensor 10 includes a plurality of sets of input and output IDT's. For example, SAW sensor 10 may include a first input IDT 14 and a second input IDT 15 which respectively correspond to first output IDT 16 and second output IDT 17. In that case, first input and output IDT's 14, 16 comprise the active portion of SAW sensor 10, and second input and output IDT's 15, 17 comprise the reference portion of SAW sensor 10. Different types of antibodies may be coated on the surface of waveguide layer 18 between first input and output IDT's 14, 16 and second input and output IDT's 15, 17, such that only the bacteria of interest bonds to the antibodies between the active portion corresponding to first input and output IDT's 14, 16. In that case, the reference portion corresponding to second input and output IDT's 15, 17 allows for reference measurements which can account for temperature variance affects, or the like, which could otherwise affect wave propagation through SAW sensor 10.
SAW sensors are commonly used for bacterial detection but may be designed for detection of any of a wide variety of other chemical or biological agents. Accordingly, different materials may be coated on the waveguide layer of SAW sensor 10 in order to facilitate detection of various chemical or biological agents. Waveguide materials may preferably be materials that exhibit one or more of the following properties: low acoustic losses, low electrical conductivity, robustness and stability in water and aqueous solutions, relatively low acoustic velocities, hydrophobicity, higher molecular weights, highly cross-linked, etc. In one example, SiO2 has been used as an acoustic waveguide layer on a quartz substrate. Examples of other thermoplastic and crosslinked polymeric waveguide materials include, e.g., epoxy, polymethylmethacrylate, phenolic resin (e.g., NOVALAC), polyimide, polystyrene, etc.
In general, the presence of a particular material on the surface of the SAW sensor affects wave propagation through the waveguide layer in response to the presence or absence of another material passing over the waveguide layer, which facilitates detection of the material passing over the waveguide layer. Accordingly, materials coated on the waveguide layer may be selected to attract, trap, bond with or otherwise attach to materials suspended in a fluid that flows across waveguide layer 18. In this manner, SAW sensor 10 facilitates detection of bacteria or other biological or chemical agents.
In order to generate Love mode surface wave, the shear wave velocity of waveguide layer 18 is typically lower than that of substrate 12. In that case, the acoustic energy will be trapped to near the sensing surface of SAW sensor 10. Love mode SH-SAW sensors, in particular, generally have high sensitivity to surface perturbations. Mass loading can change the surface conditions of a Love mode SH-SAW sensor. Therefore, measuring the change of the propagation velocity or resonant frequency can be used to quantitatively detect mass loading, and thereby detect the presence of a chemical or biological agent.
One of the most important performance indices for an SH-SAW sensor used as a detector is the mass sensitivity, i.e., how sensitive is the sensor to the loading mass on its surface. For analyzing the mass sensitivity, two indices have been established:
the propagation velocities and resonant frequencies of the sensor without and with surface perturbation resulting from an infinitesimal thin rigid loading layer with mass Δms=ρmε, where ρm and ε are the density and thickness of the loading layer.
where vg is the group velocity, and for Love mode SH-SAW
where the notation v0(ω) as well as vg(ω) is used to emphasize that the velocities are frequency dependent in the dispersive cases. This means that for Love mode SH-SAW sensor, using Δv/v0 for detecting the anomalies of the boundary conditions of the surface of the sensor should be better than using Δf/f0. Accordingly, in accordance with the invention, Δv/v0 may be used as a basis of a detection indicator for SAW-sensor 10, or the like.
Conventionally, for a Love mode SH-SAW sensor with a triple transit echo (TTE), the phase frequency response was given by:
or equivalently:
where f and ω represent frequency and angular frequency, L is the distance between the center of the input and center of the output IDT, β=α2 and α is the reflection coefficient of the input and output IDTs. Since β is small and can be determined by frequency response, without loss of generality, β is assumed to be zero. Thus, for phase frequency response, one only needs to be concerned with the case that does not include TTE. The phase frequency response is therefore:
However, ejφ(f)=e−j2πfτ(f)=e−j2π(fτ(f)+k), where k=0, ±1, ±2, ±3, etc. Thus, the phase frequency response φ(f) is multi-valued and cannot be uniquely determined by the value of ejφ(f). This problem is called phase ambiguity. Only a so-called “main value” of φ(f) can be determined from ejφ(f). Since
exp{−j2πfτ(f)}=exp{−j2π(fτ(f)−[fτ(f)])},
where [x] is the integer part of x, i.e. [x] is the maximum of the integers, which are less or equal to x, the main value of the phase response becomes:
φ(f)=−2π(fτ(f)−[fτ(f)])+π (in radian) or φ(f)=−360(fτ(f)−[fτ(f)])+180 (in degree).
