Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing

Information

  • Patent Grant
  • 9623266
  • Patent Number
    9,623,266
  • Date Filed
    Tuesday, August 4, 2009
    15 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
A magnetic-resonance-guided focused ultrasound system may be calibrated by generating ultrasound foci using ultrasound transducers, establishing coordinates of the foci and of magnetic-resonance trackers associated with the transducers, and determining a geometric relationship between the trackers and the transducers.
Description
FIELD OF THE INVENTION

The present invention relates generally to ultrasound focusing and, more particularly, to calibrating magnetic-resonance-guided focused ultrasound systems.


BACKGROUND

Ultrasound penetrates well through soft tissues and, due to its short wavelengths, can be focused to spots with dimensions of a few millimeters. As a consequence of these properties, ultrasound can and has been used for a variety of diagnostic and therapeutic medical purposes, including ultrasound imaging and noninvasive surgery. For example, focused ultrasound may be used to ablate diseased (e.g., cancerous) tissue without causing significant damage to surrounding healthy tissue. The noninvasive nature of ultrasound surgery is particularly appealing for the treatment of, for example, brain tumors.


An ultrasound focusing system generally utilizes an acoustic transducer surface, or an array of transducer surfaces, to generate an ultrasound beam. In transducer arrays, the individual surfaces are typically individually controllable, i.e., their vibration phases and/or amplitudes can be set independently of one another, allowing the beam to be steered in a desired direction and focused at a desired distance. In medical applications, the target location of the ultrasound focus is often determined using magnetic resonance imaging (MRI). In brief, MRI involves placing a subject, such as the patient, into a static magnetic field, thus aligning the spins of hydrogen nuclei in the tissue, and then applying radio-frequency electromagnetic pulses to temporarily destroy the alignment, inducing a response signal. Different tissues produce different response signals, resulting in a contrast among theses tissues in MR images. Thus, MRI may be used to visualize, for example, a brain tumor, and determine its location relative to the patient's skull. An ultrasound transducer system, such as an array of transducers attached to a housing, may then be placed on the patient's head, and the transducers driven so as to focus ultrasound onto the tumor. This method is referred to as magnetic-resonance-guided focusing of ultrasound (MRgFUS).


In MRgFUS, the treatment target is defined in magnetic resonance (MR) coordinates. To enable directing the ultrasound focus onto this target, the location and orientation of the transducer(s) need to be ascertained in MR coordinates as well. The transducer coordinates may be measured directly in the MR coordinate system using MR trackers—e.g., fiducials visible in MR images—that are rigidly attached to the transducer system, or have an otherwise fixed and known relative location with respect to the transducer(s). MR trackers may be implemented in various ways, for example, as MRI markers or microcoils.


Ideally, the acoustic surface and the MR trackers would be perfectly placed and aligned with respect to each other. In practice, however, mechanical tolerances in production are inevitable, and the relative positions of the transducer(s) and the MR trackers generally deviate from the nominal relative positions due to these “production errors.” As a result, if a transducer array is driven based on the nominal relative positions, the ultrasound focus will deviate from the intended focus. To ensure that the ultrasound focus more accurately coincides with the intended target, there is, accordingly, a need to quantify the effect of production errors on the accuracy of targeting.


SUMMARY

The present invention provides, in various embodiments, systems and methods for calibrating MR-guided focused ultrasound systems to enable estimating, and compensating for, misalignment parameters between MR trackers and ultrasound transducers of a phased array. Generally, the calibration involves driving the phased array at different sets of transducer phases and/or amplitudes (hereinafter referred to as sonication geometries) to address different targets, and measuring the targeting errors (i.e., the deviations of the ultrasound focus location from the expected location) for these different sonication geometries. The measurements may be performed on an acoustic phantom, which may be made of a gel. The combined information about the sonication geometries and associated targeting errors, along with information about the experimental setup, allows the production errors to be estimated. In subsequent MRgFUS, these estimates may serve to compute adjustments in the sonication geometry so as to focus the ultrasound at the intended target location. Thus, embodiments of the invention improve the accuracy MRgFUS. In some embodiments, the ultrasound focus will coincide with the target location within a tolerance of 1 mm.


In a first aspect, therefore, various embodiments of the invention provide a method for calibrating a MRgFUS system. The method includes providing a phased array of ultrasound transducers that has at least one associated MR tracker (e.g., a micro-coil or MRI marker) with a fixed position relative to the array, and establishing MR coordinates of the MR trackers. The MR trackers and the array may be part of a single rigid structure. The method further includes creating an ultrasound focus with the phased array for each of a plurality of sonication schemes, and establishing parameters indicative of MR coordinates of the ultrasound focus. These parameters may be, for example, the MR coordinates of the ultrasound focus, or coordinates of one or more projections of the ultrasound focus. The ultrasound focus may be created in a phantom, and the parameters may be established using any suitable MRI technique, for example, thermal MRI or acoustic-radiation-force MRI. Based at least in part on the parameters, a geometric relationship between the ultrasound transducers and the MR trackers is then determined. The determination of the geometric relationship may further be based on the sonication schemes.


In some embodiments, the geometric relationship includes coordinates of the MR trackers in a transducer coordinate system. Determining the geometric relationship may include determining a transformation between the MR coordinate system and the transducer coordinate system that is based, at least in part, on the parameters indicative of the MR coordinates of the ultrasound foci and on the sonication schemes, and using the transformation to determine the coordinates of the MR trackers in the transducer coordinate system.


In some embodiments, the geometric relationship includes production errors indicative of a deviation of the fixed relative positions between the MR trackers and the transducers from nominal relative positions. In this case, a transformation between the parameters and the production errors may be determined based, at least in part, on the sonication scheme. Further, a linear estimation method (e.g., a least square method) may be applied to the transformation and the ultrasound focus parameters to determine the production errors.