Thus, −π<φ(f)≦π (in radian) or −180<φ(f)≦180 (in degree).
For
Therefore, an approximation of the phase change is given by:
Unfortunately, however, this derivation does not hold for
The condition
implies
i.e.
For Δv<0, it follows that:
This means that when
For example, If f=103 MH, v0=4000 m/s and L=8.8 mm, then
for |Δv|≧17.5747 m/s. Therefore, when
may not be a proper indicator function.
For this reason, the invention provides techniques for estimating the propagation velocity through a SAW sensor based on an identified segment of phase frequency response. The propagation velocity is simply related to the time delay through the SAW sensor, as described below. In accordance with the invention, a method may include identifying a proper segment of phase frequency response of a surface acoustic wave sensor, and estimating a time delay associated with wave propagation through the surface acoustic wave sensor based on the identified frequency response.
Processor 22 receives input from sensor analyzer 21, which comprises measurements associated with wave propagation through SAW sensor 10. Processor 22 then determines whether SAW sensor 10 has detected the presence of particular bacteria or other material for which SAW sensor 10 is designed to detect. Processor 22 executes instructions to perform various techniques and functions ascribed to the processor herein. Although the invention is not limited in this respect, SAW sensor 10 may be housed in a cartridge, or the like, and may be electrically coupled to sensor analyzer 21 via insertion of the cartridge into a slot. Processor 22 may be housed in the same unit as sensor analyzer 21 or may be part of a separate unit or separate computer.
Processor 22 may also be coupled to memory 24, which stores a propagation velocity routine 25 consistent with the teaching of this disclosure. Alternatively, propagation velocity routine 25 may be implemented by hardware within processor 22. In any case, processor 22 executes propagation velocity routine 25 in order to estimate a time delay associated with wave propagating through the surface acoustic wave sensor based on the identified frequency response, as described herein.
By way of example, processor 22 may comprise a general-purpose microprocessor that executes software stored in memory 24. In that case, processor 22 may be internally housed in a specifically designed computer, a general purpose personal computer, workstation, handheld computer, laptop computer, or the like. Alternatively, processor 22 may comprise an application specific integrated circuit (ASIC) or other specifically designed processor. In any case, processor 22 executes propagation velocity routine 25 in order to estimate a time delay associated with wave propagation through the surface acoustic wave sensor 10 based on the identified frequency response, as described herein.
Memory 24 is one example of a computer readable medium that stores processor executable software instructions applied by processor 22. By way of example, memory 24 may comprise random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), flash memory, or the like. Propagation velocity routine 25 such as one of those mathematically described below, are stored in memory 24 and may form part of a larger software program used for analysis of the output of SAW sensor 10. For example, propagation velocity routine 25 may be a sub-routine programmed within a LabView software platform, which is described in greater detail below.
Processor 22 receives measurements taken from SAW sensor 10 by sensor analyzer 21, and applies propagation velocity routine 25 stored in memory 24. In doing so, processor 22 identifies a segment of phase frequency response of SAW sensor 10 (32), and estimates a time delay associated with wave propagation through SAW sensor 10 based on the identified frequency response (33). In some embodiments, an estimated propagation velocity derived from the estimated time delay can be used to identify the concentration of the bacteria or other material in the fluid (34).
Numerous mathematical techniques for estimating the time delay associated with wave propagation through the surface acoustic wave sensor will now be discussed.
refers to the time delay between the center of the input and the center of the output IDT separated by distance L. In the dispersive case, the time delay is also a function of the frequency. That is,
It follows from the definition of φ(f) (in degree) that:
For any given running frequency f0 (also referred to as the operating frequency), there are two phase inflection frequencies f1 and f2 proximate to a running frequency f0 such that:
(1) f1≦f0<f2
(2) φ(f1)=180, φ(f2−0)=−180 and φ(f2)=φ(f2+0)=180,
(3) f1τ(f1)=[f1τ(f1)], f2τ(f2)=[f2τ(f2)] and [f2τ(f2)]=[f1τ(f1)]+1, and
(4) For any f1≦f<f2,[fτ(f)]=[f1τ(f1)],
Taking the derivative with respect to f for both sides of the above equality, results in:
which is one basic differential equation for calculating the time delay τ(f).