In a second aspect, a method for operating a magnetic-resonance-guided focused-ultrasound system is provided. Embodiments of the method include providing a phased array of ultrasound transducers with one or more associated MR trackers, and calibrating this system by establishing MR coordinates of the MR trackers, creating ultrasound foci for a plurality of sonication schemes and establishing parameters indicative of MR coordinates of the ultrasound foci, and determining a geometric relationship between the ultrasound transducers and the MR trackers based, at least in part, on the parameters. The method further includes operating the magnetic-resonance-guided focused-ultrasound system by focusing ultrasound into a target region with MR coordinates, based on the geometric relationship.


In a third aspect, a system for calibrating a magnetic-resonance-guided ultrasound-focusing system is provided. Embodiments of the system include a phased array of ultrasound transducers, an MRI apparatus, and a control facility. Associated with the ultrasound transducer array is at least one MR tracker, whose position is fixed relative to the array. The functionalities of the control facility include driving the phased array according to a sonication scheme to generate an ultrasound focus, receiving MR imaging data indicative of MR coordinates of the ultrasound focus and the MR trackers, and determining a geometric relationship between the ultrasound transducers and the MR trackers based (at least in part) on the MR imaging data. The system may further include (or operate on) a phantom in which the ultrasound focus is generated.


In a fourth aspect, various embodiments of the invention provide a magnetic-resonance-guided ultrasound-focusing system including a phased array of ultrasound transducers with associated MR trackers, an MR imaging apparatus, a user interface facilitating selection of a target region in MR coordinates, and a control facility. The functionalities of the control facility include driving the phased array according to a sonication scheme to generate an ultrasound focus, receiving MR imaging data indicative of MR coordinates of the ultrasound focus and the MR trackers, determining a geometric relationship between the ultrasound transducers and the MR trackers based (at least in part) on the MR imaging data, and operating the magnetic-resonance-guided focused-ultrasound system by focusing ultrasound into the target region based on the geometric relationship.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing discussion and the following detailed description of embodiments of the invention can more readily be understood in conjunction with the accompanying drawings wherein:



FIG. 1 is schematic diagram of an MRgFUS system in accordance with various embodiments;



FIG. 2 shows an MRI machine suitable for MRgFUS applications in accordance with various embodiments;



FIG. 3A is a schematic diagram illustrating the relationship between production errors and targeting errors in accordance with various embodiments;



FIG. 3B is a schematic diagram illustrating a method for estimating production errors in accordance with one embodiment; and



FIG. 4 is a schematic diagram illustrating ultrasound focus locations in two planes in accordance with one embodiment.





DETAILED DESCRIPTION

The present invention is generally directed to the calibration of MRgFUS systems. An exemplary MRgFUS system 100 is illustrated schematically in FIG. 1. The system includes a plurality of ultrasound transducers 102, which are arranged in an array at the surface of a housing 104. The array may comprise a single row or a matrix of transducer elements 102. In alternative embodiments, the transducer elements 102 may be arranged in a non-coordinated fashion, i.e., they need not be spaced regularly or arranged in a regular pattern. The array may have a curved (e.g., spherical or parabolic) shape, as illustrated, or may include one or more planar or otherwise shaped sections. Its dimensions may vary, depending on the application, between millimeters and tens of centimeters. The transducer elements 102 may be piezoelectric ceramic elements. Piezo-composite materials, or generally any materials capable of converting electrical energy to acoustic energy, may also be used. To damp the mechanical coupling between the elements 102, they may be mounted on the housing using silicone rubber or any other suitable damping material.


The transducers 102 are separately controllable, i.e., they are each capable of emitting ultrasound waves at amplitudes and/or phases that are independent of the amplitudes and/or phases of the other transducers. A control facility 106 serves to drive the transducers 102. For n transducer elements, the control facility 106 may contain n control circuits each comprising an amplifier and a phase delay circuit, each control circuit driving one of the transducer elements. The control facility may split a radio frequency (RF) input signal, typically in the range from 0.1 MHz to 4 MHz, into n channels for the n control circuit. It may be configured to drive the individual transducer elements 102 of the array at the same frequency, but at different phases and different amplitudes so that they collectively produce a focused ultrasound beam. The control facility 106 desirably provides computational functionality, which may be implemented in software, hardware, firmware, hardwiring, or any combination thereof, to compute the required phases and amplitudes for a desired focus location. In general, the control facility may include several separable apparatus, such as a frequency generator, a beamformer containing the amplifier and phase delay circuitry, and a computer (e.g., a general-purpose computer) performing the computations and communicating the phases and amplitudes for the individual transducers 102 to the beamformer. Such systems are readily available or can be implemented without undue experimentation.


The MRgFUS system 100 further includes an MRI apparatus 108 in communication with the control facility 106. An exemplary apparatus 108 is illustrated in more detail in FIG. 2. The apparatus 108 may include a cylindrical electromagnet 204, which generates a static magnetic field within a bore 206 of the electromagnet 204. During medical procedures, a patient is placed inside the bore 206 on a movable support table 208. A region of interest 210 within the patient (e.g., the patient's head) may be positioned within an imaging region 212 wherein the magnetic field is substantially homogeneous. A radio-frequency (RF) transmitter coil 214 surrounding the imaging region 212 emits RF pulses into the imaging region 212, and receives MR response signals emitted from the region of interest 210. The MR response signals are amplified, conditioned, and digitized into raw data using an image processing system 216, and further transformed into arrays of image data by methods known to those of ordinary skill in the art. Based on the image data, a treatment region (e.g., a tumor) is identified. An ultrasound phased array 220, disposed within the bore 206 of the MRI apparatus and, in some embodiments, within the imaging region 212, is then driven so as to focus ultrasound into the treatment region. This requires precise knowledge of the position and orientation of the transducer surface(s) with respect to the MRI apparatus.