If the initial condition is: τ(f) |f=f
The solution can be easily derived from:
The basic differential equation may be used to prove the following properties of τ(f).
Proposition 1: If for f∈[f11,f22)∈[f1,f2), φ(f) is linear with respect to f, then τ(f) is constant and
Proof of Proposition 1:
Suppose
is the solution of the basic differential equation:
in [f11,f22) because the left side
and the right side
due to the linearity of φ(f) in [f11,f22). It is also from the linearity of φ(f) in [f11,f22) that
Proposition 2: Suppose φ(f) is differentiable in (f1,f2) and right differentiable for f1. Then:
is the first order estimation of τ(f).
Proof or Proposition 2:
In the neighborhood of f00∈[f1,f2),
φ(f)≈φ(f00)+{dot over (φ)}(f00)(f−f00).
Therefore, in this neighborhood φ(f) is approximately linear with respect to f and {dot over (φ)}(f)≈{dot over (φ)}(f00). From the proposition 1,
That is,
is the first order of estimation of τ(f).
Algorithms or routines for estimating the Time Delay τ(f) will now be discussed. From proposition 2, the following algorithms can be used as part of propagation velocity routine 25 to obtain the estimate of τ(f).
Algorithm 1:
Using the equation:
one obtains:
In particular:
where f0 is running frequency and is also denoted by frun in this description.
Algorithm 2: f00=f*, e.g. φ(f*)=±90. Around f* take 10 frequencies f(1), f(2), . . . , f(10) and a linear regression for (f(1),φ(f(1))),(f(2),φ(f(2))), . . . ,(f(10),φ(f(10))).
The slope of this line is denoted by
Therefore,
Algorithm 3: f00=f0=frun. Around f0 take 10 frequencies f(1),f(2), . . . , f(10) and a linear regression for (f(1),φ(f(1))),(f(2),φ(f(2))), . . . , (f(10),φ(f(10))). The slope of this line is {dot over (φ)}(f0) and the first order estimation of τ(f0) is
Algorithm 4: Since
holds for any f00∈[f1,f2). Regarding f00 as a variable and taking integral with respect to f00 for both sides of the above approximate equation, provides
which is equivalent to
i.e.,
Because φ(f1)=180, φ(f2−0)=−180,
In particular,
Comparing the {circumflex over (τ)}(f) in algorithm 1 with that of algorithm 4, shows that algorithm 4 adds one more term
If the phase function φ(f) is symmetric about the point ((f1+f2)/2, 0), then
In that case, algorithms 1 and 4 are the same. This means that the term
is used to reduce the estimation error of the algorithm 1 resulting from non-symmetry of the phase response φ(f).
For the real measured phase response, φ(f) is only given at the sampling points of the frequency f. That is, φ(f) is a discrete sequence rather than a continuous function in the interval [f1,f2). Furthermore, φ(f1) and ¢(f2) may be not equal to 180 and −180, respectively, although it is true that φ(f1−Δf)<0, φ(f1)>0, φ(f2)<0 and φ(f2+Δf)>0, where Δf is the sampling interval in the frequency domain. In order to increase the estimation accuracy, Δf should be as small as possible and linear regression can be used to extrapolate φ(f) from [f1,f2) to [fnew1,fnew2) such that φ(fnew1)=180 and φ(fnew2−0)=−180. For the extrapolated φ(f),
or simply
Notably, the above algorithms for estimating the propagation velocity are only based on a proper segment of the measured frequency response of the SH-SAW sensor. In at least this way, the algorithms are different than conventional methods. Conventional methods, may measure the time delay of the sensor or time delays between several fingers of IDT by some time domain device. Alternatively, conventional methods may be based on an entire phase frequency response, an amplitude frequency response, and an inverse Fourier transform. In contrast, the techniques described herein are based only on a segment of the measured frequency response of the SH-SAW sensor, i.e., the proper segment, which can be identified as described herein.