Referring again to FIG. 1, the phased array of transducer 102 has MR trackers 110 associated with it. The MR trackers 110 may be incorporated into or attached to the housing 104, or otherwise arranged at a fixed position and orientation relative to the transducer array. Typically, three or more MR trackers 110 are used. If the relative positions and orientations of the MR trackers 110 and transducers 102 are known, MR scans of the MR trackers 110 implicitly reveal the transducer location in MRI coordinates, i.e., in the coordinate system of the MRI apparatus 108. The MR scan(s) may include image and/or spectral data. The control facility 106, which receives MRI data containing the MR tracker location, can then set the phases and amplitudes of the transducers 102 to generate a focus 112 at a desired location or within a desired target region. In some embodiments, a user interface 114 in communication with the control facility 106 and/or the MRI apparatus 108 facilitates the selection of the focus location or region in MR coordinates.


Typically, the relative positions of MR trackers 110 and transducers 102 are only approximately known. In order to obtain more accurate values for the relative positions, or their difference from the nominal, assumed values (i.e., the production errors), the system 100 may be calibrated. During calibration, the array of transducers 102 is attached to or located about an acoustic phantom 116, wherein an ultrasound focus may be generated.


The location of the ultrasound focus 112 in the phantom 116 depends on the particular sonication scheme as well as quantities characterizing the experimental setup, which may include, e.g., the speed of sound in the phantom, the incidence angle of ultrasound waves onto the surface of the phantom 116, and/or measurement distortions associated with the MRI apparatus 108. The relationship between the targeting errors and the production errors likewise depends on the sonication scheme and the setup quantities (i.e., nominal setup quantities and unknown setup errors). FIG. 3A illustrates this relationship, which may be expressed mathematically in terms of a transfer function. The transfer function takes the production errors and any setup errors as input variables and the sonication scheme and nominal setup quantities as parameters, and yields the targeting errors as output variables.


Although the production and setup errors are not known a priori, the transfer function itself is known from the nominal setup quantities and the selected sonication scheme. The transfer function may be given in the form of an algorithm for computing, for any hypothetical production error, the resulting targeting error. An exemplary such algorithm may involve (i) determining the position(s) and orientation(s) of the transducer surface(s) from their nominal relative positions to the trackers and the production errors; (ii) computing the location of the ultrasound focus based on the transducer location(s) and orientation(s) and the sonication scheme; (iii) determining “nominal” position(s) and orientation(s) of the transducer surface(s) from their nominal relative positions to the trackers alone, assuming that the production errors are zero; (iv) computing the location of the ultrasound focus based on the “nominal” transducer location(s) and orientation(s) and the sonication scheme; and (v) computing the difference between the two focus locations. Methods for computing the location of an ultrasound focus generated by a phased array of transducers driven according to a particular sonication scheme are described, for example, in U.S. patent application Ser. No. 12/425,698, filed Apr. 17, 2009, the entire contents of which are hereby incorporated herein by reference in their entirety.


Provided that the experimental setup does not change, the targeting errors are repeatable for each particular sonication scheme. By generating ultrasound foci in the phantom in accordance with a suitable set of different sonication schemes, and measuring the resulting targeting errors, production errors may be ascertained, or rendered “observable,” as the term is used in estimation theory. Assuming that three-dimensional MR coordinates of the ultrasound focus can be determined for each sonication scheme, three sonications are needed to determine the position of the transducer in three dimensions. If only partial information can be derived from each sonication, however, the required number of sonication schemes is higher. An increased number of sonication schemes may also serve to improve statistics and reduce the effect of random errors. On the other hand, if constraints are placed on the positions of the transducers, or if not all of the positional information is desired (e.g., if the rotation of the transducer about itself is not relevant), fewer sonication schemes may suffice.


Accordingly, in various embodiments, the present invention facilitates determination of the relative positions between ultrasound transducers 102 and MR trackers 110 or, in other words, the relationship between ultrasound and MR coordinates. Methods in accordance with the invention involve, first, attaching the phased array of transducers 102 to the acoustic phantom 116, and introducing the arrangement into the MRI apparatus 108. Next, various sonication schemes are applied to the transducers 102, and the phantom and transducer setup is imaged using MRI techniques. Suitable imaging techniques include, for example, thermal imaging and acoustic radiation force imaging. Image acquisition may be three-dimensional or may, alternatively, provide a set of one- or two-dimensional images, which may be suitable for constructing a three-dimensional image. In the MR images, the focus location and/or targeting errors may be measured in terms of MR coordinates or related parameters. For example, the focal spot may be projected into a specific image plane, and the projection coordinates of the focus determined. The parameters indicative of the focus and/or targeting errors for the various sonication schemes may then be processed to estimate the relationship between the ultrasound and MR coordinates. This estimation step may be implemented in various ways.


In one approach, the relationship between production (and setup) and targeting errors is modeled with a linear transfer function. Such linear approximations are appropriate when the input and output variables are small, which is usually the case for the production errors and resulting targeting errors. A linear transfer function can be expressed as a matrix. In FIG. 3B, the transfer function associated with a specific sonication scheme k is denoted as Tk. Further denoting the production errors and setup errors associated with a particular MRgFUS system as a vector PE, and denoting the targeting errors resulting from the production errors for sonication scheme k as TE(k), the relationship between these three quantities is described by: TE(k)=Tk*PE. The targeting errors TE(k) may, in some embodiments, be measured directly as coordinate differences between the desired and the actual ultrasound focus in three dimensions. In general, however, measurements obtain indirect data indicative of the targeting errors, such as coordinates of the desired and actual ultrasound focus in several projection planes. Denoting the measured quantities as a vector Mes(k) and the transfer function that relates the targeting errors to the measured quantities as Mk, and further accounting for noise inherent in measurements, the measured quantities can be expressed as: Mes(k)=Mk*TE(k)+noise. Therefore, for a sonication scheme k, the actually measured quantities are related to the production errors by: Mes(k)=Mk*Tk*PE+noise. Herein, Mk and Tk are transfer functions known a priori from the sonication scheme and experimental setup, Mes(k) is measured, and PE is to be determined.


The equations for the different sonication schemes (k) can all be combined into one linear system of equations, symbolically described in terms of a matrix equation: Mes=MT*PE+Noise, wherein Mes is a vector of vectors Mes(k), and MT is a block matrix comprising the individual blocks Mk*Tk. This system of linear equations may be solved using linear estimation methods, such as, e.g., least-square methods, minimum-variance, weighted-least-squares, maximum-likelihood, L1-regression, and/or best-linear-estimation methods. Utilizing a least-square method, for example, the pseudo-inverse matrix MT# of the product of MT and its transpose may be computed according to MT#=(MTT*MT)−1, and then the production errors may be estimated by multiplying the pseudo-inverse matrix to the vector of measurements: PEestimated=MT#*MTT*Mes.


An alternative approach involves determining a transformation between the MR coordinate system and the transducer coordinate system based on MR coordinates of ultrasound foci generated at certain locations with respect to the transducers and, therefore, at known transducer coordinates. Once this transformation is found, it can be applied to the MR tracker positions in the MR coordinate system to yield the MR tracker positions in the ultrasound coordinate system. This approach does not include determining target errors and, therefore, does not require initial estimates of MR tracker locations relative to the transducers.


The transformation between the transducer and the MR coordinate systems is defined by a geometric relationship therebetween. This relationship, in turn, can be determined from the transducer and MR coordinates of a sufficient number of suitably located ultrasound foci. In practice, however, it is not trivial to find the foci. Firstly, the ultrasound focus spot is usually elongated along the direction of the ultrasound beam. Secondly, a correct measurement of the focus location in the MR coordinate system requires an MR image that goes through the center of the ultrasound focus. In two-dimensional MR imaging, finding this center may require many scans, and constitute a cumbersome process. To overcome these difficulties, in one embodiment, the ultrasound focus locations are confined to two planes, as illustrated in FIG. 4.



FIG. 4 schematically depicts a transducer surface (which may comprise a plurality of individual transducers), and defines a coordinate system associated with the transducer surface. The origin of the coordinate system lies in the transducer surface, and three mutually perpendicular axes P, Q, and R emanate from the origin. Axes P and Q are tangential to the surface at the origin, whereas R is normal to the surface. The transducer surface successively generates ultrasound foci either in a plane spanned by P and R, or in a plane spanned by Q and R. MRI scans are performed parallel to the plane spanned by P and Q. The scans need not go through the center of the focus; it suffices if they intersect the elongated focus spot because each apparent focus found in the scan plane is the intersection of the scan plane with a ray, in the PR or QR plane, from the origin of the transducer system to the actual focus, and thus lies in the same plane as the focus center.


To find the transformation between the MR and transducer coordinate systems, the MR coordinates of the measured (apparent) foci are sorted into those that belong to foci in the PR plane and those that belong to foci in the QR plane. From these data, a best fit to each of the two point collections defines the planes in the MR coordinate system. The intersection of the QR and PR planes defines the R direction. The R direction and the PR plane together then define the P direction, and, similarly, the R direction and the QR plane together define the Q direction. The only parameter that remains to be determined is the position of the origin along the R axis. This parameter can be determined from a best fit for an origin that would produce the measured focus positions, or from one or a few additional sonications.


Although the present invention has been described with reference to specific details, it is not intended that such details should be regarded as limitations upon the scope of the invention, except as and to the extent that they are included in the accompanying claims.