Algorithm 1 was implemented in the software platform LabView for on-line velocity measurement. LabView is a commercially available software program that can be obtained from National Instruments, Inc., USA. Using a SAW sensor as a detector is generally based on the comparison of propagation characteristics of the sensor without and with a particular surface perturbation. Such a comparison can be carried out dynamically or statically.
For the dynamic comparison, the propagation characteristic of the sensor is measured as a time series. For the static comparison, the sensor should consist of two channels, the reference channel and detection channel (also called the active channel). For example, the reference channel may correspond to the reference portion between IDTs 15 and 17 (
Resonance frequency fresonance and propagation velocity v are two of the most direct propagation characteristics, and Δv/v are more sensitive than Δf/f to the surface perturbation. Therefore, the measurement of the propagation velocity may provide an improved method for efficiently using SH-SAW sensor as a detector. In contrast, conventional techniques typically measure the log-amplitude response A(f) and phase response φ(f) of SH-SAW sensor by a sensor analyzer and read out the phase at the running frequency from the measured phase frequency response. Developing routines for the direct measurement of the propagation velocity of the SH-SAW sensor becomes very important in the practical application of SH-SAW sensor. The algorithms presented above provide a software-based approach to estimate the propagation velocity from a proper segment of the measured phase frequency response, e.g., which can be measured by an 8753ET network analyzer commercially available from Agilent Technologies, Inc., USA. Other similar network analyzers could also be used.
LabView was chosen as any easy way to both communicate with the sensor analyzer and to do the calculation based on the model. An exemplary LabView screen associated with execution of the techniques described herein is shown in
The outputs from LabView allow various interpretations of the results to be made. For the majority of the plots shown on the LabView screen shown there are two outputs, one representing the measurement sensor and the other representing the reference sensor. In LabView, plots of phase and velocity can be used to determine if a sensor is working reliably. If the phase becomes noisy or if the amplitude decreases more than about 20 db then the sensor is deemed bad and discarded.
The phase histogram plot can be used as another measure of sensor quality and relates to non-linearity in the phase plot. The velocity plot may provide the result of the estimation according to the techniques described herein.
Plots of magnitude and phase are taken at the running frequency and plotted against time. Lastly, temperature and analog values are outputs that are plotted against time. In order to calculate velocity from a proper segment of phase frequency response an internal sub-VI is used within LabView. The first step is to calculate all the +180 and −180 degree phase points. In other words, to determine the phase inflection frequencies, the technique may sample a plurality of phase responses at frequencies proximate to the running frequency and estimate the phase inflection frequencies as a function of the plurality of phase responses.
The difference between the velocity expression in continuous frequency and its discrete realization was discussed above. However, this first step may also be applied during the implementation of Algorithm 1 in LabView. For example, if the sensor analyzer has a limited resolution in frequency, the data about a −180 to 180 degree phase transition may be similar to that below:
An extrapolated linear fit may be used to find the exact −180 and 180 degree phase points. An illustration of exemplary +180 and −180 degree phase points is shown in
V_Fr=(L*0.001)/Tau_Fr (with L converted from millimeters to meters). The final output of velocity (V_Fr) is plotted in LabView and corresponds to {circumflex over (v)}(f0), discussed above.
Using a separate application of LabView, it is possible; to take stored phase files and reconstruct velocity data. The phase data can then be transformed using exactly the same model as above. In this way, it is possible to see the effect of changing the running frequency relative to the velocity obtained. LabView allows two ruining frequencies (at 0.1 MHz difference) to be evaluated simultaneously. Advantageously, the phase inflection frequencies define edges of a monotonically changing subset of a graph of phase versus frequency of the surface acoustic wave sensor. Thus, the techniques described herein may allow not only for the identification of a material via the sensor, but also an indication of the concentration of the material.
The Love mode SH-SAW sensor used in the experiment was a LiTaO3 device operating at 103 MHz provided by Sandia National Laboratories, USA. A low-walled flow cell was placed over the sensor and filled with Phosphate Buffered Saline (PBS) buffer solution at pH 7.5. This liquid container was connected to a syringe pump system to allow a slow flow of buffer. During the experiment, multiple aliquots of 250 microliters of 0.05 mg/ml Bovine Serum Albumin % (BSA) protein was injected into the cell at designated times. An 8753ET network analyzer from Agilent Technologies, Inc., USA, measured the log-amplitude and phase response of the sensor approximately every twenty seconds. Based on the resulting phase responses, the curve of phase at the operation frequency versus time was immediately obtained. Algorithm 1 was then used to calculate the propagation velocity versus time at the operating frequency.