Claims
  • 1. A method for calibrating a magnetic-resonance-guided focused-ultrasound system, comprising: (a) providing a phased array of ultrasound transducers, the array having at least one magnetic resonance (MR) tracker associated therewith at a fixed relative position with respect thereto;(b) establishing MR coordinates of the MR trackers;(c) for each of a plurality of sonication schemes, (i) creating an ultrasound focus, and (ii) establishing parameters indicative of MR coordinates of the ultrasound focus, wherein each sonication scheme is associated with a scheme-specific set of production errors; and,(d) based at least in part on the parameters, determining a geometric relationship between the ultrasound transducers and the MR trackers.
  • 2. The method of claim 1 wherein the MR trackers and the array are part of a single rigid structure.
  • 3. The method of claim 1 wherein the MR trackers comprise at least one of a micro-coil or an MR imaging marker.
  • 4. The method of claim 1 wherein the ultrasound focus is created in a phantom.
  • 5. The method of claim 1 wherein establishing the MR coordinates of the ultrasound focus comprises at least one of thermal MR imaging or acoustic-radiation-force MR imaging.
  • 6. The method of claim 1 wherein the parameters comprise the MR coordinates of the ultrasound focus.
  • 7. The method of claim 1 wherein the parameters comprise MR coordinates of a projection of the ultrasound focus.
  • 8. The method of claim 1 wherein the determination of the geometric relationship is further based on the sonication schemes.
  • 9. The method of claim 1 wherein the geometric relationship comprises coordinates of the MR trackers in a transducer coordinate system.
  • 10. The method of claim 9 wherein determining the geometric relationship comprises determining a transformation between the MR coordinate system and the transducer coordinate system based, at least in part, on the parameters and the sonication schemes.
  • 11. The method of claim 10 wherein determining the geometric relationship further comprises using the transformation to determine the coordinates of the MR trackers in the transducer coordinate system.
  • 12. The method of claim 1 wherein the geometric relationship comprises production errors indicative of a deviation of the fixed relative positions between the MR trackers and the transducers from nominal relative positions.
  • 13. The method of claim 12 wherein determining the geometric relationship comprises determining a transformation between the parameters and the production errors based, at least in part, on the sonication scheme.
  • 14. The method of claim 13 wherein determining the geometric relationship further comprises applying a linear estimation method to the transformation and the parameters, thereby determining the production errors.
  • 15. The method of claim 14 wherein the linear estimation method comprises a least square method.
  • 16. A method for operating a magnetic-resonance-guided focused-ultrasound system, comprising: (a) providing a phased array of ultrasound transducers, the array having at least one magnetic resonance (MR) tracker associated therewith at a fixed relative position with respect thereto;(b) establishing MR coordinates of the MR trackers;(c) for each of a plurality of sonication schemes, (i) creating an ultrasound focus, and (ii) establishing parameters indicative of MR coordinates of the ultrasound focus, wherein each sonication scheme is associated with a scheme-specific set of production errors;(d) based at least in part on the parameters, determining a geometric relationship between the ultrasound transducers and the MR trackers; and(e) operating the magnetic-resonance-guided focused-ultrasound system by focusing ultrasound into a target region having MR coordinates, based on the geometric relationship.
  • 17. A system for calibrating a magnetic-resonance-guided ultrasound-focusing system comprising: (a) a phased array of ultrasound transducers, the array having at least one magnetic resonance (MR) tracker associated therewith at a fixed relative position with respect thereto;(b) an MR imaging apparatus; and(c) a control facility for (i) driving the phased array according to a sonication scheme, associated with a scheme-specific set of production errors, so as to generate an ultrasound focus, (ii) receiving MR imaging data indicative of MR coordinates of the ultrasound focus and the MR trackers, and (iii) determining a geometric relationship between the ultrasound transducers and the MR trackers based, at least in part, on the MR imaging data.
  • 18. The system of claim 17 further comprising a phantom in which the ultrasound focus is generated.
  • 19. A magnetic-resonance-guided ultrasound-focusing system comprising: (a) a phased array of ultrasound transducers, the array having at least one magnetic resonance (MR) tracker associated therewith at a fixed relative position with respect thereto;(b) an MR imaging apparatus;(c) a user interface facilitating selection of a target region in MR coordinates; and(d) a control facility for (i) driving the phased array according to a sonication scheme, associated with a scheme-specific set of production errors, so as to generate an ultrasound focus, (ii) receiving MR imaging data indicative of MR coordinates of the ultrasound focus and the MR trackers, (iii) determining a geometric relationship between the ultrasound transducers and the MR trackers based, at least in part, on the MR imaging data, and (iv) operating the magnetic-resonance-guided focused-ultrasound system by focusing ultrasound into the target region based on the geometric relationship.
US Referenced Citations (229)
Number Name Date Kind
2795709 Camp Jun 1957 A
3142035 Harris Jul 1964 A
3942150 Booth et al. Mar 1976 A
3974475 Burckhardt et al. Aug 1976 A
3992693 Martin et al. Nov 1976 A
4000493 Spaulding et al. Dec 1976 A
4074564 Anderson Feb 1978 A
4206653 Lemay Jun 1980 A
4339952 Foster Jul 1982 A
4454597 Sullivan Jun 1984 A
4478083 Hassler et al. Oct 1984 A
4505156 Questo Mar 1985 A
4526168 Hassler et al. Jul 1985 A
4537074 Dietz Aug 1985 A
4549533 Cain et al. Oct 1985 A
4554925 Young Nov 1985 A
4636964 Jacobs et al. Jan 1987 A
4662222 Johnson May 1987 A
4858597 Kurtze et al. Aug 1989 A
4865042 Umemura et al. Sep 1989 A
4888746 Wurster et al. Dec 1989 A
4889122 Watmough et al. Dec 1989 A
4893284 Magrane Jan 1990 A
4893624 Lele Jan 1990 A
4937767 Reuschel et al. Jun 1990 A
5209221 Riedlinger May 1993 A
5211160 Talish et al. May 1993 A
5247935 Cline et al. Sep 1993 A
5271400 Dumoulin et al. Dec 1993 A
5275165 Ettinger et al. Jan 1994 A
5291890 Cline et al. Mar 1994 A
5307812 Hardy et al. May 1994 A
5307816 Hashimoto et al. May 1994 A
5318025 Dumoulin et al. Jun 1994 A
5323779 Hardy et al. Jun 1994 A
5327884 Hardy et al. Jul 1994 A
5329930 Thomas, III et al. Jul 1994 A
5339282 Kuhn et al. Aug 1994 A
5368031 Cline et al. Nov 1994 A
5368032 Cline et al. Nov 1994 A
5379642 Reckwerdt et al. Jan 1995 A
5391140 Schaetzle et al. Feb 1995 A
5413550 Castel May 1995 A
5435312 Spivey et al. Jul 1995 A
5443068 Cline et al. Aug 1995 A
5474071 Chapelon et al. Dec 1995 A
5485839 Aida et al. Jan 1996 A
5490840 Uzgiris et al. Feb 1996 A
5507790 Weiss Apr 1996 A
5520188 Hennige et al. May 1996 A
5526814 Cline et al. Jun 1996 A
5549638 Burdette Aug 1996 A
5553618 Suzuki et al. Sep 1996 A
5557438 Schwartz et al. Sep 1996 A
5573497 Chapelon Nov 1996 A
5582578 Zhong et al. Dec 1996 A
5590653 Aida et al. Jan 1997 A
5590657 Cain et al. Jan 1997 A
5601526 Chapelon et al. Feb 1997 A
5605154 Ries et al. Feb 1997 A
5617371 Williams Apr 1997 A
5617857 Chader et al. Apr 1997 A
5643179 Fujimoto Jul 1997 A
5662170 Donovan et al. Sep 1997 A
5665054 Dory Sep 1997 A
5666954 Chapelon et al. Sep 1997 A
5676673 Ferre et al. Oct 1997 A
5687729 Schaetzle Nov 1997 A
5694936 Fujimoto et al. Dec 1997 A
5711300 Schneider et al. Jan 1998 A
5722411 Suzuki et al. Mar 1998 A
5739625 Falcus Apr 1998 A
5743863 Chapelon Apr 1998 A
5752515 Jolesz et al. May 1998 A
5759162 Oppelt et al. Jun 1998 A
5762616 Talish Jun 1998 A
5769790 Watkins et al. Jun 1998 A
5810008 Dekel et al. Sep 1998 A
5817036 Anthony et al. Oct 1998 A
5831739 Ota Nov 1998 A
5873845 Cline et al. Feb 1999 A
5897495 Aida et al. Apr 1999 A
5938600 Van Vaals et al. Aug 1999 A
5938608 Bieger et al. Aug 1999 A
5947900 Derbyshire et al. Sep 1999 A
5984881 Ishibashi et al. Nov 1999 A
6004269 Crowley et al. Dec 1999 A
6023636 Wendt et al. Feb 2000 A
6042556 Beach et al. Mar 2000 A
6071239 Cribbs et al. Jun 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6128522 Acker et al. Oct 2000 A
6128958 Cain Oct 2000 A
6193659 Ramamurthy et al. Feb 2001 B1
6242915 Hurd Jun 2001 B1
6246896 Dumoulin et al. Jun 2001 B1
6263230 Haynor et al. Jul 2001 B1
6267734 Ishibashi et al. Jul 2001 B1
6289233 Dumoulin et al. Sep 2001 B1
6309355 Cain et al. Oct 2001 B1
6317619 Boernert et al. Nov 2001 B1
6322527 Talish Nov 2001 B1
6334846 Ishibashi et al. Jan 2002 B1
6374132 Acker et al. Apr 2002 B1
6392330 Zloter et al. May 2002 B1
6397094 Ludeke et al. May 2002 B1
6413216 Cain et al. Jul 2002 B1
6419648 Vitek et al. Jul 2002 B1
6424597 Bolomey et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6428532 Doukas et al. Aug 2002 B1
6461314 Pant et al. Oct 2002 B1
6475150 Haddad Nov 2002 B2
6478739 Hong Nov 2002 B1
6506154 Ezion et al. Jan 2003 B1
6506171 Vitek et al. Jan 2003 B1
6511428 Azuma et al. Jan 2003 B1
6522142 Freundlich Feb 2003 B1
6523272 Morales Feb 2003 B1
6554826 Deardorff Apr 2003 B1
6559644 Froundlich et al. May 2003 B2
6566878 Komura et al. May 2003 B1
6582381 Marantz et al. Jun 2003 B1
6599256 Acker et al. Jul 2003 B1
6612988 Maor et al. Sep 2003 B2
6613004 Vitek et al. Sep 2003 B1
6613005 Friedman et al. Sep 2003 B1
6618608 Watkins et al. Sep 2003 B1
6618620 Freundlich et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6626855 Weng et al. Sep 2003 B1
6629929 Jago et al. Oct 2003 B1
6645162 Friedman et al. Nov 2003 B2
6652461 Levkovitz Nov 2003 B1
6666833 Friedman et al. Dec 2003 B1
6676601 Lacoste et al. Jan 2004 B1
6679855 Horn et al. Jan 2004 B2
6705994 Vortman et al. Mar 2004 B2
6719694 Weng et al. Apr 2004 B2
6733450 Alexandrov et al. May 2004 B1
6735461 Vitek et al. May 2004 B2
6761691 Tsuzuki Jul 2004 B2
6770031 Hynynen et al. Aug 2004 B2
6770039 Zhong et al. Aug 2004 B2
6788619 Calvert Sep 2004 B2
6790180 Vitek Sep 2004 B2
6824516 Batten et al. Nov 2004 B2
6951540 Ebbini et al. Oct 2005 B2
6961606 DeSilets et al. Nov 2005 B2