In this example, three separate concentrations of bacteria being detected were used. The first bacterial concentration was 103 cfu/ml (colony forming unit per milliliter), and the results are illustrated in
In particular, the graphs of
The Δv/v0 and Δφ/φ0 at the steady state are extracted from the above curves for each bacterial concentration. The relationships of Δv/v0 versus log-concentration and Δφ/φ0 versus log-concentration are respectively shown in
Although the experimental results are just for three different bacterial concentrations, clearly, Δφ/φ0 is not monotonic with respect to the bacterial concentration.
It also demonstrates the correctness of the conclusion that Δφ/φ0 is not a proper indicator for quantitatively detecting loading mass with large dynamic range.
The Love mode SH-SAW sensor used in the experiment was a LiTaO3 device operating at 103 MHz provided by Sandia National Laboratories, USA. During the experiment, the surface of the sensor was:
1. In air for approximately 20 min
2. In buffer for approximately 30 min
3. Subjected to bacteria in the buffer for approximately 18 min
4. Briefly washed and left in buffer for approximately 20 min
5. Subjected to De Ionized (DI) water for approximately 30 min.
Bacteria were bound to the antibody attached to the surface.
By observing the graph of velocity versus time in
The Love mode SH-SAW sensor used in the experiment was a LiTaO3 device operating at 103 MHz provided by Sandia National Laboratories, USA. A low-walled flow cell was placed over the sensor and filled with Phosphate Buffered Saline (PBS) buffer solution at pH of approximately 7.5. This liquid container was connected to a syringe pump system to allow a slow flow of buffer. During the experiment, multiple aliquots of 250 microliters of Bovine Serum Albumin (BSA) protein at various concentrations were injected into the cell at designated times. The injection of proteins conformed to Table 1, below. In Table 1, BSA refers to Bovine Serum Albumin, and IgG refers to Immunoglobulin.
As described in Example 1, an 8753ET network analyzer from Agilent Technologies, Inc., USA, measured the log-amplitude and phase frequency response of the sensor approximately every 20 seconds. Based on proper segments of these phase frequency response for the active channel, and algorithm 1 proposed above, both the curves of phase and propagation velocity at the running frequency versus time fare were obtained.
The details of the curve of propagation velocity (m/s) versus time (sampling point in time domain) for BSA injections are shown in the
(9) (1023) BSA 0.05 mg/ml;
In order to estimate Δv/v more accurately, some segments of the curve of velocity around the injection moments of BSA are used. An example is shown in
More examples are presented in
The more accurate estimations of Δv/v about the estimated injection moments of BSA are presented in Table 1. The resulting Δv/v versus the known concentration of the injected BSA at the same injection moment, which is listed in Table 1, is shown in
One can examine the circle corresponding to the largest Δv/v. The curve of
Moreover, the monotonic nature of the curve of
The measurement of propagation characteristic of SH-SAW sensor is the base for using the sensor as a detector. The resonance frequency fresonance and propagation velocity v are two direct propagation characteristics and Δv/v is more sensitive than Δf/f to the surface perturbation. Therefore, the measurement of the propagation velocity is a preferred index for efficiently using SH-SAW sensor as a detector.
In contrast, the conventional approach is to measure the log-amplitude frequency response A(f) and phase frequency response φ(f) of SH-SAW sensor by a sensor analyzer, and then read out the phase at the running frequency. The serious limitation of Δφ or Δφ/φ for detection was discussed above. By developing hardware and/or software for the direct measurement of the propagation velocity of the SH-SAW sensor, a practical application of a SH-SAW sensor can be achieved. Based on the system model of SH-SAW sensor with conventional triple transit echo (TTE) techniques, several algorithms have been presented to estimate the propagation velocity from a proper segment of the phase frequency response measured by a sensor analyzer. The first algorithm (algorithm 1) has also been implemented in the software platform LabView for on-line velocity measurement.