7001379 Behl et al. Feb 2006 B2
7077820 Kadziauskas et al. Jul 2006 B1
7094205 Marmarelis Aug 2006 B2
7128711 Medan et al. Oct 2006 B2
7155271 Halperin et al. Dec 2006 B2
7175596 Vitek et al. Feb 2007 B2
7175599 Hynynen et al. Feb 2007 B2
7264592 Shehada Sep 2007 B2
7264597 Cathignol Sep 2007 B2
7267650 Chow et al. Sep 2007 B2
7344509 Hynynen et al. Mar 2008 B2
7377900 Vitek et al. May 2008 B2
7452357 Vlegele et al. Nov 2008 B2
7462488 Madsen et al. Dec 2008 B2
7505805 Kuroda Mar 2009 B2
7505808 Anderson et al. Mar 2009 B2
7510536 Foley et al. Mar 2009 B2
7511501 Wexler Mar 2009 B2
7535794 Prus et al. May 2009 B2
7553284 Vaitekunas Jun 2009 B2
7603162 Danz et al. Oct 2009 B2
7611462 Vortman et al. Nov 2009 B2
7652410 Prus Jan 2010 B2
7699780 Vitek et al. Apr 2010 B2
20010031922 Weng et al. Oct 2001 A1
20020035779 Krieg et al. Mar 2002 A1
20020082589 Friedman et al. Jun 2002 A1
20020188229 Ryaby Dec 2002 A1
20030004439 Pant et al. Jan 2003 A1
20030060820 Maguire et al. Mar 2003 A1
20030187371 Vortman et al. Oct 2003 A1
20040030227 Littrup et al. Feb 2004 A1
20040030251 Ebbini et al. Feb 2004 A1
20040068186 Ishida et al. Apr 2004 A1
20040122323 Vortman et al. Jun 2004 A1
20040147919 Behl et al. Jul 2004 A1
20040199068 Bucholz et al. Oct 2004 A1
20040210134 Hynynen et al. Oct 2004 A1
20040236253 Vortman et al. Nov 2004 A1
20040267126 Takeuchi Dec 2004 A1
20050033201 Takahashi et al. Feb 2005 A1
20050096542 Weng et al. May 2005 A1
20050131301 Peszynski et al. Jun 2005 A1
20050203444 Schonenberger et al. Sep 2005 A1
20050240126 Foley et al. Oct 2005 A1
20050251046 Yamamoto et al. Nov 2005 A1
20060052661 Gannot et al. Mar 2006 A1
20060052701 Carter et al. Mar 2006 A1
20060052706 Hynynen et al. Mar 2006 A1
20060058671 Vitek et al. Mar 2006 A1
20060058678 Vitek et al. Mar 2006 A1
20060079773 Mourad et al. Apr 2006 A1
20060106300 Seppenwoolde et al. May 2006 A1
20060173385 Lidgren et al. Aug 2006 A1
20060184069 Vaitekunas Aug 2006 A1
20060206105 Chopra et al. Sep 2006 A1
20060229594 Francischelli et al. Oct 2006 A1
20070016013 Camus Jan 2007 A1
20070016039 Vortman et al. Jan 2007 A1
20070055140 Kuroda Mar 2007 A1
20070066897 Sekins et al. Mar 2007 A1
20070073135 Lee et al. Mar 2007 A1
20070098232 Matula et al. May 2007 A1
20070167781 Vortman et al. Jul 2007 A1
20070197918 Vitek et al. Aug 2007 A1
20070219470 Talish et al. Sep 2007 A1
20080027342 Rouw et al. Jan 2008 A1
20080031090 Prus et al. Feb 2008 A1
20080033278 Assif Feb 2008 A1
20080082026 Schmidt et al. Apr 2008 A1
20080108900 Lee et al. May 2008 A1
20080183077 Moreau-Gobard et al. Jul 2008 A1
20080228081 Becker et al. Sep 2008 A1
20080249408 Palmeri et al. Oct 2008 A1
20080292194 Schmidt et al. Nov 2008 A1
20080312562 Routh et al. Dec 2008 A1
20090088623 Vortman et al. Apr 2009 A1
20090096450 Roland Apr 2009 A1
20100056962 Vortman et al. Mar 2010 A1
Foreign Referenced Citations (38)
Number Date Country
4345308 Feb 2001 DE
10102317 Aug 2002 DE
1132054 Sep 2001 EP
1582886 Oct 2005 EP
151073 Nov 2005 EP
1774920 Apr 2007 EP
1790384 May 2007 EP
2806611 Sep 2001 FR
11313833 Nov 1999 JP
WO-9100059 Jan 1991 WO
WO-9852465 Nov 1998 WO
WO-0031614 Jun 2000 WO
WO-0031614 Jun 2000 WO
WO-0143640 Jun 2001 WO
WO-0158337 Aug 2001 WO
WO-0166189 Sep 2001 WO
WO-0180709 Nov 2001 WO
WO-02058791 Aug 2002 WO
WO-03013654 Feb 2003 WO
WO-03070105 Aug 2003 WO
WO-03097162 Nov 2003 WO
WO-03098232 Nov 2003 WO
WO-2004093686 Nov 2004 WO
WO-200558029 Jun 2005 WO
WO-2005058029 Jun 2005 WO
WO-2006018837 Feb 2006 WO
WO-2006025001 Mar 2006 WO
WO-2006087649 Aug 2006 WO
WO-2006119572 Nov 2006 WO
WO-2007073551 Jun 2007 WO
WO-2007093998 Aug 2007 WO
WO-2008039449 Apr 2008 WO
WO-2008050278 May 2008 WO
WO-200875203 Jun 2008 WO
WO-2008075203 Jun 2008 WO
WO-2008119054 Oct 2008 WO
WO-2009055587 Apr 2009 WO
WO-2009094554 Jul 2009 WO
Non-Patent Literature Citations (50)
Entry
Botros et al., “A hybrid computational model for ultrasound phased-array heating in presence of strongly scattering obstacles,” IEEE Trans. On Biomed. Eng., vol. 44, No. 11, pp. 1039-1050 (Nov. 1997).
Cain et al., “Concentric-ring and Sector-vortex Phased-array Applicators for Ultrasound Hperthermia,” IEEE Trans. On Microwave Theory & Techniques, vol. MTT-34, No. 5, pp. 542-551 (May 1986).
Chen et al., “MR Acoustic Radiation Force Imaging: Comparison of Encoding Gradients.”.
Cline et al., “Focused US system for MR imaging-guide tumor ablation,” Radiology, v. 194, No. 3, pp. 731-738 (Mar. 1995).
Cline et al., “MR Temperature mapping of focused ultrasound surgery,” Magnetic Resonance in Medicine, vol. 32, No. 6, pp. 628-636 (1994).
Cline et al., “Simultaneous magnetic resonance phase and magnitude temperature maps in muscle,” Magnetic Resonance in Medicine, vol. 35, No. 3, pp. 309-315 (Mar. 1996).
Daum et al., “Design and evaluation of a feedback based phased array system for ultrasound surgery,” IEEE Trans. Ultrason. Ferroelec. Freq. Control, vol. 45, No. 2, pp. 431-434 (1998).
de Senneville et al., “Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focussed Ultrasound,” Magnetic Resonance in Medicine 57:319-330 (2007).
Fjield et al, “The Combined Concentric-ring and Sector-vortex Phased Array for MRI Guided Ultrasound Surgery,” IEEE Trans. On Ultrasonics, Ferroelectrics and Freq. Cont., vol. 44, No. 5, pp. 1157-1167 (Sep. 1997).
Herbert et al., “Energy-based adaptive focusing of waves: application to ultrasonic transcranial therapy,” 8th Intl. Symp. On Therapeutic Ultrasound.
Huber et al., “A New Noninvasive Approach in Breast Cancer Therapy Using Magnetic Resonance Imaging-Guided Focussed Ultrasound Surgery,” Cancer Research 61, 8441-8447 (Dec. 2001).
International Preliminary Report on Patentability in International Patent Application No. PCT/IB2004/001512, mailed Dec. 8, 2005.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2004/001498, dated Aug. 31, 2004.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2005/002273, mailed Dec. 20, 2005.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2005/002413, mailed Nov. 22, 2005.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2006/001641, mailed Sep. 25, 2006.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2006/003300, mailed Feb. 14, 2008.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2007/001079, mailed Dec. 10, 2007.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2007/002134, mailed Dec. 13, 2007.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2007/002140, mailed Dec. 29, 2008.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2008/003069, mailed Apr. 27, 2009.
Jolesz et al., “Integration of interventional MRI with computer-assisted surgery,” J. Magnetic Resonance Imaging. 12:69-77 (2001).
Kohler et al., “Volumetric HIFU Ablation guided by multiplane MRI thermometry,” 8th Intl. Symp. On Therapeutic Ultrasound, edited by E.S. Ebbini, U. of Minn. (Sep. 2009).
Kowalski et al., “Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation,” IEEE Trans. On Biomed. Eng., vol. 49, No. 11, pp. 1229-1241 (Nov. 2002).
Maxwell et al., “Noninvasive thrombolysis using pulsed ultrasound cavitation therapy—Histotripsy,” Abstract, U.S. Natl. Lib. of Med., NIH, Ultrasound Med. Biol. (Oct. 23, 2009).
McDannold et al., “MRI evaluation of thermal ablation of tumors and focused ultrasounds,” JMRI vol. 8, No. 1, pp. 91-100 (1998).
McDannold et al., “Magnetic resonance acoustic radiation force imaging,” Med. Phys. vol. 35, No. 8, pp. 3748-3758 (Aug. 2008).
Medel et al., “Sonothrombolysis: An emerging modality for the management of stroke,” Neurosurgery, vol. 65, No. 5, pp. 979-993.
Mougenot et al., “MR monitoring of the near-field HIFU heating,” 8th Intl. Symp. On Therapeutic Ultrasound, edited by E.S. Ebbini, U. of Minn. (Sep. 2009).
Partial International Search Report and Written Opinion in International Patent Application No. PCT/IB2007/001079, dated Sep. 25, 2007.
Vimeux et al., “Real-time control of focused ultrasound heating based on rapid MR thermometry,” Investig. Radiology, vol. 43, No. 3, pp. 190-193.
Vykhodtseva et al., “MRI detection of the thermal effects of focused ultrasound on the brain,” Ultrasound in Med. & Biol., vol. 26, No. 5, pp. 871-880 (2000).
Written Opinion in International Patent Application No. PCT/IL01/00340, mailed Feb. 24, 2003.
Written Opinion in International Patent Application No. PCT/IL02/00477, mailed Feb. 25, 2003.
Written Opinion in International Patent Application No. PCT/IB03/05551, mailed Sep. 10, 2004.
“How is Ablatherm treatment performed?” http://www.edap-hifu.com/eng/physicians/hifu/3c—treatment treat-description.htm, accessed Jan. 3, 2003.
“What is HIFU? HIFU: High Intensity Focused Ultrasound,” http://www.edap-hifu.com/eng/physicians/hifu2a—hifu—overview.htm, accessed Jan. 3, 2003.
“What are the physical principles?” http://www.edap-hifu.com/eng/physicians/hifu/2c—hifu—physical.htm, accessed Jan. 3, 2003.
“How does HIFU create a lesion?” http://www.edap-hifu.com/eng/physicians/hifu/2d—hifu—lesion.htm, accessed Jan. 3, 2003.
“Prostate Cancer Phase I Clinical Trials Using High Intensity Focused Ultrasound (HIFU),” Focus Surgery, http://www.focus-surgery.com/PCT%20Treatmene%20with%20HIFU.htm, accessed Jan. 3, 2003.
“Abstract” Focus Surgery, http://www.focus-surgery.com/Sanghvi.htm, accessed Jan. 3, 2003.
Exablate 2000 Specification, InSightec, Ltd. (2 pages).
FDA Approves Exablate 2000 as Non-invasive surgery for Fibroids, Oct. 22, 2004.
International Search Report and Written Opinion in International Patent Application No. PCT/IB2010/000189, mailed Jun. 1, 2010.
International Search Report for PCT/IB03/05551 completion date Mar. 2, 2004 (5 pages).
International Search Report and Written Opinion in Intemation Patent Application No. PCT/IB2010/000971, mailed Jul. 29, 2010 (9 pages).
McGough, et al., “Direct Computation of Ultrasound Phased-Array Driving Signals from a Specified Temperature Distribution for Hyperthermia,” IEEE Trans. On Biomedical Engineering, vol. 39, No. 8, pp. 825-835 (Aug. 1992).
McDannold, et al., “Quality Assurance and System Stability of a Clinical MRI-guided focused ultrasound system: Four-year experience,” Medical Physics, vol. 33, No. 11, pp. 4307-4313 (Oct. 2006).
Soher et al., “Correcting for BO Field Drift in MR Temperature Mapping with Oil References,” Proceedings of the Intl. Society for Magnetic Resonance in Medicine, (May 2008).
International Search Report and Written Opinion issued Dec. 2, 2010 for International Application No. PCT/IB2010/044345 (11 pages).
Related Publications (1)
Number Date Country
20110034800 A1 Feb 2011 US