Compared with the conventional phase-based or phase shift-based method, the techniques described herein will not lose any information carried by phase. Also, because of overcoming the phase ambiguity, the techniques described herein can extract much more information about the surface condition of SH-SAW sensor relative to conventional techniques. Furthermore, the examples showed the monotonic nature of the curve of Δv/v versus concentration of the liquid mass loading in a large dynamic range of the concentration. This may therefore be the basis for using SH-SAW sensor in practice to quantitatively detect mass loading. In contrast, for the curve of Δφ/φ versus concentration of the liquid mass loading, monotonic curves only hold true for small concentrations.
Various embodiments of the invention have been described. In particular, techniques for estimating the propagation velocity through a surface acoustic wave sensor have been described. The techniques may be implemented in hardware, software, firmware, or the like. Example hardware implementations include implementations within a general purpose microprocessor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), specifically designed hardware components, or any combination thereof. In addition, one or more of the techniques described herein may be partially or wholly executed in software. In that case, a computer-readable medium may store or otherwise comprise computer-readable instructions, i.e., program code, that can be executed by a processor or to carry out one of more of the techniques described above. The techniques can be used for both constant time delay (in non-dispersive case) and frequency dependant time delay (in dispersive case).
For example, the computer-readable medium may comprise random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), flash memory, or the like. These and other embodiments are within the scope of the following claims.
Suitable methods for coating the devices of the present invention include Applicants' Copending Application U.S. Ser. No. 10/607,698, filed Jun. 27, 2003.
The present invention may be utilized in combination with various materials, methods, systems, apparatus, etc. as described in various patents and published patent applications identified below, all of which are incorporated by reference in their respective entireties. They include: U.S. Publication No. 2007/0065490; U.S. Publication No. 2005/0142296; U.S. Pat. No. 7,169,933; U.S. Pat. No. 7,179,923; U.S. Pat. No. 7,361,767; U.S. Pat. No. 7,423,155; U.S. Pat. No. 7,399,609; U.S. Publication No. 2009/0115004; U.S. Publication No. 2005/0153370, titled “Method of Enhancing Signal Detection of Cell-Wall Components of Cells”; U.S. Pat. No. 7,342,082; U.S. Pat. No. 7,402,678; PCT Publication No. WO2005/066621, titled “Surface Acoustic Wave Sensor Assemblies”; PCT Publication No. WO2005/075 973, titled “Acousto-Mechanical Detection Systems and Methods of Use”; PCT Publication No. WO2005/064349, titled “Detection Cartridges, Modules, Systems and Methods”; and PCT Publication No. WO2005/066092, titled “Acoustic Sensors and Methods”.
The complete disclosures of the patents, patent applications, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments set forth herein and that such embodiments are presented by way of example only, with the scope of the invention intended to be limited only by the claims.
This application claims priority to U.S. Provisional Patent Application No. 60/533,177, filed Dec. 30, 2003.
This invention was made under a CRADA (SC02/01645) between Minnesota Mining and Manufacturing Company and Sandia National Laboratories, operated for the United State Department of Energy. The Government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/042793 | 12/17/2004 | WO | 00 | 6/21/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/066622 | 7/21/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4730494 | Ishikawa et al. | Mar 1988 | A |
5012668 | Haworth | May 1991 | A |
5992215 | Caron et al. | Nov 1999 | A |
6062091 | Baumoel | May 2000 | A |
20040265492 | Free et al. | Dec 2004 | A1 |
20050106709 | Benson et al. | May 2005 | A1 |
20050107615 | Benson et al. | May 2005 | A1 |
20050112672 | Benson et al. | May 2005 | A1 |
20050142296 | Lakshmi | Jun 2005 | A1 |
20050153370 | Lakshmi et al. | Jul 2005 | A1 |
20050212621 | Takamine | Sep 2005 | A1 |
20050227076 | Benson et al. | Oct 2005 | A1 |
20060019330 | Lakshmi et al. | Jan 2006 | A1 |
20060135718 | Benson et al. | Jun 2006 | A1 |
20060135783 | Benson et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
09325134 | Dec 1997 | JP |
WO 2005064349 | Jul 2005 | WO |
WO 2005066092 | Jul 2005 | WO |
WO 2005066621 | Jul 2005 | WO |
WO 2005075973 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070068256 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60533177 | Dec 2003 | US |